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At a workshop sponsored by the National Science Foundation, 18 distinguished
researchers from the fields of Cognitive Science (CS) and Machine Learning (ML)
met in Arlington, VA in May 2013 to discuss computational approaches to cognition
in human and artificial systems. The purpose of the workshop was to identify
frontiers for collaborative research integrating (a) mathematical and computational
modeling of human cognition with (b) machine learning and machine intelligence.
The researchers discussed opportunities and challenges for how the two fields can

advance each other and what sort of joint efforts are likely to be most fruitful.

There are several reasons to believe that theories of human cognition and of
machine intelligence are currently in position to greatly benefit from each other.
The mathematical and computational tools developed for designing artificial
systems are beginning to make an impact on theoretical and empirical work in CS,

and conversely CS offers a range of complex problems that challenge and test ML



theories. ML systems would likely be more successful if they were more flexible and
adaptive, like human cognition, and if they were built on richer representations that
(in some sense) embody meaning or understanding as opposed to black-box
statistics. The synthesis is also timely because CS researchers are starting to work
on large datasets (e.g., Amazon’s Mechanical Turk and web-based corpora), and a
major focus of ML in the last decade has been to develop tools that can succeed in

complex, naturalistic situations.

The remainder of this report summarizes the main conclusions from the workshop
regarding opportunities for research integrating CS and ML. The first section
discusses potential benefits to society, including a new generation of intelligent
artificial systems, improved decision-making both for individuals and in public
policy, advances in adaptive and personalized education and training, and new
computational frameworks for understanding the brain. The remaining sections
explore specific collaborative research areas where the next breakthroughs might
occur, followed by mechanisms that NSF and other funding agencies could pursue to
encourage greater collaboration. In the Supplementary Material! to this report, the
workshop participants describe recent research they believe exemplifies the

potential of bridging these two fields.

Societal Contributions

Recent developments in CS and ML have put these fields in a position where
increased collaboration and integration over the next several years may produce
technological solutions to many important current societal issues. The following
subsections describe some of the most promising areas of development and

practical impact.

1 The Supplementary Material can be obtained at:

http://matt.colorado.edu/compcogworkshop/supplement.pdf



Human-Like Artificial Intelligence

Collaboration between CS and ML could soon produce the next generation of
artificially intelligent (AI) systems. These developments could transform everyday
life by creating a new augmented reality, with computer systems that can have
many of the desirable properties of human cognition and with which humans can

efficiently interact and communicate.

Making ML systems more cognitive could enable them to interact with humans
more efficiently, for example by taking natural-language instructions or queries
instead of requiring detailed programming for any task. They could also take on
many of the strengths of human cognition, including robustness, flexibility,
adaptiveness, analogical reasoning, and the ability to learn and generalize from a

small number of examples.

Potential applications of this next generation of Al include manufacturing,
transportation, business, usability, human-computer interaction, forensics, and
database search. Also important, especially for systems interacting with humans, is
social cognition or theory of mind. For example, to build a self-driving car, it is
essential to have an internal model of how humans reason and behave, including

deeper theory-of-mind reasoning.

Building cognitive principles into ML systems may also lead to systems that do not
need to be programmed for individual tasks. Instead, they can learn new tasks from
experience, interpret ad hoc instructions, combine knowledge derived from these
two sources (instructions and experience), and acquire abilities to perform multiple

alternative tasks depending on context.

Decision-Making

Integration of CS and ML could lead to important advances in theories of decision-
making, with applications to health care, policy, and commerce. A new theory of

behavioral economics grounded in modern probabilistic formulations of human



cognition would be context-sensitive and more applicable to complex, dynamic,
time-sensitive environments. Current computational models of cognition take into
account bounds on computational resources and other aspects of the cognitive
architecture of agent in question. Using bounds from these more accurate cognitive
models should enable better predictions from both prescriptive and descriptive

theories.

Improved theories of human decision-making could benefit society through a better
understanding of the relationship between policy and human behavior, as well as
through new means for helping people to make better personal decisions (e.g., in
health and finance). Improvements might also come for computerized decision-
making systems, such as product recommenders and personalized search and

advertisements.

