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Empirical Inference

e Drawing conclusions from empirical data (observations, measurements)

« Example 1: scientific inference

y=2 a;k(xx) +b

y y=a*x

Leibniz, Weyl, Chaitin




Empirical Inference

e Drawing conclusions from empirical data (observations, measurements)

« Example 1: scientific inference

“If your experiment needs statistics [inference],
you ought to have done a better experiment.” (Rutherford)
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Empirical Inference, 11

« Example 2: perception

“The brain is nothing but a statistical decision organ”
(H. Barlow)
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Hard Inference Problems

Sonnenburg, Rdtsch, Schdfer, Scholkopf,
2006, Journal of Machine Learning
— Research

T ' Task: classify human DNA sequence
‘ locations into {acceptor splice site,
L g decoy} using 15 Million sequences of
Y ed length 141, and a Multiple-Kernel
Support Vector Machines.

N Ferh

7 PRC = Precision-Recall-Curve,
- Aren under the PRI fraction of correct positive
Pt predictions among all positively

100000k 1O predicted cases

o=

ngh dimensionality — consider many factors simultaneously to find the regularity
Complex regularities — nonlinear, nonstationary, etc.

Little pI’iOI‘ knowledge — e.g., no mechanistic models for the data

Need large data sets — processing requires computers and automatic inference methods
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Generalization

e observe

]‘9 25 49 79
* What’s next? \V/R\V/R\V/)
+1 42 43

« 1,24,7,11,16,...: a_,,=a +n (“lazy caterer’s sequence”)
¢ 1,2,4,7,12,20,...:a_,=a_,,+a +1

e 1,2,4,7,13,24,...: “Tribonacci”-sequence

e 1,2,4,7,14.28: d1V1sors of 28

o 1,2,4,7,1,1, : decimal expansions of =3,
and 622,7 18... interleaved (thanks to O. Bousquet)

e The On-Line Encyclopedia of Integer Sequences: >600 hits...
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Generalization, 11

* Question: which continuation 1s correct (“generalizes™)?

e Answer: there’s no way to tell (“induction problem”)
y

* Question of statistical learning theory: how to come up
with a law that generalizes (“demarcation problem”)

[1.e.: a law that will probably do almost as well in the future as it has done in the past]
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Learning problem

Data ‘:'-7-’1- Y1)se oo s (TmyYm) €E X X )

(x;, ;) ~ Pla.y).

Goal: find f: X =Y

with minimal “risk” R[f] = / I(f(z),y) dP(z,y)
X

Cost function [(f(z),y)

Special case Y = {+1},1(f(x), 2) %|f(x) —y|:

“2-class-classification”
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2-class classification (Vapnik & Chervonenkis)

Learn f:X = {£1} based on m observations
(21591 )y e o5 (2 ) € X' {1} generated i.i.d. from some P(z.y)

Goal: minimize expected error (“risk”) >

Rif) = [ 517(@) -yl dP(z.y)

V. Vapnik

Problem: P is unknown.

Induction principle: minimize training error (“empirical risk™)
1 1
Remplf] = 1 2 51/ (@) = wi
1=
=over some class of functions. Q: is this “consistent™?
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The law of large numbers

For all feF and €e€>0

lim P{|RIf] — Remplf]| > €} = 0

m—0co

Does this imply “consistency” of empirical risk minimization
(optimality in the limit)?

No — need a uniform law of large numbers:

For all e > ()

M—0Q

lim P{sup (R[f] — Remp|f]) > €} =0
JEF
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Consistency and uniform convergence

Risk
Rm\
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The Importance of the Set of Functions

What about allowing all functions from X to {£1}?

Training set (X1,¥1),-- -, (Xm,Ym) € X x {£1}
Test patterns X1,...,Xm € X,
such that {X1,...,Xm} N {x1,...,xm} ={}.

, 1. f*(x;) = f(x;) for all
TR L T 2 i
For any f there exists f™ s.t.: 2. f*(x;) # f(x;) for all j.

Based on the training set alone, there is no means of choosing
which one is better. On the test set, however, they give opposite
results. There is 'no free lunch’ 25, 60].

— a restriction must be placed on the functions that we allow
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Vapnik-Chervonenkis (VC) dimension

ERM is consistent for all probability distributions, provided that

the VC dimension of the function class is finite.

VC dimension # = maximal number of points which can be classified
in all possible ways using functions from the class.

