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Empirical Inference 

•  Drawing conclusions from empirical data (observations, measurements) 
 

•  Example 1: scientific inference 

•  “Anyone who expects a source of power from the transformation of the atom is talking moonshine” (1933) 

!

x 

x 
x 

x 

x 

x 

y 

x 

x 

x 

Leibniz, Weyl, Chaitin 

x 

y = a * x 

y = Σi ai k(x,xi)  + b 
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Empirical Inference 

•  Drawing conclusions from empirical data (observations, measurements) 
 

•  Example 1: scientific inference 

•  “Anyone who expects a source of power from the transformation of the atom is talking moonshine” (1933) 

!

“If your experiment needs statistics [inference],  
  you ought to have done a better experiment.” (Rutherford) 
!
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Empirical Inference, II 

 

•  Example 2: perception 

“The brain is nothing but a statistical decision organ”  
                         (H. Barlow) 
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Hard Inference Problems 
Sonnenburg, Rätsch, Schäfer, Schölkopf, 
2006, Journal of Machine Learning 
Research 
 
Task: classify human DNA sequence 
locations into {acceptor splice site, 
decoy} using 15 Million sequences of 
length 141, and a Multiple-Kernel 
Support Vector Machines. 
 
PRC = Precision-Recall-Curve, 
fraction of correct positive 
predictions among all positively 
predicted cases 

•  High dimensionality – consider many factors simultaneously to find the regularity 

•  Complex regularities – nonlinear, nonstationary, etc. 

•  Little prior knowledge – e.g., no mechanistic models for the data 

•  Need large data sets – processing requires computers and automatic inference methods 
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Generalization 

•  observe        1,    2,    4,    7,.. 
•  What’s next? 

•  1,2,4,7,11,16,…: an+1=an+n (“lazy caterer’s sequence”) 
•  1,2,4,7,12,20,…: an+2=an+1+an+1 
•  1,2,4,7,13,24,…: “Tribonacci”-sequence 
•  1,2,4,7,14,28: divisors of 28 
•  1,2,4,7,1,1,5,…: decimal expansions of  π=3,14159… 

and e=2,718… interleaved   (thanks to O. Bousquet)  

•  The On-Line Encyclopedia of Integer Sequences: >600 hits… 

+1      +2      +3 
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•  Question: which continuation is correct (“generalizes”)?  
•  Answer: there’s no way to tell (“induction problem”) 

 

•  Question of statistical learning theory: how to come up 
with a law that generalizes (“demarcation problem”)  

      [i.e.: a law that will probably do almost as well in the future as it has done in the past] 
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Learning problem 

Data!

Goal: find!

with minimal “risk”!

Cost function!

Special case!
!

“2-class-classification”!
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2-class classification (Vapnik & Chervonenkis) 

Learn !     based on m observations!

generated i.i.d. from some !

Goal: minimize expected error (“risk”)!

Problem: P is unknown.!
Induction principle: minimize training error (“empirical risk”)!

V. Vapnik!

over some class of functions.   Q: is this “consistent”?!

R[f ] =

Z
1

2
|f(x)� y| dP (x, y)

Remp[f ] =
1

m

mX

i=1

1

2
|f(xi)� yi|
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The law of large numbers 

For all! and!

Does this imply “consistency” of empirical risk minimization!
(optimality in the limit)?!

No – need a uniform law of large numbers:!

For all!
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Consistency and uniform convergence 
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Vapnik-Chervonenkis (VC) dimension 

                         non-falsifiable                                        falsifiable!
… on Rd:    h = d + 1!

… with margin of separation: h < const./margin2!

Linear classifiers on R2:    h = 3: 

ERM is consistent for all probability distributions, provided that 
the VC dimension of the function class is finite.!
VC dimension h = maximal number of points which can be classified 

in all possible ways using functions from the class. 
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VC Risk bound 

with probab. 1-δ 
for all f!

If both training error Remp and VC dimension h (compared to !
the number of observations m) are small, then test error R is small.!
!
-> depends on the function class.!
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Example of a Pattern Recognition Algorithm 

m+ m- 

µ(Y) 

µ(X)-µ(Y) 
 

yi 

? 

