NSF Workshop on Integrating Approaches to
Computational Cognition

Supplementary Material: Examples of Existing Work Bridging CS and ML

The report from this workshop! focuses on future gains that can be expected from
cooperation between the machine learning (ML) and cognitive science (CS) research
communities. There are numerous examples of recent research that point to this
potential. Of many lines of research that could be used as illustrations, we give in
this appendix a few examples selected by the workshop participants, noting that this
is a small selection of both the research in the field and the research of the

workshop members.

Griffiths

How should we represent the features of complex objects? When we look at the
objects around us, the features that are relevant for deciding what an object is or
how to use it seem obvious. But these features aren't as obvious to computers as
they are to people, and the ease with which we identify the features of objects
means that most psychological experiments assume the features of objects are
simply available to observers. Griffiths and Ghahramani (2006) show how
sophisticated statistical methods can be used to identify the features of objects from
their appearance. This statistical approach solves two problems at once - identifying
what the features are, and how many features need to be used. The model, named
the Indian Buffet Process, was motivated by issues that come up in cognitive science,
but has had a significant impact in machine learning. In subsequent work, we have
examined how this idea can be used to explain how people identify the features of
objects and how computers can do a better job of automatically forming

representations of objects that are more similar to those formed by people.

1 The main report can be obtained at http://matt.colorado.edu/compcogworkshop/report.pdf



Jones

A primary challenge in both human cognitive modeling and machine learning is
acquisition or adaptation of representations that support efficient learning. The
state of the two fields is complementary, in that psychology has insightful theories
about representation learning and machine learning has sophisticated
computational frameworks for expressing different representations and
implementing them in complex tasks. Work in our lab has found that integrating
these can produce models that both explain aspects of human learning in more
complicated tasks than are normally modeled in psychology and produce
performance better than standard machine learning approaches. Specifically, kernel
methods from machine learning provide a formal framework for learning with
complex representations that are high-dimensional nonlinear transformations of
the input stimulus space. A major goal is automatic discovery of kernels (i.e.,
representations) that are adapted to individual tasks, but the space of possible
kernels is so vast the search problem is underconstrained. Research on human
perception of similarity (which can be identified with the kernel function) offers
principles for how the search for effective representations can be more constrained
and hence more efficient. We have applied this approach in two ways, one based on
selective attention among stimulus dimensions (Canas & Jones, 2010; Jones & Canas,
2010), and the other based on analogical reasoning with structured relational
representations (Foster, Canas, & Jones, 2012; Foster & Jones, 2013). In both cases,
we have implemented these models of human representation learning as
mechanisms for adaptive kernels in a reinforcement learning framework, yielding
models that learn to perform complex dynamic tasks while adapting their

representations to the structure of those tasks.

Kemp

Different kinds of representations are useful for capturing knowledge about
different domains. For example, living kinds are usefully organized into a taxonomic

tree, and politicians are usefully organized along a spectrum from liberal to



conservative. Kemp and Tenenbaum (2008) developed a computational framework
that discovers which kind of representation is best for a given domain. Their
approach was inspired by previous psychological research on multidimensional
scaling and structure learning, but also drew on recent developments in machine
learning, including work on semi-supervised learning and Gaussian graphical
models. Their work has subsequently been cited by machine learning researchers
who develop methods for finding structure in large data sets, and by psychologists
who study how knowledge structures emerge over the course of cognitive

development.

LeCun

In the last several years, artificial vision systems for object recognition and scene
understanding have become increasingly similar to computational models of
biological vision. Standard models of the ventral pathway in the visual cortex and
top-performing object recognition systems (such as convolutional networks) are
"deep learning" architectures consisting of multiple stages. Each stage is composed
of 4 layers: contrast normalization, a filter bank, non-linearity (similar to simple
cells in the cortex), feature pooling and subsampling (similar to complex cells in the
cortex). Unsupervised learning algorithms to train these layers can produce
topographic maps of orientation-selective feature detectors similar to what is found
in V1. Because of the simultaneous appearance of large datasets and fast GPUs, it is
only in the last year that biological inspiration has lead to speech and image
recognition systems that outperform previous approaches on standard benchmarks
(Farabet, Couprie, Najman, & LeCun, in press; LeCun, 2012). The limitations of these
models, such as the susceptibility to visual crowding, seem similar to that of the

human visual system.

Love

1. Here is an example of a near miss between communities. I developed a model for

why certain concepts are more central than others in a web of concepts (Love &



Sloman, 1995). The approach is formally identical to Google PageRank. It predates

that work. To be fair, there are earlier examples in operations research.