Linear classifiers on R?: & = 3:

o o

o‘ i

non-falsifiable falsifiable
...onR% h=d+1
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VC Risk bound

210} Qﬂ - — OO y "" 4
L (l“fﬁ R 1) log(0/4) i probab. 1-6
e for all f

B[ﬂ ‘i Rvmp[.f] + \

It both training error R, and VC dimension / (compared to
the number of observations m) are small, then test error R 1s small.

-> depends on the function class.
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Example of a Pattern Recognition Algorithm

Idea:
classify points according to which of the two class means is closer:

] — ] —
M(X):E;%‘, #(Y):giz:;yz‘

)

AR

&
-

¢ Decision function: hyperplane with normal vector w == W(X)-u(Y)

e How about problems that are not linearly separable?
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Feature Spaces

Preprocess the inputs with
b: X > H
r — P(z),

where H is a dot product space, and learn the mapping from ®(z)
to .

16
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Example: All Degree 2 Monomials

$:R? 5 R
(x1,29) — (21,22,23)

A

* X x
x
x
—— - -
\
x : ) %
X/, ) L X
\ X
/ ) J
- . 1 | ==
u\ ) ;
x )/_/
x ) ~7 R
— b - %
x
x
x » x

= (23, V22129, 23)

% X
x
X
= X x
A\ x
K 2
™\ X
\\x
3y >
\ X o “1
) D 5\
5 *

Ij'
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Polynomial Kernels

(O(z), ¥(2')) = (22, V2 2120, 23) (2", V2 2 7h, o
= (2 11’,1 + J'«).r.’,)"
- (5,2)
= : k(z,z)
'——;R }110 dot product in H can be computed from the dot product
in [R*
More generally: for r,2’ € RV, d € N,

N 4 N
(z, )" = (Z% l’,) =) T iy~ T, * 0 Ty, = {O(z), B(2))

J=l jlr'"ljd=1

18
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Positive Definite Kernels

Let A be a nonempty set. The following two are equivalent:

e [ is positive definite (pd), i.c., k is symmetric, and for

— any set of traiming points 2£1,....: rm € X and
= QILY (s« = an € R
we have

E a;a; I\'.,-j > 0. where K; ;= k(xi25)
N

e there exists a map ¢ into a dot product space ‘H such that
k(x, 2") = (®(z). (2))
H is a so-called reproducing kernel Hilbert space. (RKHS)

If for pairwise distinct points, 2=0 iff all a, = 0, call k strictly p.d.

19
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Constructing the RKHS

()
X ®x)  P(x)
x — ®(x) := k(x,.) (Aronszajn, 1950)
S 2
e.g., Gaussian kernel k(x,2') = e : 2 02“ (or some other positive definite k)

Take linear hull and define a dot product (®(x), ®(z')) := k(x,z’)

Point evaluation: f(x) = (f, k(x,.)) — "reproducing kernel Hilbert space”

20
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Pattern Recognition Algorithm in the RKHS

’

w(X)

X compact subset of a separable metrie space. m.n e N

Positive class X = {x),....2m} C X
Negativeclass Y :={y1,....un1 C X
RKHS means p(X) = &Y 70, klx;, <), u(Y) = \:_ Ky, )

Il &= _ [

Leads to a Parzen windows plug-in classifier:

f(z) = sgn Zkzazz Zl-czyZ )+ b
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SUppOI’t Vector Machines (Boser, Guyon, Vapnik 1992, Cortes & Vapnik 1995)

= <d(x),D(x)>
terms of SVS

representer theOI'CIIl (szeldorf & Wahba 1971, Scholkopf et al. 2000)

* unique solution found by convex QP
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Kernel PCA  (Schélkopf, Smola, Miiller 1998)

Figerrembae~" CCC Dgericest 929 Cigervestan=d 137

Sgeorvise=0 131 Digervaioe=0 122

Contains LLE, Laplacian Eigenmap, and (in the limit)
Isomap as special cases with data dependent kernels
(Ham et al. 2004)

23
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Spectral clustering
K similarity matrix; D;; = > i Kij

Normalized cuts (Shi €& Malik, 2000):
— map inputs to corresponding entries of the second smallest eigenvector of the

normalized Laplacian
L=I-DY2KD71/2

— Partition them based on these values.