µ(X) 

Idea:
classify points according to which of the two class means is closer:

µ(X) =
1
m

m�

i=1

xi, µ(Y ) =
1
n

n�

i=1

yi
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Feature Spaces 



Bernhard Schölkopf 
17 

Example: All Degree 2 Monomials 
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Polynomial Kernels 
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Positive Definite Kernels 

 (RKHS)!

If for pairwise distinct points, Σ=0 iff all ai = 0, call k strictly p.d. 
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Constructing the RKHS 

x ⇥� �(x) := k(x, .) (Aronszajn, 1950)

e.g., Gaussian kernel k(x, x⇥) = e
� ⇤x�x⇥⇤2

2 �2

Take linear hull and define a dot product ⇤�(x),�(x�)⌅ := k(x, x�)

Point evaluation: f(x) = ⇤f, k(x, .)⌅ — ”reproducing kernel Hilbert space”

(or some other positive definite k) 
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Leads to a Parzen windows plug-in classifier:

f(z) = sgn

�
1
m

m⇤

i=1

k(z, xi)�
1
n

n⇤

i=1

k(z, yi) + b

⇥

Pattern Recognition Algorithm in the RKHS 
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•  sparse expansion of solution in terms of SVs: 
 
   representer theorem (Kimeldorf & Wahba 1971, Schölkopf et al. 2000) 
 

•  unique solution found by convex QP 

Support Vector Machines (Boser, Guyon, Vapnik 1992; Cortes & Vapnik 1995)  

+-
+

+
-

-

-

-

-

+
+

+
Φ$

k(x,x’)                    =                 <Φ(x),Φ(x’)> 

class 1 class 2 
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Kernel PCA    (Schölkopf, Smola, Müller 1998) 

Schölkopf, Smola & Müller, 1998 

 Contains LLE, Laplacian Eigenmap, and (in the limit) 
Isomap as special cases with data dependent kernels 
(Ham et al. 2004) 
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Spectral clustering

K similarity matrix; Dii =
P

j Kij

Normalized cuts (Shi & Malik, 2000):

– map inputs to corresponding entries of the second smallest eigenvector of the
normalized Laplacian

L = I �D

�1/2
KD

�1/2
.

– Partition them based on these values.

Meila & Shi (2001):

– map inputs to entries of largest eigenvectors of

D

�1
K

– continue with k-means

Kernel PCA (1998):

↵

n the nth eigenvector of K, with eigenvalue �n

– map test point x to RKHS, project on largest eigenvectors of K, normalized
by �

�1/2:

hV n
, k(x, .)i = �

�1/2
n

mX

i=1

↵

n
i hk(xi, .), k(x, .)i = �

�1/2
n

mX

i=1

↵

n
i k(xi, x)
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Link to kernel PCA

projection of a training point xt onto the nth eigenvector equals

�

�1/2
n (K↵

n
)t = �

1/2
n ↵

n
t .

– the coe�cient vector ↵

n
contains the projections of the training set

– for a connected graph, the normalized Laplacian has a single 0 eigenvalue.

Its (pseudo-)inverse is known as the discrete Green’s function of the di↵usion

process on the graph governed by L. It can be viewed as a kernel matrix,

encoding the dot product implying the commute time metric (Ham, Lee, Mika,

Schölkopf, 2004).

– the kPCA matrix is centered, and thus has a single eigenvalue 0 (for strictly

p.d. kernel) that corresponds to the 0 eigenvalue of the normalized Laplacian.

– inversion inverts the order of the remaining eigenvalues.
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What if µ(X) = µ(Y ) ?
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Later: generalize from point sets to probability measures. 



Bernhard Schölkopf 
32 



Bernhard Schölkopf 

The mean map for samples 

µ : X = (x1, . . . , xm) 7! 1

m

mX

i=1

k(xi, ·)

satisfies

hµ(X), fi = h 1
m

mX

i=1

k(xi, ·), fi =
1

m

mX

i=1

f(xi)

and

kµ(X)�µ(Y )k = sup

kfk1
|hµ(X)� µ(Y ), fi| = sup

kfk1

�����
1

m

mX

i=1

f(xi)�
1

n

nX

i=1

f(yi)

����� .