2. Larkey and Love (2003) proposed a model of analogy and relational comparison

that has been used in Al systems on story understanding.

3. Gureckis and Love (2009) is influenced by modern work in reinforcement

learning.

4. Knox, Otto, Stone, and Love (2012) is a collaboration with machine learning
researchers applying POMDP models to analyzing psychological data. We find that
people show sophisticated patterns of exploration corresponding to belief updating.
The work suggests some ways to make sophisticated exploration more tractable in

machine systems.

5. Knox, Glass, Love, Maddox, and Stone (2012) is another collaboration with
machine learning researchers exploring how humans can provide the reward signal

(i.e., train) robots in reinforcement learning tasks.

6. Giguere and Love (2013) is heavily influenced by work in machine learning (e.g.,
SVMs). We work through the predictions of these models to develop predictions for
human behavior. We identify a way in which humans differ from machine systems,

advancing cognitive theory and suggesting ways to train people more effectively.

Lu

One of the hallmarks of human reasoning is the ability to form representations of
relations between entities, and then to reason about the higher-order relations
between these relations. By the time they reach school age, children have acquired
the ability to accurately assess whether one object (e.g., bear) is “larger” or “smaller”
than another (e.g., fox). Although other species have been shown to share similar
mechanisms for comparative judgment with perceptual relations, human children

go on to acquire a deeper understanding of comparative relations. Modeling work

by Lu, Chen, and Holyoak (2012) indicates that what is special about human



relational learning can be characterized as a capacity for relational reinterpretation:
the ability to transform perceptually-grounded relations into explicit relational
structures that distinguish the roles of relations from the objects that fill

them. Children eventually understand that a pair of concepts like larger-smaller is
related in basically the same way as the pair faster-slower, allowing them to see that
such pairs of relations form analogies. Our results provide a proof-of-concept that
structured analogies can be solved using representations induced from
unstructured feature vectors by mechanisms that operate in a largely bottom-up
fashion. Our findings also show how relation learning can move beyond perceptual

inputs to create abstract higher-order relations.

Humans are capable of learning and reasoning based on relational roles, including
higher-order relations such as cause and effect. By employing structured relations, it
becomes possible to transfer knowledge across diverse situations by drawing
analogies. The ability to make analogical inferences is the key to understanding and
modeling the flexibility of human thinking. By contrast, current machine systems
still lack the flexibility and adaptiveness of humans. They can perform extremely
well, and even outperform human experts, in narrowly specified though highly
complex domains (e.g., chess, Jeopardy). These successes are partly attributable to
the fact that machine systems typically employ fairly simple

representations. However, these simple forms of representations limit the
generalizability of the system to other complex decision-making situations
associated with high uncertainty. In addition, machine systems still have not
mastered the task of learning relations from structured environments. Finally, the
machine learning community needs to address how relational representations can

be mapped to one another across superficially different situations.

McAllester

Felzenszwalb, Girshick, McAllester, and Ramanan (2010) introduced the object
detection system known as the deformable part model (DPM) in computer vision.

An object detection system finds instances of a certain kind of object in an image.



For example, digital cameras typically have face detectors (camera face detectors

are typically Viola-Jones detectors which predate DPM detectors). A DPM detector
can be trained for any class of object. For example, it can be trained to detect people,
cars, or dogs. Machine learning, and latent support vector machines (LSVMs) in
particular, are central to the DPM model. The DPM model has become the standard
baseline system in the computer vision community for object detection. As of this
writing the paper has 964 Google scholar citations. In spite of the success of this
system in the computer vision community, its performance is nowhere near that of
the human visual system. It seems that a deeper understanding of human vision

could be leveraged to improve the performance of computer object detectors.

Koehn et al. (2007) describes the Moses system for machine translation between
natural languages, for example the translation of Japanese into English. This system
has become the standard baseline for machine translation. As of this writing the
paper has 1772 Google scholar citations. The Moses system automatically
synthesizes a mechanical translator from a corpus of translation pairs. Although it
has become the standard baseline, its performance is far below that of human

translators.