Meila € Shi (2001):
— map inputs to entries of largest eigenvectors of

DK
— continue with k-means

Kernel PCA (1998):
a™ the nth eigenvector of K, with eigenvalue A,
— map test point x to RKHS, project on largest eigenvectors of K, normalized

by \~1/2:

1=1

V™ k(x,.)) = ;12 Z af (ks ), k() = A2 alk(a, )
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Link to kernel PCA

projection of a training point xr; onto the nth eigenvector equals
)\;1/2(1(@”)75 = )\711/204?.

— the coefficient vector o contains the projections of the training set

— for a connected graph, the normalized Laplacian has a single 0 eigenvalue.
Its (pseudo-)inverse is known as the discrete Green’s function of the diffusion
process on the graph governed by L. It can be viewed as a kernel matrix,
encoding the dot product implying the commute time metric (Ham, Lee, Mika,
Schaolkopf, 2004).

— the kPCA matrix is centered, and thus has a single eigenvalue 0 (for strictly
p.d. kernel) that corresponds to the 0 eigenvalue of the normalized Laplacian.

— inversion inverts the order of the remaining eigenvalues.
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The Empirical Kernel Map

Recall the feature map
d:X — RY
x> k(. zx).
e cach point is represented by its similarity to all other points

¢ how about representing it by its similarity to a sample of points?

Consider

¢, : X — R™
X k("x)l(.’lll,...,xm) = (k((I}l,:L'), R ,k(:z:m,:c))T
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oD, (21),...,Pm(xy) contain all necessary information about
®(z1),...,P(zm)

e the Gram matrix G;; := (<I>m (i), Pm(z; ) satisfies G = K2
where K;; = k(z;, z;)

e modify &, to
oy : X - R™
T K—%(k(zl,x), Y ,k(:cm,:v))T
e this “whitened” map (“kernel PCA map”) satifies
(P (@i), P (5)) = k(zi, ;)
forall ¥,9= 1:i:,m
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The Representer Theorem

Theorem 7 Given: a p.d. kernel k on X X X, a training set
(21,91)s -+ (Tm, ym) € X X R, a strictly monotonic increasing
real-valued function 2 on [0, 0o[, and an arbitrary cost function

¢: (X x R)™ - R U {oo}
Any f € H; minimizing the regqularized risk functional

C((IIII, Y1, f(ml))a veey (-Tma Ym, f(xm))) + Q2 (”f”) (3)

admits a representation of the form
m

FO=Y 0 ki),

1=
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e the kernel corresponds to

— a similarity measure for the data, or
—a (linear) representation of the data, or
— a hypothesis space for learning,
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u(X)

u(yY) |

What if u(X) = u(Y) ?

30
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When do the means coincide?

k(z, 2} = {z,2"): the means coincide
k(x.z') = ({x.2’) +1)%. all empirical moments up to order d coincide

k strictly pd: X=Y.

The mean “remembers” each point that contributed to it.

31 Bernhard Schélkopf



Proposition 1 Assume that k is strictly pd, and for all i, j,
ri #xj, and y; # y;. If for some a;, 3; € R = {0}, we have

Y aik(xi,-) =) _ Bikly;. ), (1)
fm] =l

then X =Y.

Proof (bv countradiction): W.log, asume that zy € Y. Subtract
3 =1 3ik{y;. ) from (1), and make it a sum over distinet points, to get

()= z ki, .),

where 2y =r;.my=ay #0.and 2. .- € XUY = {x;}. ;2.--€ER
Take the dot product with 3° sk ) using (M2, ) K (25,.)) = k(2. 35), to

get
(= Z..'O‘f)k(zﬂ Z,)-
i

with ~ # 0, henoe & cannot be stictly pd.
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The mean map for samples

X = (s m) = S k()
satisfies . .
X0, ) = (S k), fr = -3 Fla)
and
0 =) = sup (X)), )1 = sup |57 1) = 3 )|

o /(X) # pu(Y) <= can find a function distinguishing the samples

o If k is strictly p.d., this is equivalent to X # Y, ie., we can always
distinguish distinct samples.
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Witness function

(X )=ulY)
J- X )=p(Y )|

thus f(x) o (u(X) = u(Y'). k(x..))):

Viiness ffor Gauss and Lagiace data

>y
—

08 ...“ !

-

> o

(done in the Gaussian RKHS)
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The mean map for measures

Assumptions:

e p,q Borel probability measures

° Exwxwp[k(:n,x’)], Ex,x/,\,q[k(:c,m’)] < 00
(follows if we assume ||k(x,.)|]| < M < 00)

Define

p:p— Eypoplk(x, )]
Note

(1(p), f) = Eznplf ()]
and

lu(p) = p(@)ll = Sup Eenplf(2)] = Eonglf (2)]]

Under which conditions is p injective?