• ⌫(X) 6= µ(Y ) () can find a function distinguishing the samples

• If k is strictly p.d., this is equivalent to X 6= Y ; i.e., we can always

distinguish distinct samples.
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(done in the Gaussian RKHS) 
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The mean map for measures 
Assumptions:

• p, q Borel probability measures

• E
x,x

0⇠p

[k(x, x

0
)], E

x,x

0⇠q

[k(x, x

0
)] < 1

(follows if we assume kk(x, .)k  M < 1)

Define

µ : p 7! E
x⇠p

[k(x, ·)].

Note

hµ(p), fi = E
x⇠p

[f(x)]

and

kµ(p)� µ(q)k = sup

kfk1
|E

x⇠p

[f(x)]�E
x⇠q

[f(x)]| .

Under which conditions is µ injective?

Smola, Gretton, Song, Schölkopf, ALT 2007;

Fukumizu, Gretton, Sun, Schölkopf, NIPS 2007
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Combine this with 
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• for k(x, x

0
) = e

hx,x0i
we recover the moment generating function of a RV

x with distribution p:

M

p

(.) = E
x⇠p

h
e

hx, · i
i

• for k(x, x

0
) = e

ihx,x0i
we recover the characteristic function:

M

p

(.) = E
x⇠p

h
e

ihx, · i
i
.

• µ is invertible on its image

M = {µ(p) | p is a probability distribution}
(the “marginal polytope”, Wainwright & Jordan, 2003)

An injective µ provides us with a convenient metric on probability distributions,

which can be used to check whether two distributions are di↵erent.

Construct estimators for kµ(p)� µ(q)k2 for various applications.
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Kernel Independence Testing  
k bounded universal p.d. kernel; p, q Borel probability measures

Kernel mean map
µ : p 7! E

x⇠p

[k(x, .)]

is injective.

Corollary: x ?? y () � := kµ(p
xy

)� µ(p
x

⇥ p

y

)k = 0.

Link to cross-covariance: For k((x, y), (x0
, y

0)) = k

x

(x, x0)k
y

(y, y0):
�2 = squared HS-norm of cross-covariance operator between the two RKHSes.

Estimator 1
n

tr[K
X

K

Y

], where K

X

is the centered Gram matrix of {x1, . . . , xn

}
(likewise, K

Y

).
(Gretton, Herbrich, Smola, Bousquet, Schölkopf, 2005; Gretton et al., 2008)

Link to Kernel ICA (Bach & Jordan, 2002):
x ?? y i↵ sup

f,g 2 RHKS unit balls cov(f(x), g(y)) = 0
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Shift-Invariant Optical Realization 
Fourier imaging through an aperture 

p 
Î2

µ : p 7! E
x⇠p

[k(x� .)]

• p source of

incoherent

light

• I indicator func-

tion of an aperture

of width D

• in Fraunhofer di↵raction, the intensity image is / p ⇤ ˆI2

• set k :=

ˆI2 (this is p.d. by Bochner’s theorem)

• then the image equals µ(p)

• this µ is not invertible (since k is not universal) — “di↵raction limit”

• if we restrict the input domain to distributions with compact support, it

is invertible no matter how small D > 0

(Schölkopf, Sriperumbudur, Gretton, Fukumizu 2008; Harmeling, Hirsch, Schölkopf 2013)
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Kernels as Green’s Functions 

• in this case, the kernel is the point response of a linear optical system

• more generally, the kernel k can be viewed as the Green’s function of
P ⇤P , where P is a regularization operator such that the RKHS norm can
be written as kfkk = kPfk

• for instance, the Gaussian kernel corresponds to a regularization operator
which computes an infinite series of derivatives of f

• for translation-invariant kernels, P can be written as a multiplication op-
erator in Fourier space, amplifying high frequencies and thus penalizing
them in kPfk

Poggio & Girosi 1990; Schölkopf & Smola 2002; Hofmann, Schölkopf, Smola 2008
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•  assume: densities exist, kernel shift invariant, k(x,y) = k(x-y),  
   all Fourier transforms exist. Note that µ is invertible iff 