Mozer

Human memory is imperfect. Individuals of all ages and abilities gradually forget
previously learned knowledge and skills. Robust, durable learning is achieved only
through periodic review. Although academic curricula could benefit from
incorporating review in a comprehensive, systematic manner, two challenges must
be overcome. First, students at every educational level are faced with an ongoing
imperative to master new material, which demands a time-efficient means of
reviewing an ever-growing body of old material. Second, the effectiveness of review
crucially depends on its timing, but efforts to predict the optimal timing have not
adequately considered individual differences. To address these challenges, Lindsey,
Shroyer, Pashler, and Mozer (2013) developed an adaptive method for

personalizing study based on a Bayesian model of forgetting that leverages



psychological theory and collaborative filtering. Here, collaborative filtering
involves using data from a population of students studying a variety of material to
infer the dynamic knowledge state of an individual student for specific material. The
method was incorporated into a semester-long middle school foreign language
course via retrieval-practice software. In a cumulative exam administered one
month after the semester's end that compared time-matched study strategies,
personalized review yielded a 16.5% boost in course retention over current
educational practice (massed study) and a 10.0% improvement over a one-size-fits-
all strategy for spaced study. Our results demonstrate that integrating adaptive,
personalized software into the classroom is practical and yields appreciable

improvements in long-term educational outcomes.

Salakhutdinov

The ability to learn abstract representations that support transfer to novel but
related tasks, lies at the core of many problems in computer vision, natural language
processing, cognitive science, and machine learning. In typical applications of
machine classification algorithms today, learning a new concept requires tens,
hundreds or thousands of training examples. For human learners, however, just one
or a few examples are often sufficient to grasp a new category and make meaningful
generalizations to novel instances. Clearly this requires very strong but also

appropriately tuned inductive biases.

Salakhutdinov, Tenenbaum, and Torralba (2013) take a step towards this “one-shot
learning” ability by learning several forms of abstract knowledge at different levels
of abstraction, that support transfer of useful inductive biases from previously
learned concepts to novel ones. In this work we propose compound HD
(hierarchical-deep) architectures that integrate these deep models with structured
hierarchical Bayesian models. In particular, we show how we can learn a
hierarchical Dirichlet process (HDP) prior over the activities of the top-level
features in a Deep Boltzmann Machine (DBM), coming to represent both a layered

hierarchy of increasingly abstract features, and a tree-structured hierarchy of



classes. Our model depends minimally on domain-specific representations and
achieves state-of-the-art performance by unsupervised discovery of three
components: (a) low-level features that abstract from the raw high-dimensional
sensory input (e.g. pixels, or 3D joint angles) and provide a useful first
representation for all concepts in a given domain; (b) high-level part-like features
that express the distinctive perceptual structure of a specific class, in terms of class-
specific correlations over low-level features; and (c) a hierarchy of super-classes or
“superordinate” categories for sharing abstract knowledge among related classes
via a prior on which higher-level features are likely to be distinctive for classes of a

certain kind and are thus likely to support learning new concepts of that kind.

Schélkopf

Around 2005, we started working on understanding whether kernels as used in
machine learning have any relevance for the issues of generalization and similarity
in cognitive science. This was a process that took about three years and involved a
psychologist, a cognitive scientist and a machine learning person. It led us to
understand that most similarity measures considered by psychologists were
examples of positive definite kernels, for which a rich body of mathematical theory
exists. As a consequence, we were able to put forward kernel methods as a unifying
theoretical tool showing how several competing and seemingly incommensurate
theories in psychology (exemplar models vs. perceptron models) can be viewed as
the same thing, linked by the so-called representer theorem of kernel methods.

These connections were summarized in Jakel, Schélkopf, and Wichmann (2009).

Shiffrin

This research and model was the first of several to follow that explain how the
visual/cognitive system manages to infer, with high accuracy, the visual world after
each eye movement, despite features that intrude from the previous eye fixation.
Huber, Shiffrin, Lyle, and Ruys (2001) explained the accuracy of perception in terms
of Bayesian adaptation and induction. Later research in this series explained the

timing of these processes with use of a Hidden Markov Model (HMM). Another later



article gave a neural network account based on synaptic depression. These models
have proved predictive rather than descriptive: In case after case, the models have
predicted correctly the outcomes of experiments yet to be done, even when the

experimenters predicted alternative outcomes.