Smola, Gretton, Song, Scholkopf, ALT 2007;
Fukumaizu, Gretton, Sun, Scholkopf, NIPS 2007
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Theorem 2 [Forl’er and Mourier (1953); Dudley (2002 )}'

p=qg<=> sup |Ef~,,(f(.’r)) - E,-Ml(f(.l'])i = (),
feC(X)

where C'(X) is the space of continuous bounded functions on
J

Combine this with

lu(p) — u(@)|| = sup |Egz~plf(z)] — Egnglf())]
| fII<1

Replace C(X) by the unit ball in an RKHS that is dense in C(X)
— universal kernel [51], e.g., Gaussian.

Theorem 3 [Gretton et al. (2007)] If k is universal, then

p=q<=|lulp) —plqg)l =0.
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o for k(z,z’) = e!®:%") we recover the moment generating function of a RV
x with distribution p:

My(.) = By {e@% ' >]

. / . . .
o for k(x,z') = %) we recover the characteristic function:

My(.) = Eguy |70

e /i is invertible on its image
M = {u(p) | p is a probability distribution}
(the “marginal polytope”, Wainwright € Jordan, 2003)

An injective u provides us with a convenient metric on probability distributions,
which can be used to check whether two distributions are different.
I

Construct estimators for ||u(p) — u(q)||* for various applications.

37
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Application 1: Two-sample problem /Gretton et o, 2007)

X. Y Lid. m-sanples from p, ¢, respectively,

lselp) = p(@)|IF =E; sy ({2 2)] = 2By yng k{2, y)] + By g k(. )]
=E, yupyy~s ((z.y), (2,0))]
with
hi(z, y). (2, o)) = k(x, 2"} = klz.¢/) = k{y.2") + k(p. v/).
Dehinie
D(p.q) = E; pupyy~ihliz.0). (. &)
DXX,Y) = by D Mz, (25, 8)).

=

D(X,Y)? i an unbissed estimator of Dip, ¢)°.
It's easy to compute. and works on structured data

38
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Kernel Independence Testing

k bounded universal p.d. kernel;  p, g Borel probability measures

Kernel mean map
pwip— Eyolk(z,.)]

1s Injective.

Corollary: z 1L y <= A = ||pt(pay) — 1(p= X py)|| = 0.

Link to cross-covariance: For k((z,y), (2',y")) = ko (2, 2")ky(y, y'):
A? = squared HS-norm of cross-covariance operator between the two RKHSes.

Estimator %tr[KXKy], where Kx is the centered Gram matrix of {z1,...,z,}
(likewise, Ky ).
(Gretton, Herbrich, Smola, Bousquet, Schélkopf, 2005; Gretton et al., 2008)

Link to Kernel ICA (Bach & Jordan, 2002):
r 1y iff sups, e RHKS unit balls COV(f (), 9(y)) =0
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Shift-Invariant Optical Realization 1 :p— E,.p[k(x — )]
Fourier imaging through an aperture

e p source of

incoherent
light P —

e [ indicator func-
tion of an aperture

of width D

e in Fraunhofer diffraction, the intensity image is o< p * I?

e set k := I? (this is p.d. by Bochner’s theorem)

e then the image equals u(p)

e this u is not invertible (since k is not universal) — “diffraction limit”

e if we restrict the input domain to distributions with compact support, it
is invertible no matter how small D > 0

6 (Scholkopf, Sriperumbudur, Gretton, Fukumizu 2008; Harmeling, Hirsch, Scholkopf 2013)
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Kernels as Green’s Functions

e in this case, the kernel is the point response of a linear optical system

e more generally, the kernel £ can be viewed as the Green’s function of
P*P, where P is a regularization operator such that the RKHS norm can
be written as ||f||x = || Pf]|

e for instance, the Gaussian kernel corresponds to a regularization operator
which computes an infinite series of derivatives of f

e for translation-invariant kernels, P can be written as a multiplication op-
erator in Fourier space, amplifying high frequencies and thus penalizing
them in || Pf||

Poggio & Girosi 1990; Schélkopf € Smola 2002; Hofmann, Scholkopf, Smola 2008

41
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Non-Injectivity of Fourier Imaging

 assume: densities exist, kernel shift invariant, k(x,y) = k(x-y),
all Fourier transforms exist. Note that u is invertible 1ff

Einplk(z, )] = Eonglk(z,)] = p=1¢q

//f(:v —y)p(y) dy = /k(w —y)q(y)dy = p=q

ie, k(p—q) =0 = p=gq
(Sriperumbudur, Fukumizu, Gretton, Lanckriet, Schélkopf, COLT 2008)

e E.g.: uis mvertible if /%A has full support.
e this is not the case for kK = I * [ .