Training and Education

The field of education has the potential to be transformed by the internet and
intelligent computer systems. Evidence for the first stage of this transformation is
abundant, from massive open online courses (MOOCs) to web sites such as Khan
Academy (khanacademy.org) that offer online lessons and drills. However, the
delivery of instruction via web-connected devices is merely a precondition for what
may become an even more fundamental transformation, as computational methods
from CS and ML are applied to personalize and optimize education. Specifically, CS
models can be used to generate quantitative predictions about learning outcomes
for individual students or groups, and ML methods can use high-dimensional data to
infer latent states of those models and thereby to optimize and personalize the

educational process.

Teaching can be personalized both at the level of learning styles and at the level of
specific instruction, feedback, rewards, scheduling, and assignments. Optimization
can occur both for the student, in terms of knowledge acquisition, understanding,

attention, and retention; and for the teacher, in terms of efficiency of time and other



resources, as well as real-time assessment and adaptation in response to student
progress. These potential advances would apply not only to STEM education and
other traditional educational settings, but also to job or military training, training of
perceptual expertise (e.g., radiologists or security screeners), or training of

reasoning, decision-making, and cognitive control.

Computational models of learning in CS have become highly complex, incorporating
assumptions about knowledge representation, processing, memory, expertise,
processing of instructions, and so on. These models often use rich (i.e. flexible,
structured, hierarchical) conceptual representations that may be restructured as the
student learns. They can take into account constraints and limitations of the human
cognitive system, capture cognitive biases, and explain dimensions of individual
differences. They can capture facets of learning specific to educational settings, such
as differences between group instruction (e.g., classroom) and individual tutoring,
and they can embody specific educational theories about pedagogy (e.g., scaffolding,
multiple routes to solution). Applied to particular knowledge domains, CS models
can assume complex and specific knowledge structures as possible starting points
for students’ knowledge. Finally, they can address psychological questions such as
how to reward and motivate students (e.g., importance of play or exploration) and
when a student is ready for learning a certain concept, because of developmental

stages or individual learning trajectories.

Given such a specification of a learning situation and the cognitive processes of a
learner (or class), ML methods could be used to maximize desired learning
outcomes. ML has a variety of optimization tools that could be used to determine
the parameters (e.g., content, timing, and feedback) that will lead to optimal
learning according to a cognitive model. Moreover, hierarchical and nonparametric
models can be used to estimate and accommodate individual differences among
students. Data-mining techniques could be applied to the massive quantities of data
coming available from MOOCs and from online learning experiments. Similarly, ML

techniques could be applied to subtle aspects of a student's behavior—such as facial



expressions, fixation sequences, response latencies, and errors—to make explicit
inferences about the student's latent state of knowledge and understanding, which
could then be used as real-time feedback for instructors or automated tutoring

systems.

ML theories of learning per se are of course also relevant. There are formal
characterizations of many learning tasks as ML problems, such as classification
(Khan et al., 2011), and it will be important to determine how the principles from
this research extend to richer (more cognitive) tasks such as concept acquisition
and skill learning. Active learning (Castro et al., 2009; Settles & Burr, 2012) and
semi-supervised learning (Gibson et al., 2013; Zhu & Goldberg, 2009) are recent foci
of ML research that could be directly brought over to the education scenario.
Formal distinctions between types of learning, such as model-based versus model-

free, might also be applied to educational settings.

Understanding the Brain

Understanding how the brain works is arguably one of the most important
challenges for contemporary science. Although this question is often considered the
domain of neuroscience, CS and ML have much to contribute, by offering a top-down
theoretical framework for interpreting the great quantities of data being produced
by neuroscience. For example, neuroscience research has been heavily influenced
by ideas from control theory as formalized in the ML framework of reinforcement
learning (Sutton & Barto, 1998). Likewise, CS research on perceptual priming led to
investigation of repetition suppression, which has become one of the most robust
findings in neuroscience and neuroimaging (Grill-Spector et al.,, 2006). Whereas
traditional constructs in cognitive psychology (e.g., representation, concepts) have
not taken hold in neuroscience, the language of statistical inference and decision-
making under uncertainty that unites computational CS with ML is a potential

unifying language that bridges to work at the neural level.



