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Research Statement 

My research develops and tests computational models of human thought. I apply my models to a wide range of 
domains within Cognitive Psychology and Cognitive Science more broadly, including perception, memory, learning, 
concept acquisition, knowledge representation, problem solving, and decision making. Typically I study multiple 
such functions at once, to understand how they interact to produce complex cognition. I formulate models 
mathematically and implement them in computer simulations or derive predictions from them analytically (i.e., via 
mathematical proof). I design and conduct behavioral experiments to test model predictions and to decide among 
competing models. The models I develop draw on tools of advanced mathematics, statistics, machine learning, and 
sometimes physics. I also study foundational issues of modeling, to help understand what models tell us and how 
they relate to scientific theory. 

The benefits of computational modeling in cognitive science are manifold: They offer a more rigorous 
understanding of the workings of the mind than is possible from verbal theories. Accordingly, they enable more 
precise prediction and hence more informative empirical tests. Likewise, cognitive models facilitate optimization of 
training and education, via simulation of the efficiency and efficacy of alternative training paradigms (materials, 
timing, etc.). Models can be used as diagnostic tools, in that parameter estimates from fitting a model to a 
person’s behavior or brain activity can serve as dependent measures that reflect separable psychological processes 
more accurately than can standard summary statistics. Such model-based measures are valuable in studies of 
individual differences and in clinical applications. Finally, rigorous computational characterizations of human 
thought can inform machine learning and artificial intelligence, enabling artificial systems to reproduce aspects of 
human intelligence and creativity that are currently beyond reach. 

Since my tenure review in 2014, I have continued my core research program in mathematical modeling of 
cognition while expanding into several new fields. I began a collaboration in Computational Psychiatry with 
researchers at CU Denver and NIMH, applying models of learning, decision making, and response time to improve 
diagnosis and treatment of attentional and emotional disorders. I began a collaboration in Civil Engineering to 
improve planning and spatial reasoning in skilled construction trades. I started a new line of research applying my 
modeling approach to Quantum Physics, yielding new insights into the mathematical features of quantum 
entanglement as well as possible parallels in human decision making. I also continued existing collaborations, 
applying models and principles of cognitive psychology to classroom education, and applying statistical methods to 
population genetics. 

During this six-year period, my research has produced 20 peer-reviewed publications, with 7 more submitted for 
publication. I have obtained four new grants from the National Science Foundation (NSF), National Institute of 
Mental Health (NIMH): one as PI, two as MPI or co-PI, and one as coinvestigator. I am co-PI on a newly funded 
internal grant from CU’s AB Nexus program. I also completed five grants that were active at the time of tenure, 
one as PI, two as co-PI, and two as coinvestigator. I gave six invited talks (national and international) and made or 
co-authored 41 conference presentations. 

Core research in Cognitive Psychology 

My primary theoretical interests lie in the interactions among learning, decision making, and knowledge 
representation. How does what people learn depend on their background knowledge or how they represent that 
knowledge? Reciprocally, how does learning about a domain change representations? How do people learn and 
represent abstract relational concepts? How do people select or seek information in the service of learning? How 
do the decisions people make depend on their state of knowledge, and how does decision making change with 
learning? My students, collaborators, and I have addressed these questions in a variety of areas, using various 
experimental methods and modeling techniques. 

Attention in Learning 

It is well established that attention affects learning, in that people and nonhuman animals learn more about 
attended than unattended stimuli. More intriguing is that learning feeds back to impact attention, such that the 
degree to which different stimuli reliably predict outcomes affects how much attention they receive in new 
situations. Thus attention itself is learned. Various theories have been proposed for explaining the learning 
dynamics of attention (Kruschke, 2001; Le Pelley, Mitchell, & Johnson, 2013; Mackintosh, 1975; Pearce & Hall, 
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1980), but often they are incompatible and none can explain the full range of established empirical phenomena. 
My senior PhD student Sam Paskewitz and I have developed a new model, CompAct, embodying the principle that 
stimuli compete for attention at the time of prediction or response selection, and that attention is learned by the 
same principles of reinforcement learning from prediction error that govern simpler (associative) forms of learning. 
We have recently published our first theoretical paper on this model, showing how it relates to and unifies 
previous theories (Paskewitz & Jones, 2020). We have also run a series of experiments that support CompAct’s 
predictions over other models (Paskewitz & Jones, submitted). The model and experimental paradigms we have 
developed have played a central role in our work in Computational Psychiatry, described below. 