More precisely,

l1(p) — (@)l = |IF~ (B — DA

where k is the nonnegative finite measure corresponding to k via Bochner’s
theorem, and p,q are the characteristic functions of the Borel measures p,q.
Thus p is invertible for the class of all nonnegative measures if k has full support.

42
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Injectivity of Fourier Imaging with Prior Knowledge

 How about 1f ]Af does not have full support, but nonempty interior (e.g., ]Ag = I x])
* in that case, u 1s mvertible for all distributions with compact support, by Schwartz-
Paley-Wiener (Sriperumbudur, Fukumizu, Gretton, Lanckriet, Scholkopf, COLT 2008).

* The Fraunhofer diffraction aperture imaging process is not invertible for the
class of all light sources, but it is if we restrict the class (e.g., to compact
support).

43
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AlgO rithmic MethOd Harmeling, Hirsch, Scholkopf, CVPR 2013

« exploit nonegativity of image, and bounded support of object

reconstruction “ground truth”
recorded with
larger aperture

44

reconstruction
passed through
forward model

double star;
distance=
0.5*Rayleigh
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- b amazoncom o
BECOME AWESOME IN EXCEL .

— YOur Amaden com ' 10043 Dedty v
Amazon’s recommendation system - is it crazy? ‘Shop All Departmeats

12th, 2008 in business , Mumor , technology , wonder why - & comments

We have a saying in Telugu that goes like this, "thaadu vundhi kada ani eddu kontama?"” which means, “just because
you have a rope you dont buy a bullock to tie”. Amazon’s recommendation system must have been coded by someone
with a skewed view of reality. How else can you explain this?

Hobile Edge txpt

Other products by Mols
Yy ._,_AJA
List Price: 3408

Price;: $48.32 5
You Save: §1.607 |2

Avallability: 1n S1tocs

“imitate the superficial exterior of a process
or system without having any understanding

of the underlying substance".
(source: http://philosophyisfashionable.blogspot.com/)

Want it delvvered Tumn
at checkout. Zag detads

21 used A new aval

“cargo cult”

-n_.x_-x_ LNASe Ard SANer s

- for prediction in the IID setting, imitating the ERACh. X San. Setomas mates
exterior of a process is enough Better Together
(i.e., can disregard causal structure) By thes item with 10 Pavion OV2610US 14.1" Entertarmen

- anything else can benefit from causal learning ‘ ! :;?y"::.:.'-.':.ﬂ.f:} :‘w 2

Thanks to P. Laskov.
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Statistical Implications of Causality

Reichenbach’s

Common Cause Principle
links causality and probability:

(i) if X and Y are statistically
dependent, then there is a Z
causally influencing both; special cases:

other (given Z, the observables
X and Y become independent)

(ii) Z screens X and Y from each M




Functional Causal Model (Pear! et al.) \

COMMUNICATIONS
ACM

Judea Pearl

ACM's A.M, Turing
Award Winner

Set of observables X1,...,X,
directed acyclic graph G with vertices X;,...,X,
Semantics: parents = direct causes

X, = f;(ParentsOf;, Noise; ), with jointly independent Noiseq, ..., Noise,.
J y
. ’ parents of X, (PAJ_)

Q\»® = (PA, U)
\

O

entails p(X1, ..., X, ) with particular conditional independence structure
Question: Can we recover GG from p?

Answer: under certain assumptions, can recover an equivalence class
containing the correct G using conditional independence testing.

Problem: does not work in the simplest case. Below: two ideas.
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Friedrich Nietzsche's

TWILIGHT OF THE IDOLS

or How to Philosophize with a Hammer

Translated, with commentary, by R.J. Hollingdale

]

The Four Great Errors

!