Combining CS and ML could thus offer a new, more principled foundation for
studying the brain. ML techniques will be valuable for processing the rich datasets
being generated, and CS will offer psychological theories for interpreting those data.
A cognitively grounded computational understanding of the brain would also enable
technological advances, such as neural interfaces for people with sensory or motor
disabilities. From a policy point of view, such a top-down approach could be
valuable in directing more targeted research towards mental health—because

ultimately it is "mental” health we care about, not just brain health.

Promising Research Areas Integrating Computation and Cognition

At a more technical level, there are many research domains that are increasing in
importance and for which progress will be greatly enhanced by synergy between
approaches based in CS and ML. The two fields are just now poised to tackle many of

these issues. We have chosen a few of these to highlight in this report.

Towards Better, Deeper Generalization

CS and ML take complementary approaches to learning. CS focuses on rich, flexible
knowledge representations, and often on how people can acquire and use
knowledge with very little experience. ML’s focus is more on sophistication of
learning algorithms, on representations that perform very well for a specific task
(e.g., image classification), and on leveraging large volumes of complex or high-

dimensional data.

One goal for integrating ML and CS is to extend ML methods to apply to richer
knowledge structures, such as symbols, relations, graphs, analogies, rules,
grammars, and hierarchical and compositional representations. Most advanced
human thought (e.g., mathematics) is hierarchically structured, and motor and
visual abilities arguably are as well, built on vocabularies of basic elements that are
composed to form bigger patterns. Whereas much of current ML uses flat feature

vectors or n-gram-style representations, inference over richer, more cognitive



representations is crucial for the next level of Al, to enable flexibility and abstract

generalization.

A second goal is a formal understanding of learning from very little data. Humans
are able to make strong and abstract generalizations based on little experience, to a
degree not approached by current artificial systems. Recent research on one-shot
learning has offered initial answers in the case of category learning, whereby
superordinate categories determine inductive biases for member categories, in
terms of which dimensions are relevant for basic-level categories (e.g., number of
legs is a strong cue for most animal species, even a species the learner does not yet
know). These inductive biases enable rapid learning about new categories from just

a few (or even one) examples (Salakhutdinov et al,, 2012).

A third goal is autonomous discovery (or selection, tuning, or restructuring) of
representations. Most ML systems start with hand-coded features that were
selected for a given task. Approaches such as kernel methods and deep networks
can be seen as taking an opposite approach, entertaining an infinite variety of
possible features. Human cognition occupies a middle ground, with representations
that are flexible in many ways but strongly resistant to change in other ways. This
constrained flexibility is likely critical for humans’ ability to learn rapidly in new
tasks, stimulus domains, or dynamic environments. Another factor that might be
important for learning of representations is the need to perform multiple tasks.
Whereas most ML systems are designed for one or a narrow range of tasks, humans
learn to reuse knowledge in many different ways, which likely encourages
representations that are more robust and abstract. Development of ML systems that
are capable of humanlike transfer learning might lead to more sophisticated

computational mechanisms for representation learning.

Flexibility and Self-Programming

Related to the question of how people acquire new representations is that of how

they generate strategies for novel tasks. Even when task instructions are given,



there is the question of how people convert those instructions to an internal
program to direct their behavior, as well as how they rapidly tune that program
with experience. Better understanding of these psychological processes might be
informative to research in computer science on program synthesis and on automatic

programming from natural-language input.

As discussed in the previous subsection, a simple characterization of the brain/mind
as universally more flexible than current artificial systems is incorrect. In many
ways, the brain is quite inflexible, for example in how perceptual systems parse
sensory input into primitive dimensions. Cognitive scientists have argued that
humans’ ability to learn from limited data derives from our reliance on strong prior
expectations about the abstract structure of conceptual domains (e.g. in research on
one-shot learning). Therefore the real computational problem is determining the

combination of constraints and flexibility that lead to intelligent behavior.