(Sriperumbudur, Fukumizu, Gretton, Lanckriet, Schölkopf, COLT 2008) 

•  E.g.: µ is invertible if     has full support.  
•  this is not the case for                    . 

k̂

Non-Injectivity of Fourier Imaging 

E
x⇠p

[k(x, ·)] = E
x⇠q

[k(x, ·)] =⇥ p = q

Z
k(x� y)p(y) dy =

Z
k(x� y)q(y) dy =⇥ p = q

i.e., k̂(p̂� q̂) = 0 =⇥ p = q

More precisely,

kµ(p)� µ(q)k = kF�1
[(

¯p̂� ¯q̂)ˆk]k

where

ˆk is the nonnegative finite measure corresponding to k via Bochner’s

theorem, and p̂, q̂ are the characteristic functions of the Borel measures p, q.
Thus µ is invertible for the class of all nonnegative measures if

ˆk has full support.

k̂ = I � I
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•  How about if     does not have full support, but nonempty interior (e.g.,                    )  ?  
•  in that case, µ is invertible for all distributions with compact support, by Schwartz-
Paley-Wiener  (Sriperumbudur, Fukumizu, Gretton, Lanckriet, Schölkopf, COLT 2008). 
 
 

•  The Fraunhofer diffraction aperture imaging process is not invertible for the 
class of all light sources, but it is if we restrict the class (e.g., to compact 
support). 

k̂

Injectivity of Fourier Imaging with Prior Knowledge 

k̂ = I � I
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Algorithmic Method 

44 

•  exploit nonegativity of image, and bounded support of object 

Harmeling, Hirsch, Schölkopf, CVPR 2013 

double star; 
distance= 
0.5*Rayleigh 

reconstruction 
passed through 
forward model 

reconstruction “ground truth” 
recorded with  
larger aperture 
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Thanks to P. Laskov. 

“imitate the superficial exterior of a process 
or system without having any understanding 
of the underlying substance". 
(source: http://philosophyisfashionable.blogspot.com/) 

 
-  for prediction in the IID setting, imitating the 

exterior of a process is enough  
     (i.e., can disregard causal structure) 
-  anything else can benefit from causal learning 

“cargo cult” 
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Z 

Y X 

special cases: 

Y X 

Y X 

Statistical Implications of Causality 

Reichenbach’s

Common Cause Principle

links causality and probability:

(i) if X and Y are statistically

dependent, then there is a Z
causally influencing both;

(ii) Z screens X and Y from each

other (given Z, the observables

X and Y become independent)
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Functional Causal Model (Pearl et al.) 

X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• Set of observables X1, . . . , Xn

• directed acyclic graph G with vertices X1, . . . , Xn

• Semantics: parents = direct causes

• Xi = fi(ParentsOfi,Noisei), with jointly independent Noise1, . . . ,Noisen.

• entails p(X1, . . . , Xn) with particular conditional independence structure

Question: Can we recover G from p?

Answer: under certain assumptions, can recover an equivalence class
containing the correct G using conditional independence testing.

Problem: does not work in the simplest case. Below: two ideas.
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[. . . ]

X Y ? 
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Independence of input and mechanism 

Causal structure:

C cause

E e↵ect

N noise

' mechanism

Assumption:

p(C) and p(E|C) are “independent”

Janzing & Schölkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire & Dirkx, 2007
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Inferring deterministic causal relations 

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf:  
Inferring deterministic causal relations, UAI 2010 

? 

Y X 

 
•  Does not require noise 
•  Assumption: y = f(x) with invertible f 
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Causal independence implies anticausal dependence 
Assume that f is a monotonously increasing bijection of [0, 1].

View p

x

and log f

0
as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):

Cov (log f

0
, p

x

) = 0

Note: this is equivalent to

Z 1

0
log f

0
(x)p(x)dx =

Z 1

0
log f

0
(x)dx,

since

Cov (log f

0
, p

x

) = E [ log f

0·p
x

]�E [ log f

0
]E [ p

x

] = E [ log f

0·p
x

]�E [ log f

0
].