LEIFITO
Worlag ven 6 6 Saanann
-~

The error of mistaking cause for consequence. - There is no more dangerous error
than that of mistaking the consequence for the cause: | call it reason's intrinsic form
of corruption. Nonetheless, this error is among the most ancient and most recent

Oz O
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Independence of input and mechanism

Causal structure:

C cause ¢ ;@

E eﬂ"e.ct i Y

N noise

¢ mechanism N N,
Assumption:

p(C) and p(F

(') are “independent”

Janzing & Scholkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire & Dirkx, 2007
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Inferring deterministic causal relations

?

* Does not require noise
« Assumption: y = f(x) with invertible f m

" |y

ply) |

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Scholkopf:
Inferring deterministic causal relations, UAZ 2010
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Causal independence implies anticausal dependence

Assume that f is a monotonously increasing bijection of [0, 1].
View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (log f',pz) =0
Note: this is equivalent to
1 1
| os @pla)iz = [ log f'(w)ia,
0 0

since

Cov (log f',ps) = E[log f'-pg]—E [log f'] E [ps] = E[log f"-ps|—E[log f'].

Proposition: ,
Cov (log f ,py) >0

7)) with equality iff f = Id.
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Uy, U, uniform densities for z,y
vy, v, densities for x,y induced by transforming wu,,u, via f ' and f

Equivalent formulations of the postulate:

Additivity of Entropy:
S(py) — S (pz) = S (vy) — S (ug)

Orthogonality (information geometric):
D (ps || vz) = D (pz || uz) + D (ug || v2)

which can be rewritten as
D (py | uy) = D (ps || uz) +D (Uy I Uy)

Interpretation:
irregularity of p, = irregularity of p, + irregularity introduced by f
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80 Cause-Effect Pairs
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80 Cause-Effect Pairs — Examples

pair0001
pair0005
pair0012
pair0025
pair0033
pair0040
pair0042
pair0047
pair0064
pair0068
pair0069
pair0070
pair0072
pair0074
pair0078

var 1

Altitude

Age (Rings)

Age

cement

daily alcohol consumption
Age

day

#cars/24h

drinking water access
bytes sent

inside room temperature
parameter

sunspot area

GNI per capita

PPFD (Photosynth. Photon Flux)

var 2

Temperature

Length

Wage per hour

compressive strength

mcv mean corpuscular volume
diastolic blood pressure
temperature

specific days

infant mortality rate

open http connections
outside temperature

sex

global mean temperature

life expectancy at birth

NEP (Net Ecosystem Productivity)

dataset

DWD
Abalone
census income
concrete data
liver disorders
pima indian
B. Janzing
traffic
UNdata

P. Daniusis

J. M. Mooij
Biilthoff
sunspot data
UNdata
Moffat A. M.

ground truth

L T I A e A
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Acouracy (%)

IGCT:
Deterministic
Method

LINGAM:
Shimizu et al.,
2006

AN:
Additive Noise
Model (nonlinear)

PNL.:
AN with post-
nonlinearity

GPI:
Mooij et al.,
2010
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Further Applications of Causal Inference

1. Grosse-Wentrup, Scholkopf, and Hill, Causal Influence of Gamma Oscil-
lations on the Sensorimotor Rhythm. Neurolmage, 2011

2. Grosse-Wentrup & Scholkopf, High Gamma-Power Predicts Performance
in Sensorimotor-Rhythm Brain-Computer Interfaces. J. Neural Engineer-
1ng, 2012
(2011 International BCI Research Award)

3. Besserve, Janzing, Logothetis € Scholkopf, Finding dependencies between
frequencies with the kernel cross-spectral density, Intl. Conf. Acoustics,
Speech and Signal Processing, 2011

4. Besserve, Scholkopf, Logothetis € Panzeri, Causal relationships between
frequency bands of extracellular signals in visual cortex revealed by an
information theoretic analysis. J. Computational Neuroscience, 2010

Bernhard Schélkopf



Causal Learning and Anticausal Learning
Scholkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012

o example 1 predlct gene from mRNA sequence
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e example 2: predict class membership from handwritten digit
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Covariate Shift and Semi-Supervised Learning

Assumption: p(C') and mechanism p(FE|C) are “independent”
Goal: learn X +— Y, i.e., estimate (properties of) p(Y|X)

e covariate shift (i.e., p(X) changes): mechanism

p(Y|X) is unaffected by assumption
e semi-supervised learning: impossible, since
p(X) contains no information about p(Y|X)
N, N,