Planning and Acting in Complex Dynamic Environments

Real environments have complex structure and are constantly changing, and human
agents continuously interact with such environments with dynamic actions that
reflect implicit and explicit planning and decisions. Although laboratory studies
have traditionally focused on discrete actions (e.g., binary responses), CS can and
should measure and model these more continuous aspects of behavior. To take
some examples, one can measure the timing and spatial trajectory of responses
(such as the movement of a hand from a start point to a decision response button),
eye movement paths and timing, facial expression, body posture and movement, and
neural responses, and this can all be done as the environment changes. Such
measurements provide critical insight into the way humans interact with a dynamic
environment by planning, dynamic decision-making, and continuous actions. CS
researchers are beginning to exploit such rich veins of data, and ML researchers are
starting to develop and use methods that produce normative ways humans can plan,
act, and change in dynamic environments. A critical point is the human agent (or

agents) is a part of the environment and all actions taken change the environment.



Thus, planning of actions must take the anticipated action consequences into

account.

The complexities raised by the rich and changing data sets, and the difficulties of
developing models of the planning and execution of actions in such interactive and
dynamic environments, require joint research efforts from the ML and CS
communities. Conversely, such joint efforts offer the hope of an enormously
increased understanding of human cognition and action, as well as the ability to
tackle many real-world problems of importance to society. Potential applications
can be found in decisions and actions required in such arenas as medicine, business,

forensics, and navigation.

There is enormous variation in the time scale over which dynamic actions, planning,
and decisions take place in changing environments. Thus one can explore simple
perception and memory retrieval taking place in a few hundred milliseconds, or
planning, action and decisions that occupy a significant portion of the lifespan (e.g.,
buying a home, planning a business venture, managing investments, or converging

upon a marriage partner).

A final considerations is that the factors important for planning and action go well
beyond the simple assessment of physical stimuli that has been the focus of much
past research. The environment, and the way that one’s actions affect the
environment, are so complex that planning and decision must often rely on high-
level abstractions such as analogy: We find situations in memory that are
sufficiently similar to the present situation to draw an analogy and guide future
actions based on the remembered outcomes. This perspective brings all the
constraints of human memory and pattern matching into the modeling of action,
planning, and decision. A critical topic then becomes the way that a system
designed by evolution and tuned by experience adapts to both the environment and

cognitive constraints so as to optimize performance.



From Learning Algorithms to Learning Models

ML has many powerful learning algorithms, but in most cases there is no model of
the learner per se, as an agent in which a given algorithm is embedded. In many
applications, it is the learner as a whole that needs to be optimized. This is
especially true for education: for optimizing learning and teaching, and for analyzing
and experimenting with online education. In that case, one must take into account
global characteristics of the learner such as curiosity, motivation, interest, active

learning, exploration, and so on.

Even outside educational applications, ML could benefit from developing complete
agents that are capable of multiple tasks. Such an approach would encourage
integration of learning with decision-making, planning, and agent architectures. It
would create a need for models of active, adaptive internal processes that are
subject to bounded rationality, which are currently not present in most ML
architectures. Extant production systems models such as SOAR (Laird, 2012) and
ACT-R (Anderson et al.,, 2004) aim for this type of internal process modeling,
although they might be better constrained by tying to ML theories of statistical

optimality.

The perspective of the operation of the whole agent, in optimizing its learning and
behavior, aligns with the notion of bounded rationality, which views rationality in
the context of a finite agent or program, and as a property of the agent’s full range of
behavior (across many tasks). This approach might naturally lead to systems with
rich, humanlike knowledge representations (Russell & Wefald, 1991). The approach
would also benefit from enlarging the conversation to include Al and robotics, not

just ML proper.

Theoretical Limits of Learning

ML offers formal theorems proving bounds for certain learning problems or
algorithms, pertaining to what is possible in principle: what can be learned, how,

and when (Langford & Shawe-Taylor, 2002; McAllester, 2003; Zhu et al., 2009).