Proposition:

Cov (log f

�10
, p

y

) � 0

with equality i↵ f = Id.
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u

x

, u

y

uniform densities for x, y

v

x

, v

y

densities for x, y induced by transforming u

y

, u

x

via f

�1
and f

Equivalent formulations of the postulate:

Additivity of Entropy:

S (p

y

)� S (p

x

) = S (v

y

)� S (u

x

)

Orthogonality (information geometric):

D (p

x

k v
x

) = D (p

x

ku
x

) +D (u

x

k v
x

)

which can be rewritten as

D (p

y

ku
y

) = D (p

x

ku
x

) +D (v

y

ku
y

)

Interpretation:

irregularity of p

y

= irregularity of p

x

+ irregularity introduced by f
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80 Cause-Effect Pairs 
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80 Cause-Effect Pairs − Examples 
!"# $ !"# % &"'"()' *#+,-& '#,'.

/"0#111$ 23'0',&) 4)5/)#"',#) 676 ⇥
/"0#1118 2*) 9:0-*(; <)-*'. 2="3+-) ⇥
/"0#11$% 2*) 7"*) /)# .+,# >)-(,( 0->+5) ⇥
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/"0#11@@ &"03A "3>+.+3 >+-(,5/'0+- 5>! 5)"- >+#/,(>,3"# !+3,5) 30!)# &0(+#&)#( ⇥
/"0#11B1 2*) &0"('+30> =3++& /#)((,#) /05" 0-&0"- ⇥
/"0#11B% &"A ')5/)#"',#) CD E"-F0-* ⇥
/"0#11BG H>"#(I%B. (/)>0J0> &"A( '#"JJ0> �
/"0#11KB &#0-L0-* M"')# ">>)(( 0-J"-' 5+#'"30'A #"') NO&"'" ⇥
/"0#11KP =A')( ()-' +/)- .''/ >+--)>'0+-( QD 6"-0,(0( �
/"0#11KR 0-(0&) #++5 ')5/)#"',#) +,'(0&) ')5/)#"',#) ED SD S++0T �
/"0#11G1 /"#"5)')# ()U CV3'.+JJ ⇥
/"0#11G% (,-(/+' "#)" *3+="3 5)"- ')5/)#"',#) (,-(/+' &"'" ⇥
/"0#11GB WOX /)# >"/0'" 30J) )U/)>'"->A "' =0#'. NO&"'" ⇥
/"0#11GP QQY6 9Q.+'+(A-'.D Q.+'+- Y3,U; OZQ 9O)' Z>+(A(')5 Q#+&,>'0!0'A; S+JJ"' 2D SD ⇥



Bernhard Schölkopf 

IGCI: 
Deterministic 
Method 
 
LINGAM: 
Shimizu et al., 
2006 
 
AN: 
Additive Noise 
Model (nonlinear) 
 
PNL: 
AN with post- 
nonlinearity 
 
GPI: 
Mooij et al., 
2010 
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Further Applications of Causal Inference 

1. Grosse-Wentrup, Schölkopf, and Hill, Causal Influence of Gamma Oscil-
lations on the Sensorimotor Rhythm. NeuroImage, 2011

2. Grosse-Wentrup & Schölkopf, High Gamma-Power Predicts Performance
in Sensorimotor-Rhythm Brain-Computer Interfaces. J. Neural Engineer-
ing, 2012
(2011 International BCI Research Award)

3. Besserve, Janzing, Logothetis & Schölkopf, Finding dependencies between
frequencies with the kernel cross-spectral density, Intl. Conf. Acoustics,
Speech and Signal Processing, 2011

4. Besserve, Schölkopf, Logothetis & Panzeri, Causal relationships between
frequency bands of extracellular signals in visual cortex revealed by an
information theoretic analysis. J. Computational Neuroscience, 2010
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Causal Learning and Anticausal Learning 
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012 

X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Source: http://commons.wikimedia.org/wiki/File:Peptide_syn.png causal mechanism '

• example 1: predict gene from mRNA sequence

• example 2: predict class membership from handwritten digit
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X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Covariate Shift and Semi-Supervised Learning 

causal mechanism '

(cf. Storkey, 2009) 

• covariate shift (i.e., p(X) changes): mechanism

p(Y |X) is una↵ected by assumption

• semi-supervised learning: impossible, since

p(X) contains no information about p(Y |X)

• transfer learning (NX , NY change, ' not): could be

done by additive noise model with conditionally inde-

pendent noise

• p(X) changes: need to decide if change is

due to mechanism p(X|Y ) or cause distribu-

tion p(Y ) (sometimes: by deconvolution)

• semi-supervised learning: possible, since

p(X) contains information about p(Y |X) —

e.g., cluster assumption.