® transfer learning (Nx, Ny change, ¢ not): could be
done by additive noise model with conditionally inde-

pendent noise
causal mechanism

e p(X) changes: need to decide if change is

due to mechanism p(X|Y) or cause distribu-
tion p(Y’) (sometimes: by deconvolution) - @
N

e semi-supervised learning: possible, since
p(X) contains information about p(Y|X) —
e.g., cluster assumption. N X
(cf. Storkey, 2009)

® transfer learning: as above Bernhard Schélkopf



Semi-Supervised Learning (scasikopfet al., ICML 2012)

* Known SSL assumptions link p(X) to p(Y|X):

o Cluster assumption: points in same cluster of p(X) have
the same Y

* Low density separation assumption: p(Y|X) should cross
0.5 1n an area where p(X) 1s small

o Semi-supervised smoothness assumption: E(Y]|X) should be
smooth where p(X) 1s large

* Next slides: experimental analysis

Bernhard Schélkopf



SSL Book Benchmark Datasets — Chapelle et al. (2006)

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

| Category | Dataset
g241c: the class causes the 241 features.
. g241d: the class (binary) and the features are confounded by a variable with 4 states.
Anticausal/ Mty — . - -
Confounded Digitl: the positive or negative angle and the features are confounde.:d by the Var}able of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.
| Causal | SecStr: the amino acid is the cause of the secondary structure.
| Unclear | BCI, Text: Unclear which is the cause and which the effect.
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UCI Datasets used in SSL benchmark — Guo et al., 2010

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

| Categ. |

Dataset

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).

Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).

Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.

Iris: the size of the plant is an effect of the category it belongs to.

Anticausal/Confounded

Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).

Letter: the class (letter) is a cause of the produced image of the letter.

Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).

Image Segmentation: the class of the image is the cause of the features of the image.

Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.

Vehicle: the class of the vehicle causes the features of its silhouette.

Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.

Vowel: the class (vowel) causes the features.

Wave: the class of the wave causes its attributes.

Balance Scale: the features (weight and distance) cause the class.

Causal | Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.
Unclear| Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear

whether the class label may have been generated or defined based on the features (e.g., lonoshpere, Credit Approval,
Sick).
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Datasets, co-regularized LS regression — Brefeld et al., 2006

Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal or

Unclear
| Categ.| Dataset | Target variable Remark
breastTumor | tumor size causing predictors such as inv-nodes and deg-malig
3 cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood
IS sugar
§ cleveland presence of heart disease in the pa- | causing predictors such as chest pain type, resting blood pressure,
S tient and fasting blood sugar
g lowbwt birth weight causing the predictor indicating low birth weight
S pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and
S Albumin
B pollution age-adjusted mortality rate per | causing the predictor number of 1960 SMSA population aged 65
< 100,000 or older
wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity
autoMpg city-cycle fuel consumption in | caused by predictors such as horsepower and weight
miles per gallon
cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
= memory, and cache memory
§ fishcatch fish weight caused by predictors such as fish length and fish width
O housing housing values in suburbs of | caused by predictors such as pupil-teacher ratio and nitric oxides
Boston concentration
machine_cpu| cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-
tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
Servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-
ical linkages
auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
5 fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
< pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
S stock (target: price of one particular stock); strike (target: strike volume);

triazines (target: activity); veteran (survival in days)

Bernhard Schélkopf




Benchmark Datasets of Chapelle et al. (2006)
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Self-training does not help for causal problems (cf. Guo et al., 2010)
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Co-regularization helps for the anticausal problems of Brefeld et al., 2006
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Co-regularizarion hardly helps for the causal problems of Brefeld et al., 2006
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The purpose [...] is to identify

frontiers for collaborative

research integrating

(a) mathematical and
computational modeling of
human cognition with

(b) machine learning and
machine intelligence

[...] as an additional objective
of this meeting, we are asked to
consider the following from the
perspective of the
computational cognition
community:

(a) identify the major obstacles
to progress in
understanding the brain and

(b) discuss theoretical and

experimental approaches to
overcome these obstacles

BRAIN project: $1e8

- “give scientists the tools to get a
dynamic picture of the brain and better
understand how we think, learning, and
remember

- possible outcomes:

- Parkinson

- reduce language barriers through
technological advances in how
computers interface with human though

- PTSD, brain injuries in war veterans
(50% DARPA)

- high-tech jobs

BLUE BRAIN project: EUR 1¢9

- Reconstructing the brain piece by piece
and building a virtual brain in a
supercomputer

- new understanding of the brain and a
better understanding of neurological
diseases.
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