These results are mathematically elegant, but they often give bounds that are far too
weak for practical purposes. More problematically, they ignore the key point that
humans almost never learn anything from scratch. A typical human learner has
acquired a variety of knowledge about the world. When faced with a new situation,
the learner can use priors (e.g., most coins are balanced, so I expect this new coin to
be balanced) or can adapt existing models to the data, perhaps by analogy (e.g.,
physicists using models of the solar system to understand the structure of atoms).
There have been some attempts to model this type of problem (e.g., Kemp &
Tenenbaum, 2009) but little or no attempts to prove theorems. Perhaps CS could

motivate formal learning bounds for these more realistic types of learning situations.

Using Big Data to Understand Cognition and Behavior

Recent years have seen an explosion of large datasets, some from controlled
experimentation and some from uncontrolled observations and productions. Many
of these datasets are produced by humans, indirectly or directly, and can in
principle be used to understand cognition and behavior and to guide actions and
decisions that depend on such understanding. The ML community has been
developing techniques to mine large datasets. The CS community, which in the past
focused on collecting and modeling small datasets in controlled studies, has started
to face the need to deal with far larger amounts of collected data, and data that are
generated in uncontrolled fashion. These facts point to opportunities for progress

by combining the best forces of the two groups.

Large datasets contain an exponential explosion of correlations of all sorts, but the
critical goal, if one wants to understand the processes generating the data (e.g.,
cognitive processes), is inferring causal mechanisms. The ML community has been
developing techniques for causal inference, in the form of Bayes nets and Bayesian
analysis, both often hierarchical in nature, and in the form of generative modeling.
Thus far the techniques have proven immensely valuable in the analysis of relatively
small datasets, and progress in causal inference from larger and larger datasets can

be expected in years to come.



There is a clear linkage between large datasets and human cognition and behavior.
Text databases are produced by humans and thereby reflect not only all the aspects
of human language, but also every sort of human behavior such as preferences,
social interaction, decision-making, learning, memory, and developed knowledge.
Similar rich information about human cognition and behavior is embedded in visual
materials (e.g., vacation scenes, photos of people, movies) and auditory materials
(e.g., music, speech) that are also accumulating in ever-larger amounts. Data from
educational settings is also likely to explode onto a massive scale as online
education ramps up and digital devices record student queries and responses. If the
task of finding causal mechanisms in such data is daunting, it is made even harder
by the fact that the various types of information are typically linked (e.g. captioned
photos, words in songs). Cognitive scientists seeking to understand the mechanisms
of human cognition and behavior are just beginning to face the problem of using
such massive and unorganized data, and computer scientists developing techniques
to mine such data are just starting to face the need for approaches that will scale up

to massive data.

Massive amounts of data also arise in controlled scientific studies, and they are
starting to do so in ever-increasing numbers. Researchers in CS have begun to
expand their inquiries in ways that reflect the growing realization that human
behavior goes far beyond what is revealed by simple static measurements of
accuracy in laboratory tasks. Cognitive scientists are starting to collect massive
datasets of dynamic variables, such as eye movements, pupil dilation, head position,
body posture, hand and foot movements, heart rates, skin conductance, verbal and
physical indications of ongoing decision-making, and social interactions. Just a few
examples of research that has started to deal with such data include analysis of eye
movements in viewing of photographs, decision-making that takes into account
high-order task demands, kinematics of body motion to accomplish motor tasks, and
analysis of hand trajectories to indicate responses, using such techniques as

Gaussian process regression, generative modeling, and deep belief networks. The



techniques to deal with such data are still in their infancy and will require a two-

way interaction and cooperation between scientists in the two communities.

Applying CS and ML Together to Explain the Brain

As with the other domains discussed in the previous subsection, neural data (e.g.,
fMRI, PET, Squids, EEG, and much more) have reached a level of complexity that
requires sophisticated ML algorithms to analyze them. These data must then be
linked to behavior and cognition, the data describing which is also starting to
accumulate in massive quantities. On the other hand, a theoretical understanding of
brain activity will likely only be achieved via the language provided by CS—one
needs to interpret activity in terms of perceptual and cognitive operations and

representations.

