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This article examines relational category learning in light of two influential theories of concept acquisition: the 
structure-mapping theory of analogy and theories of feature-based category learning. According to current dominant 
theories of analogy, comparing two instances of a relational concept enables alignment of their elements and reveals 
their shared relational structure. Therefore, learning relationally defined categories should be faster when comparing 
items of the same category than when comparing items of different categories. By contrast, feature-based theories 
predict a benefit of between-category comparisons, because such comparisons direct attention to the features that 
discriminate the categories. The present experiments tested these predictions using a two-category classification-
learning task in which two items are presented on every trial: either in the same category (match condition) or in 
different categories (contrast condition). Subjects in the contrast condition outperformed those in the match condition 
for feature-based categories (Experiment 1) and across four different types of relational categories (Experiments 1-4). 
Although theorists have posited that structure-mapping theory is directly applicable to relational category learning, the 
present findings pose a distinct challenge to this assertion. We propose that many relational categories are learnable 
based solely on which relations are present in the stimulus, rather than requiring explicitly compositional 
representations based on role-filler binding. This process would be akin to feature processing and would not require 
structural alignment. This theoretical proposal together with the empirical results may lead to a better understanding of 
when people do and do not engage in the cognitively demanding process of structural alignment. 
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Structured relational concepts have been argued to be central to 

the power of human cognition (Gentner, 2010; Gentner & Kurtz, 
2005; Penn, Holyoak, & Povinelli, 2008; see also Fodor & 
Pylyshyn, 1988). The most impressive feats of the human mind, 
including scientific and technological innovation, mathematics, 
problem solving, natural language and formal logic, all make use 
of representations that bind objects to roles within relational 
systems, as opposed to simpler associative mechanisms. An 
important question is thus how relational concepts are learned. 
Two influential domains of research that bear on this question are 
those on feature-based category learning and analogical learning 
and reasoning. These two traditions offer fundamentally different 
views on concept acquisition, the former based on feature vectors 
and global similarity (Estes, 1986; Nosofsky, 1986), and the latter 
on internal relations and one-to-one correspondence among 
constituent elements (Gentner, 1983).. 

Recently there has been increasing interest in relational category 
learning, an empirical domain lying at the intersection of category 
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learning and analogy (Corral, 2017; Corral & Jones, 2014, 2017; 
Dietrich, 2010; Foster, Cañas, & Jones, 2012; Goldwater & 
Gentner, 2015; Goldwater, Don, Krusche, & Livesey, 2018; Jung 
& Hummel, 2011; Kittur, Hummel, & Holyoak, 2004; Kurtz, 2015; 
Patterson & Kurtz, under review; Lassaline & Murphy, 1998). 
Instead of categories defined by features, rules, similarity, or 
family resemblance, relational category learning is concerned with 
categories defined by shared relational structure. For example, 
Foster et al. (2012) trained people to discriminate two types of 
outcome for an alien spaceship tournament. Each tournament 
comprised three ships racing in pairs. In one category, the results 
formed a cycle (e.g., A beats B, B beats C, C beats A), and in the 
other they formed a hierarchy (e.g., A beats B, B beats C, A beats 
C). Every trial contained the same elements (three ships, three 
pairwise races) and the ships varied randomly across trials, and 
thus the only information shared within each category was how 
these elements fit together into a relational system. The experiment 
followed a standard classification paradigm, in which the subject 
viewed a stimulus (a tournament), classified it as category 1 or 2, 
and then received corrective feedback. After several dozen trials 
most subjects were able to induce the correct concepts and reliably 
classify the stimuli. 

The goal of the present work is to test differential predictions of 
accounts of relational category learning derived from theories of 
feature-based category learning and from theories of analogy. The 
starting point is the role of comparison between stimuli. 
Comparison has been shown to facilitate many high-level cognitive 
tasks, including concept learning, analogical reasoning, problem 
solving, and decision-making (for a review and meta-analysis, see 
Alfieri, Nokes-Malach, & Schunn, 2013). Classic research on 
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analogical transfer showed that comparing analogous story 
problems facilitates learning a solution schema that can be applied 
to future problems (Gick & Holyoak, 1983). Related work has 
found that examining side-by-side examples can improve 
mathematical problem solving (Ward & Sweller, 1990). Work in 
the field of education has shown that comparison can improve 
student learning in the classroom (Bransford & Schwartz, 1999; 
Schwartz & Bransford, 1998). Likewise, research on conceptual 
development has shown that object comparison can aid conceptual 
understanding and expedite the process of category formation 
(Gentner & Namy 1999; Namy & Gentner, 2002), providing a 
route to acquiring increasingly abstract concepts (Kotovsky & 
Gentner, 1996). Thus comparison seems to play a critical role in 
discovering and highlighting concepts that are relevant to a given 
task.  