• transfer learning: as above

Assumption: p(C) and mechanism p(E|C) are “independent”

Goal: learn X 7! Y , i.e., estimate (properties of) p(Y |X)
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Semi-Supervised Learning (Schölkopf et al., ICML 2012) 

•  Known SSL assumptions link p(X) to p(Y|X): 
•  Cluster assumption: points in same cluster of p(X) have 

the same Y 
•  Low density separation assumption: p(Y|X) should cross 

0.5 in an area where p(X) is small 
•  Semi-supervised smoothness assumption: E(Y|X) should be 

smooth where p(X) is large 

•  Next slides: experimental analysis 
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SSL Book Benchmark Datasets – Chapelle et al. (2006) 
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplementary Material for: On Causal and Anticausal Learning

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset

A
n

t
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c
a

u
s
a

l
/
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o
n

f
o

u
n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).
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UCI Datasets used in SSL benchmark – Guo et al., 2010 
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Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset

A
n

t
i
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a

u
s
a

l
/
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o
n

f
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n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).
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Datasets, co-regularized LS regression – Brefeld et al., 2006 
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Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal or
Unclear

Categ. Dataset Target variable Remark
A

n
t
i
c
a

u
s
a
l
/
C

o
n

f
o

u
n

d
e
d

breastTumor tumor size causing predictors such as inv-nodes and deg-malig
cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood

sugar
cleveland presence of heart disease in the pa-

tient
causing predictors such as chest pain type, resting blood pressure,
and fasting blood sugar

lowbwt birth weight causing the predictor indicating low birth weight
pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and

Albumin
pollution age-adjusted mortality rate per

100,000
causing the predictor number of 1960 SMSA population aged 65
or older

wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity

C
a

u
s
a

l

autoMpg city-cycle fuel consumption in
miles per gallon

caused by predictors such as horsepower and weight

cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
memory, and cache memory

fishcatch fish weight caused by predictors such as fish length and fish width
housing housing values in suburbs of

Boston
caused by predictors such as pupil-teacher ratio and nitric oxides
concentration

machine cpu cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-

tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-

ical linkages

U
n

c
l
e
a

r

auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
stock (target: price of one particular stock); strike (target: strike volume);
triazines (target: activity); veteran (survival in days)
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Benchmark Datasets of Chapelle et al. (2006)  

Asterisk = 1-NN, SVM 
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Localizing distribution change Given
data points sampled from P (C,E) and additional points
from P

0(E) 6= P (E), we wish to decide whether P (C) or
P (E|C) has changed. To show that appropriate assump-
tions render this problem solvable, we sketch some rough
ideas. Let E = �(C) + NE , with the same � for both
distributions P (E,C) and P

0(E,C), but the distribution
of the noise NE or the distribution of C changes. Let
P (�(C)) denote the distribution of �(C).4 Then the
distributions of the effect are given by

P (E) = P (�(C)) ⇤ P (NE),

P

0(E) = P

0(�(C)) ⇤ P 0(NE) ,

where either P 0(�(C)) = P (�(C)) or P 0(NE) = P (NE).
In the following situations, for instance, we can decide
which of the cases is true:

1) If the Fourier transform of P (E) contains zeros, then
some of them correspond to zeros in the spectrum of
P (�(C)), the others to zeros of the spectrum of P (NE).
Then we may check which zeros still appear in P

0(E).

2) Suppose P (�(C)) and P

0(�(C)) are indecomposable
and P (NE) and P

0(NE) are zero mean Gaussian; then the
distribution P (E) = P (�(C)) ⇤ P (NE) uniquely deter-
mines P (�(C)) by deconvolving P (E) with the Gaussian
of maximal possible width that still yields a density.