As President Obama noted in his recent address to the National Academy of Sciences
when describing his BRAIN initiative, the goal of brain mapping is the
understanding of behavior and cognition, learning and memory, and social
interaction. Thus the scientific problem of understanding the brain is one that
requires integration of CS and ML. ML can provide tools to analyze data about the
brain, for example to classify brain activities from EEG or fMRI data. CS can specify
the language for modeling the brain and can produce theories of brain activity for
ML to test. The means for identifying the causal processes linking neural and
behavioral data are still in the first stages of development and will require scientists

in ML, CS, and neuroscience to work together to make progress.

CS and ML are currently having important impacts in neuroscience in ways that
could naturally be combined. First, internal variables from cognitive models are
correlated with brain data to infer the information-processing operations carried
out by different brain regions (e.g., Fincham et al., 2002). Second, ML techniques are
applied to high-dimensional brain data to characterize what information is in the
signal, most commonly in multi-voxel pattern analysis (MVPA; Norman et al., 2006).

A promising integration of these approaches, which would integrate CS and ML



methods, is to train MVPA and related techniques to predict variables of cognitive
models (rather than experimental conditions), to obtain high-dimensional
characterizations of the brain activity corresponding to different cognitive functions

(Mack et al,, 2012).

Vision is a good example domain wherein there is a close relation between CS, ML,
and knowledge of the brain. There has been a long history of biologically inspired
models of vision. In particular, it is possible to map hierarchical computational
models onto the hierarchical structure of the visual cortex. In turn, CS and ML
theories of vision offer models of algorithms and representations that the brain
might be using, and which can be tested by experiments (e.g., using fMRI or multi-
electrode recording). Research in vision thus offers a guide for how CS and ML can
collaborate to understand other aspects of brain function, including higher-level

functions (e.g., planning, reasoning, control, problem solving).

Mechanisms of Collaboration

Despite their overlapping scope of investigation and theoretical frameworks, the CS
and ML communities have many differences that can impede collaboration. Most
obviously, CS is concerned with the workings of the human mind, whereas the goals
of ML are methods that perform well regardless of their biological relevance.
Likewise, ML is concerned primarily with performance or optimality, whereas CS

often deals with aspects of cognition that are (or appear) nonoptimal.

More generally, as an engineering discipline, ML deals more with what can be done
in the short term using current techniques. As a scientific discipline, CS seeks more
fundamental theoretical advances that will have long-term impacts on our
understanding. Nevertheless, theoretical developments can yield engineering
results in the longer term. CS, and biology in general, can give theoretical
inspiration to ML. Conversely, ML researchers have experience working in large

datasets and have developed a powerful set of technical tools that can also be



applied to cognitive modeling. The following subsections outline possible means for

fostering this type of collaboration.

Shared Challenges, Databases, and Benchmarks

One goal of collaboration between CS and ML should be to refocus ML on what
humans can do that machines currently cannot. The first step is to identify the tasks
on which humans outperform current ML. Much of current ML works on vision, text
processing, classification, and search, and it has produced an array of complex and
powerful learning algorithms. Shifting the emphasis to other domains could
encourage extension of these algorithms to operate on richer and more abstract

representations and to perform multiple tasks with a shared knowledge base.

A challenge to such a redirection of ML is that the ML community is doing quite well
under its present structure. It has been enormously successful in recent years in
technological applications (e.g., search in large databases, computer vision, voice
recognition). To get the attention of the ML community at large, it needs to be

shown new problems where it could benefit.

A significant portion of the ML community is driven by performance on benchmark
problems or datasets. ML researchers in this tradition work by incrementally
beating each other on performance metrics on well-accepted databases (e.g.,
PASCAL or ImageNet). Even 1-2% annual increments can translate to 10-20%
increments over a decade. Nevertheless, such benchmarks—if narrowly designed—
can lead to a "tyranny of datasets" wherein considerable time is spent on a
restricted set of tasks that may not generalize or encourage certain types of

progress.