Abstract Relational Concepts 

My former PhD student Dan Corral and I have spent many years studying how people learn and represent abstract 
relational concepts. Building on Gentner’s (1983) influential structure-mapping theory of analogical reasoning, we 
have proposed a dual-representation theory of relational concepts, whereby they can be represented either 
atomically or compositionally. An atomic representation is one that operates directly on constituent objects, such 
as BIGGER(OBJECT1,OBJECT2). A compositional representation is built of atomic relations operating on shared objects. 
To use Gentner’s classic example, the concept ORBIT could be represented as CAUSE[BIGGER(OBJECT1,OBJECT2) & 
ATTRACT(OBJECT1,OBJECT2), REVOLVE_AROUND(OBJECT2,OBJECT1)]. Thus, the concept derives its meaning from a second-
order causal relation between three primitive relations, all operating on the same objects. Although this distinction 
is not explicit in structure-mapping theory, it is an essential assumption. We have proposed instead that people 
have flexibility to represent many concepts in either way, for example collapsing the compositional representation 
above to an atomic one, ORBIT(OBJECT1,OBJECT2). This hypothesis has implications for learning, memory, and decision 
making, and we conjecture that it exemplifies the sort of representational flexibility that is essential to human 
problem solving and has been so elusive in artificial intelligence. In a series of concept-learning experiments in 
collaboration with Ken Kurtz, we demonstrated that people can shift their representations as we have proposed, 
to take advantage of the processing efficiency afforded by atomic representations (Corral, Kurtz, & Jones, 2018). 
Our findings were further corroborated by a longer series of experiments in Dan’s dissertation. 

Computational Modeling of Reinforcement Learning 

Reinforcement learning from prediction error (RL) is one of the greater successes in efforts to link psychological 
theory to brain function. As such, it offers rich opportunities for applying cognitive models to neurophysiological 
measures such as EEG and functional MRI. In collaboration with Tor Wager’s group, I developed two computational 
models to explain how RL is biased by prior knowledge (Jepma, Koban, van Doorn, Jones, & Wager, 2018). In their 
experiment, subjects rated thermal pain administered following two visual cues, which they falsely believed to 
signal different temperatures. Subjects’ ratings were biased by the cues, and surprisingly this bias was not 
unlearned even after dozens of trials. Fitting the models to the data enabled us to identify two mechanisms 
contributing to this persistent bias: biased pain perception and biased updating of pain expectations. Correlating 
the models’ dynamics with fMRI signals enabled us to separately localize the brain networks mediating them. 
Understanding these computational mechanisms and their associated brain networks is an important step in 
addressing why people persist in their beliefs despite contrary evidence. 

In a similar collaboration with Keith Lohse and Matt Miller, I applied an RL model to their single-trial EEG data on 
reward positivity (RewP), a brain signal that indexes prediction error (Holroyd & Coles, 2002). The model separated 
the dynamics of reward expectation from those of reward representation (the arithmetic difference between 
these is the prediction error). This separation in turn enabled us to assess the contribution of RL to learning at 
different time scales. We found that RL mechanisms drive short-term (trial to trial) adjustments in response 
probabilities but have no causal role in long-term acquisition of category knowledge. Thus our findings place 
important boundaries on the contribution of RL to higher-level learning (Lohse, Miller, Daou, Valerius, & Jones, 
2020). 

RL also plays a role in cognitive control, the executive functions by which stimuli and response strategies are 
selected in accordance with task goals. In collaboration with Daniel Weissman, I have been studying this 
connection in the context of the congruency sequence effect (CSE), whereby the performance cost of distracting 
information is modulated by whether it was congruent or incongruent with task goals on previous trials (Gratton, 
Coles, & Donchin, 1992). Building on my earlier work linking sequential effects in learning to knowledge 
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representation (Jones, Curran, Mozer, & Wilder, 2013), we conducted a series of experiments demonstrating that 
the CSE reflects flexible mechanisms for learning statistical dependencies in the environment, rather than simpler 
mechanisms for managing response conflict as has previously been proposed (Weissman, Grant, & Jones, in press). 