Estimating causal conditionals Given
P

0(E), estimate P

0(E|C) under the assumption that
P (C) remains constant. Assume that P (E,C) and
P

0(E,C) have been generated by the additive noise model
E = �(C) + NE , with the same P (C) and �, while the
distribution of NE has changed. We have

P (E) = P (�(C)) ⇤ P (NE) ,

P

0(E) = P (�(C)) ⇤ P 0(NE) .

Hence, P

0(NE) can be obtained by the deconvolution
P

0(NE) = P (�(C)) ⇤�1
P

0(E) . This way, we can com-
pute the new conditional P 0(E|C).

Conditional ANM Given two data sets generated
by E = �(C) + NE and E

0 = �(C 0) + N

0
E , respec-

tively. We modify the algorithm of Mooij et al. (2009) to
obtain the shared function �, enforcing separate indepen-
dence C ?? NE and C

0 ?? N

0
E .

This can be interpreted as a generalized ANM model, en-
forcing conditional independence in E|i = �(C|i)+NE |i,
where i 2 {1, 2} is an index, and C ?? NE | i.

4Explicitly, it is derived from the distribution of C by
P (�(C) 2 A) = P (C 2 ��1(A)).
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Figure 5. Accuracy of base classifiers (star shape) and different
SSL methods on eight benchmark datasets.

5. Empirical Results
An evaluation of all methods described is beyond the scope
of this paper. We focus on assaying our main prediction
regarding the difficulty of SSL, and provide a toy example
applying Conditional ANM in transfer learning.

Semi-supervised classification We compare the perfor-
mance of SSL algorithms with that of base classifiers using
only labeled data. For many examples X is vector-valued.
We assign each dataset to one of three categories:
1. Anticausal/Confounded: (a) datasets in which at least
one feature Xi is an effect of the class Y to be predicted
(Anticausal) (includes also cyclic causal relations between
Xi and Y ) and (b) datasets in which at least one feature Xi

has an unobserved common cause with the class Y to be
predicted (Confounded). In both (a) and (b) the mechanism
P (Y |Xi) can be dependent on P (Xi). For these datasets,
additional data from P (X) may thus improve prediction.
2. Causal: datasets in which some features are causes of
the class, and there is no feature which (a) is an effect of the
class or (b) has a common cause with the class. If our as-
sumption on independence of cause and mechanism holds,
then SSL should be futile on these datasets.
3. Unclear: datasets which were difficult to be categorized
to one of the aforementioned categories. Some of the rea-
sons for that are incomplete documentation or lack of do-
main knowledge.

In practice, we count a dataset already as causal when we
believe that the dependence between X and Y is mainly

due to X causing Y , although additional confounding ef-
fects may be possible.

We first analyze the results in the benchmark chapter of a
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Self-training does not help for causal problems (cf. Guo et al., 2010)  

Relative error decrease = (error(base) –error(self-train)) / error(base) 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Co-regularization helps for the anticausal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Co-regularizarion hardly helps for the causal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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The purpose […] is to identify 
frontiers for collaborative 
research integrating  
(a)  mathematical and 

computational modeling of 
human cognition with 

(b)  machine learning and 
machine intelligence 

 
[…] as an additional objective 
of this meeting, we are asked to 
consider the following from the 
perspective of the 
computational cognition 
community: 
(a)  identify the major obstacles 

to progress in 
understanding the brain and 

(b)  discuss theoretical and 
experimental approaches to 
overcome these obstacles 

BRAIN project: $1e8  
-  “give scientists the tools to get a 

dynamic picture of the brain and better 
understand how we think, learning, and 
remember 

-  possible outcomes:  
-  Parkinson 
-  reduce language barriers through 

technological advances in how 
computers interface with human thought 

-  PTSD, brain injuries in war veterans 
(50% DARPA) 

-  high-tech jobs 

BLUE BRAIN project: EUR 1e9 
-  Reconstructing the brain piece by piece 

and building a virtual brain in a 
supercomputer 

-  new understanding of the brain and a 
better understanding of neurological 
diseases. 

 