Thus, CS might best impact ML if the CS community can help construct databases,
metrics, or challenge problems for comparing and testing ML algorithms that
encourage development of more cognitive or humanlike methods. A core skill of
cognitive psychologists is the ability to identify predictions of a model and to design

experimental tests. This approach can be applied to ML systems, to identify where



they will fall short and to shed light on how humans succeed in those situations. In
other words, cognitive scientists can analyze existing ML models and try to
determine what they could not do, particularly because they lack certain critical
aspects of human cognition. This process could lead to new benchmarks that would
require theoretical advances in directions currently neglected by ML, toward

making artificial systems more cognitive and humanlike.

One possible strategy would be to design sequences of challenge problems that
guide toward a complete cognitive model. A sequence could follow a developmental
trajectory (either individual or phylogenetic), or it could be based on intuitions
about the order of theoretical developments that is most likely to culminate in a
major advance (although in the latter case there might be a danger of implicitly
building a predetermined cognitive theory into the sequence). This type of
challenge could encourage the ML community to perform increasingly complicated

tasks and hence drive the field forward.

The Appendix presents some candidate domains for new cognitively inspired
benchmark ML tasks. A goal of these challenge problems is to require “cognitive” as
opposed to “engineered” solutions. It is important that solutions advance theory, in
the sense that they lend themselves to solutions of other problems rather than being
specific to the given task or dataset. Challenges inspired by CS should also
encourage solutions that have the hallmark properties of cognition (e.g., flexible,
structured representations). Nevertheless, engineered solutions might succeed in
some cases. Such outcomes might be informative, in showing that certain aspects of
human cognition that appear highly complex might in fact be based on simple

mechanisms (coupled with sufficient experiential data).

Cognitive Science in Complex Domains

A complementary strategy would be to get CS models to work on bigger datasets
and more-complex stimuli. This might lead to adoption of ML methods but with

more cognition at the core. Moreover, the ML community might pay more attention



to cognitive theories if there were more demonstrations that cognitive principles

apply in complex settings.

To achieve this would require a shift of values in the CS community, which currently
emphasize simplified and well-controlled experiments. Success of a model in a
complex domain should be valued as evidence that it can scale up to natural

cognition. Journals and funding agencies might be able to encourage such a shift.

Interdisciplinary Education and Interaction

Critical to fostering interdisciplinary collaboration is laying the social groundwork
for exchange of ideas, through conferences, workshops, graduate courses, and
summer schools. Some past meetings, including ones organized by participants in

the present workshop, have been quite successful in this regard.

In 2005, Tenenbaum and Yuille organized a workshop on Probabilistic Models of
Cognition: The Mathematics of Mind, hosted by the Institute of Pure and Applied
Mathematics (IPAM) at UCLA. This workshop was followed by 3-week summer
schools in 2007 and 2011. The goal of all three meetings was to convene experts
from across CS and ML to discuss probabilistic modeling approaches and their

potential to provide a unifying and rigorous theoretical framework.

In 2008, Daw, Griffiths, Tenenbaum, and Zhu organized a workshop on Machine
Learning Meets Human Learning at the Neural Information Processing Systems
(NIPS) conference in Whistler, Canada. The goal was to bring together the different
communities that study ML, CS, neuroscience and educational science. The
workshop sought to provide researchers with a common grounding in the study of
learning, by translating different disciplines' proprietary knowledge, specialized
methods, assumptions, and goals into shared terminologies and problem
formulations. The workshop investigated the value of advanced ML theories and
algorithms as computational models for certain human learning behaviors,
including, but not limited to, the role of prior knowledge, learning from labeled and

unlabeled data, and learning from active queries. Finally, the workshop explored



insights from the cognitive study of human learning to inspire novel machine

learning theories and algorithms.

In 2011, Oliva and Yuille organized a workshop on Frontiers in Computer Vision,
sponsored by NSF and ARL, which convened prominent researchers to explore
future directions of research in vision (www.frontiersincomputervision.com).
Topics of the workshop included the relationship of computer vision to biological

vision, and collaborations between humans and machines on vision tasks.

Mozer et al. hosted a 2012 NIPS workshop on Personalizing Education with Machine
Learning. There was also a tutorial on educational issues at NIPS by Brunskill and

Gordon, another sign of interest and acknowledgement in the ML community.