Active Learning and Information Selection 

Most empirical studies on human learning provide subjects with stimuli and feedback and assess what they can 
learn. This dominant paradigm neglects a critical aspect of everyday learning, namely that people can choose what 
information to acquire (what questions to ask, what objects to explore, etc.). The growing body of research on 
active learning addresses how people select information (Gureckis & Markant, 2012). Of particular interest is 
sequential information selection, where the choice of each question can be informed by the answers to preceding 
ones, such as with a scientist performing a series of experiments. Do people plan ahead in such situations, 
choosing an experiment based on whether it leads to useful followup experiments, or do they choose myopically, 
performing the most informative experiment at each step? In collaboration with Jonathan Nelson and Björn 
Meder, I conducted an information-theoretic analysis drawing on the same principles of dynamic control used in 
more advanced RL models, which identified the conditions under which myopic selection is at odds with long-run 
efficiency (Nelson, Meder, & Jones, submitted). We then conducted an empirical study that demonstrated both 
children and adults are strikingly myopic when seeking information sequentially (Meder, Nelson, Jones, & Ruggeri, 
2019). These findings place a strong upper bound on the sophistication of people’s active learning strategies, and 
they point to new research questions on how active learning could be improved in both educational and scientific 
(optimal experiment design) settings. 

Foundational Issues 

I have long been interested in the relationship between rational and algorithmic models of cognition. Rational 
models describe the outcomes the mind attempts to optimize (“why”), whereas algorithmic models describe the 
representations and processes by which calculations are carried out (“how”) (Marr, 1982). These two approaches 
are complementary, and understanding how they relate often yields greater insight than either approach alone. 
Typically, rational models are considered limiting cases of algorithmic ones: They describe what the mind would do 
if it had infinite computational resources (Griffiths, Vul, & Sanborn, 2012). Instead, Brad Love and I have shown 
analytically how many algorithmic models can be treated as limiting cases of rational ones, when the inductive bias 
(formally, a Bayesian prior distribution) becomes infinitely strong (Parpart, Jones, & Love, 2018; Bobadilla-Suarez, 
Jones, & Love, submitted). This provides a new way to think about algorithmic models, in terms of the assumptions 
they embody for the statistical structure of the environment. I recently received a grant from NSF apply this 
approach to a wide range of models, spanning decision making, RL, and concept learning. In addition to the 
theoretical integration afforded by our approach, it has the potential to generate new models for both psychology 
and machine learning. 

I have also shown how a rational interpretation can provide useful grounding for models of decision making and 
response time. My earlier work (Jones & Dzhafarov, 2014) demonstrated that these models are often unfalsifiable 
because of flexibility in their ancillary (extra-theoretical) assumptions, a line of work that I have continued in 
recent years (Jones, submitted). On the more positive side, I have shown that the most influential model in this 
family (the diffusion model; Ratcliff, 1978) can be derived from rational principles of Bayesian inference. This 
normative grounding eliminates the model’s excess flexibility and opens connections to other theoretical 
frameworks, such as RL to explain how decision making adapts with learning (Jones, 2018). 

Computational Psychiatry 

Computational methods are becoming increasingly influential in Clinical Psychology and Psychiatry (Huys, Maia, & 
Frank, 2016), and funding agencies such as NIMH have recently made Computational Psychiatry a priority. 
Cognitive modeling can contribute to the study of psychopathology in numerous ways, by offering more accurate 
diagnosis, informing nosology, developing and evaluating new interventions, and predicting and assessing 
response to existing treatments (Stoddard & Jones, 2019). In collaboration with Joel Stoddard (Psychiatry, CU 
Denver) and Melissa Brotman’s group at NIMH, I have been applying models of learning and decision making to 
disorders including anxiety, adolescent irritability, and ADHD. 
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Several of our projects have used variants of the diffusion model, a widely used model of decision making and 
response time that affords separate measurement of processing efficiency (drift rate), response caution (decision 
threshold), response bias (starting point), and nondecision time. We have found that the increased response-time 
variability seen in sustained attention tasks in youth with attention or mood disorders is accounted for by lower 
drift rates, and surprisingly that this effect is greater in the absence of distractor stimuli (Haller, Stoddard, 
Pagliaccio, Bui, MacGillivray, Jones, & Brotman, in press). We have developed a model that separates perceptual 
bias from response bias in adolescents’ discrimination of facial cues, and found that these measures correlate 
differently with anxiety versus irritability (Haller, …, Jones, & Brotman, in preparation). We have combined the 
diffusion model with a model of spatial attention to assess how an emotionally charged cue (an angry face) biases 
spatial attention in a subsequent perceptual discrimination task, and how this effect correlates with anxiety 
(Haller, Stoddard, Jones, & Brotman, in preparation). These results all help to tie the disorders in question to well-
studied experimental tasks from Cognitive Psychology and to pinpoint the cognitive processes that are disrupted. 