Thomas

One of the recurring themes at the workshop regarding the interface of CS and ML
was the notion of optimality of a human “agent” in a broad sense. One version of
this idea pondered the consequences of optimal processing in dynamic decision-
making. Specifically, not only should the rewards and costs explicitly involved in
choice be taken into account, but the “bounds” of human cognition and the costs
associated with those bounds were deemed important areas that cognitive science
can contribute to machine learning approaches to this problem. In addition, ML
theorists indicated their strong interest in methodologies that could reveal these
bounds or properties of the human mind deemed its architecture and capacity
limitations (e.g., Sorg, Singh, & Lewis, 2010). Much work in cognitive modeling has
been devoted to providing methodologies that jobbing experimental psychologists
could use to reveal hidden architecture inside the black box of the human mind (e.g,,
Townsend & Nozawa, 1995). In that vein, one of my own publications, Thomas
(2006) advanced our understanding of this experimental methodology to identify
how systems of thought are organized in time and how these systems interact to
produce observable behavior in simple and complex tasks and the role that
optimality of the agent plays in determining the processing behavior of this
architecture. One of the results of that work provided an explanation for a
paradoxical finding that had been documented in the literature decades earlier but
that could not be explained by models of the time (e.g., Miller & Pachella, 1973).
Specifically, investigators had observed that the probability of an experience
seemed to influence other aspects of cognition beyond weighting of decision criteria,
something that most models had not deemed possible. In Thomas (2006),
architectures were infused with explicit models of optimal decision processing and,

as a result, naturally produced the pattern of data previously observed that had



defied explanation. ML approaches are well suited to representing problems
computationally that allow considerations of optimality with respect to the
environment and task but these do not produce solutions that are flexible over the
lifetime of an agent. Incorporating knowledge of how human cognition is organized
in terms of architecture and capacity into these optimality analyses would allow
programs to exhibit the kind of flexibility and robustness the human decision-maker

has long enjoyed.

Yu

Through the interdisciplinary study of cognition in brains and machines, an
interesting picture is beginning to emerge: The brain far surpasses state-of-the-art
computer algorithms in certain tasks, such as planning and decision-making under
complex conditions, and yet falls well short of a cell phone in other tasks, such as
processing large quantities of data precisely. This contrast provides an opportunity
for identifying the design principles of the brain, with many potential applications in
science, medicine, and engineering. For example, we have used ML tools to
understand how the healthy brain utilizes past experiences to anticipate situations
that require the interruption of default processing. This feature turns out to be very
useful for situations where past experiences are predictive of upcoming events, but
amounts to nothing more than "superstition" in unpredictable situations.
Interestingly, as we have shown, this property of the brain yields overall behavioral
advantage. This modeling work has helped us to identify the neural processes
underlying prediction and planning, and moreover discover significant neural
alterations in occasional stimulant users, which accumulate with lifetime use of
drugs (Ide, Shenoy, Yu, & Li, 2013). We believe that this is a promising line of
research that will not only advance brain science, but also provide early biological
and behavioral markers of clinical pathology associated with drug use, as well as aid
the design of more robust and dynamic artificial agents that can use experiences to

cope with noisy and constantly changing environments.



Zhang

Motivated by the need (from cognitive psychology) for removing the symmetry
assumption in similarity judgments, Zhang, Xu, and Zhang (2009) extended the
reproducing kernel methods in machine learning from the Hilbert-space setting to
the more general Banach-space setting. It was proved (Zhang & Zhang, 2012) that
the Representer Theorem, the key for linking exemplar-based with prototype-based
categorization models, still holds in this situation. This opens the way for modeling
similarity/generalization versus feature/attention in a unified computational

framework.

Zhu

How can a computer classify a test item X if it does not look like any of the labeled
training items at all? For example, X may be the side-view photo (taken at a 90-
degree angle) of a suspect while all photos on file are frontal (taken at 0-degree). If
the computer has photos of the suspect from many angles, it may reason that the
photo taken at 10-degree looks very much like the known frontal photo and the two
must be the same person. Similarly, the photo taken at 20-degree looks very similar
to the 10-degree photo and should be the same person, and so on. In this way, the
label (identity of the suspect) propagates through the series of photos taken from
different angles until it reaches the side-view photo X. Of course, real data is more
complex and items in general form a weighted similarity graph. Given that a few
nodes in the graph are labeled, one wants to classify the remaining nodes using the
same propagation idea. This is a challenging problem because on a graph different
labels may propagate to the same node via competing paths. Zhu, Ghahramani, and
Lafferty (2003) proposed an elegant mathematical solution to this problem. It
significantly advanced ML research in the area of semi-supervised learning. Ten
years later, the paper received a Classic Paper Prize from the same ML conference.
In follow-up work, we showed that the same mathematical solution can also be

applied to cognitive modeling to explain certain human categorization behaviors.
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