Perhaps the most effective of these categories would be summer schools, which can
capture the interest of graduate students early in their careers before they become
more specialized. Interdisciplinary graduate courses teaching the technical skills of
ML and CS would serve a similar purpose. A great proportion of researchers in
computational CS and in ML begin with interdisciplinary ambitions spanning the
two fields, but these ambitions are too often set aside as practical career constraints
setin. Early exposure to cross-disciplinary work could show students that this is
indeed an option and give them a common language for communicating between the
fields. Hopefully, the momentum built by the current workshop can precipitate such

a summer school or other meetings.

Funding

NSF currently lacks an appropriate funding program that reflects the interests of
computational cognition. CISE Robust Intelligence RI-Large is a collaborative
mechanism, not suitable for single investigators. The INSPIRE mechanism may not
be suitable because it is aimed at transformative research that has not been tried
before, and in this case there is already a critical mass of people and research

bridging ML and CS. More immediately, the goal described above of building



cognitively inspired metrics and databases for ML could be advanced by a research

infrastructure grant.

Conclusions

The fields of cognitive science and machine learning, having been split for many
years, are moving into a period of greater interaction and synergy. Future
collaboration between CS and ML could open up new theoretical territory and

produce major breakthroughs relevant to technology and society at large.

CS and ML are united by the shared goal of developing a computational
understanding of human-level perception and cognition. However, they have
tended to focus on different aspects of this problem—ML emphasizing powerful
statistical algorithms that scale to complex stimuli or tasks, and CS emphasizing
structured and flexible representations that can apply to multiple tasks. The

strengths of the two fields are thus naturally complementary.

The primary challenges to collaboration may lie in the pragmatics of how the two
fields work. What counts as a useful advance in CS is not necessarily considered so
in ML. For cognitive ideas to have a greater impact in ML might require
demonstrating that they can provide quantitative improvements on objective
benchmarks or that they suggest new benchmarks that can push theory forward.
The two fields’ infrastructures for training and dissemination are also largely
separate. Future funding for conferences, workshops, graduate courses, and
summer schools might go a long way toward creating a new generation of

interdisciplinary researchers.
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Appendix: Candidates for Cognitively Inspired ML Benchmark Tasks

1. Compositional image search. Current image search systems, such as Google

Images, can search on simple conjunctions (e.g., black dog), but they cannot handle

queries with real relational structure (e.g., three big black dogs sitting on a box).

2. Flexible interaction with a structured database. ML systems should be pushed
beyond searching, to interpreting. Promising approaches might be to make Google’s
Knowledge Graph more cognitive, or to build from Percy Liang’s question answering
system. Queryable vision systems for the blind would be one application. A
sequence of challenge tasks could start with simple questions (Is there an X?) and
increase in complexity (Where is the X? What is the X doing?). Similarly, questions
could start without context, followed by questions that require use of context or the

global structure of a scene.

3. Nonverbal social perception and sentiment analysis. Stimuli could be videos in

the style of Heider & Simmel (1944), brief clips of silent movies, or videos of natural
social interactions (e.g., at a restaurant table, airplane row, park bench, or business
meeting). Questions could be taken from psychological studies of humans’
interpretations of complex scenes (Yarbus, 1967), such as the following:

What does X want?

How old is X?

How rich is X?

How educated is X?

How nice is X?

Does X trust Y?

Does X like Y?

Is X afraid of Y?

Is X convincing Y?

Does X work for a major international corporation?



4. Open-mind tasks, with true/false questions. Performance could be compared

between systems using n-gram and knowledge-graph style representations.

5. SAT or GRE reading comprehension questions. The challenge could also be to

summarize a text or to answer questions such as Who did what to whom?

6.1Q test problems.

7. Picture caption evaluation. The challenge would be to build an integrated

representation of the image and text. Tasks could include determining whether the

caption is appropriate, or perhaps whether it is humorous.

8. Recognizing affordances in the environment. There would be no predetermined

task goal. Rather, the task is to recognize what useful things could be done in a

given situation.

9. Robotics and games. Challenges could be built from multi-agent video games or

from children’s playground games, requiring robotic systems to implement a form

of social cognition or theory of mind.