In other projects we have applied models of reinforcement or attention learning to isolate disruptions in learning 
processes. We developed an RL model of a therapeutic intervention designed to correct biased interpretation of 
affective social cues (facial expressions), and found that the model can distinguish deficits due to attentional bias, 
bias in feedback processing, and poor discrimination of facial cues (Stoddard, Haller, Costa, Brotman, & Jones, 
submitted). Funded by an R21 grant from NIMH, we applied the CompAct model of attention learning described 
above (Paskewitz & Jones, 2020) to a new associative learning task with facial cues, finding that individuals higher 
in anxiety can perform worse in this task because they pay less attention to (i.e., avoid) angry faces or because 
they are slower to shift their attention to predictive social cues. These results show that individuals with seemingly 
similar difficulties at a behavioral level can suffer quite different disruptions in cognitive processing, and they offer 
a potential path toward diagnostic methods for individually targeted interventions. We are now pursuing these 
possibilities in a newly funded grant from CU’s AB Nexus program. 

Civil Engineering 

I have recently begun an NSF-funded project with Paul Goodrum and Matt Hallowell (Civil Engineering) and Tom 
Yeh (Computer Science) to investigate the impact of augmented reality (AR) and related technologies on skilled 
workers in the construction trades. This grant is part of NSF’s Future of Work at the Human-Technology Frontier 
program and is an excellent opportunity for computational principles from Cognitive Psychology to have a broad 
practical impact. Replacing 2d blueprints with AR could dramatically improve worker efficiency and safety, but it 
also comes with risks of information overload and distraction. Building on cognitive theories of planning (Hayes-
Roth & Hayes-Roth Perrault, 1979; Spiegel, Koester, & Schack, 2013), inference under uncertainty (Daw, Niv, & 
Dayan, 2005), and the impact of trust on planning (La Porta, Lopez De Silanes, Schleifer, & Vishny, 1997; 
Michaelson & Munakata, 2016), I helped to develop a set of hypotheses regarding how various aspects of an AR 
system might impact critical outcome measures including planning horizon, ability to anticipate hazards, and need 
for replanning or rework. 

Although some form of AR will likely become common on jobsites in the near future, AR is not currently used by 
field workers. The pilot experiments and subject-matter expert interviews we have conducted thus far have 
answered many basic questions about how people interact with such a system during a construction task, and 
what capabilities they find most useful. We are currently designing the apparatus and task for our main 
experiment, which will contrast various AR and 2d conditions on the aforementioned measures. 

This collaboration has also opened up other lines of work. We recently completed a theoretical paper on statistical 
measures of workplace safety in which I was able to use my statistics expertise to evaluate the validity and 
reliability of accident rates as indicators of safety performance (Hallowell, Quashne, Salas, Jones, MacLean, & 
Quinn, in press). 

Physics 

Quantum entanglement is arguably the most profound discovery ever made about the nature of reality. Empirical 
violations of Bell’s inequality (Bell, 1964) and related conditions (Clauser, Horne, Shimony, & Holt, 1969; Kochen & 
Specker, 1967), collectively known as contextuality, demonstrate that physical quantities do not have meaningful 
values when not being measured, not even in a probabilistic sense. However, the argument behind this conclusion 
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requires measurements to be separated in such a way that they cannot causally influence each other’s outcomes. 
That requirement impedes application of contextuality to more complex systems, both in Physics and beyond. For 
example, several recent studies have attempted to demonstrate contextuality in human behavior, via particular 
patterns of correlations between decisions made by an individual that mirror the correlations observed in particle 
physics (Aerts et al., 2017; Cervantes & Dzhafarov, 2018). 

In collaborations with Ehtibar Dzhafarov, I have helped to elucidate how questions of contextuality fundamentally 
change when measurements can directly influence each other, such as how any decision a person makes can affect 
their subsequent decisions (Dzhafarov, Kujala, Cervantes, Zhang, & Jones, 2016). My main contribution in this area 
has been to show how the framework of probabilistic causal models frequently used in Cognitive Science can 
resolve this problem (Jones, 2019). I proposed a model-based definition of contextuality that accounts for direct 
influence between measurements, and proved this definition is equivalent to a purely probabilistic definition by 
Dzhafarov and Kujala (2016) and also to a principle of no-fine-tuning proposed in the Physics literature by Wood 
and Spekkens (2015) and Cavalcanti (2018). The advantage of the model-based approach is that—like John Bell’s 
original proof—it directly specifies the class of physical models of a system that are ruled out if it is found to be 
contextual. My approach is beginning to be cited in the Physics literature (e.g., Pearl & Cavalcanti, in press). This is 
notable because, although there is a long history of formal methods being imported from Physics to Psychology, 
there are very few examples of the reverse. 
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