Comparison plays a critical role in theories of analogy, as 
exemplified by structure-mapping theory (Gentner, 1983), the 
dominant framework in that domain. Structure-mapping theory 
holds that stimuli are represented compositionally, as systems of 
objects and relations linked by role-filler bindings (Markman & 
Gentner, 2000), such as under(object1, object2). Comparing two 
instances of the same relational concept triggers an alignment 
process, whereby the instances’ elements are put into 
correspondence in a way that preserves and highlights their shared 
relational structure (Gentner, 1983, 2003; Hummel & Holyoak, 
2003). This alignment process allows for schema induction (Gick 
& Holyoak, 1983; Holyoak & Thagard, 1997), whereby 
superfluous properties from each scenario are stripped away and 
their shared structure is abstracted and represented as a new 
concept. For example, consider two scenarios, one in which a man 
uses an umbrella to shelter himself from the rain, and another 
wherein a cat runs under a tree to stay dry during a storm. These 
two scenarios are analogous because in both cases an agent places 
itself under an object to be protected from the rain. Thus there is a 
common relational structure that both scenarios exemplify. By 
comparing these scenarios and putting their elements into 
correspondence (man « cat, umbrella « tree), this common 
structure can be aligned and abstracted (e.g., cause[under(agent, 
object), protected(agent, rain)]), leading to the removal of 
idiosyncratic features from the original representations (i.e., 
features specific to men, cats, umbrellas, or trees) and yielding a 
representation of the abstract relational concept. Thus structure-
mapping theory makes the strong prediction, supported in many 
experiments (Bowdle & Gentner, 1997; Clement & Gentner, 1991; 
Gentner & Markman, 1994; Gentner, Ratterman, & Forbus, 1993; 
Gick & Holyoak, 1983; Holyoak & Koh, 1987; Markman & 
Gentner, 1993a, 1993b), that relational concepts are best learned 
by comparing items that share a relational structure. Such 
comparisons allow for alignment and schema induction, whereas 
alignment is by definition not possible when two items have 
different relational structures. 

Structure-mapping theory and related theories of analogy were 
originally formulated for cases of reasoning from just one or a few 
comparisons (Doumas, Hummel, & Sandhofer, 2008; 
Falkenhainer, Forbus, & Gentner, 1989; Forbus, Gentner, & Law, 
1995; Gentner, 1983; Holyoak & Thagard, 1989; Hummel & 
Holyoak, 1997, 2003; Kokinov, 1988, 1994; Larkey & Love, 
2003). This is in contrast to traditional category learning 
paradigms, in which subjects are typically expected to learn only 
after scores or hundreds of trials (e.g., Ashby & Lee, 1991; 
Goldstone, 1994; McKinley & Nosofsky, 1995). Nevertheless, 
analogical reasoning has been posited to share important 
psychological commonalities with relational category learning 
(Dietrich, 2010; Gentner & Namy, 1999; Goldwater & Schalk, 
2016; Ramscar & Pain, 1996). Indeed, a relational category can be 

defined as a set of items sharing a common relational structure 
(Gentner & Kurtz, 2005; Markman & Stilwell, 2001). Thus 
judging that two scenarios are analogous or alignable amounts to 
indicating they are members of the same relational category. 
Building on this connection, many researchers have proposed 
extending structure-mapping theory to relational category learning, 
by assuming that classification involves aligning the current 
stimulus to previous stimuli or to learned schemas for the 
categories (Corral & Jones, 2014; Kittur et al., 2004; Kuehne, 
Forbus, Gentner, & Quinn, 2000; Kurtz, Boukrina, & Gentner, 
2013; Lassaline & Murphy, 1998; McLure, Friedman, & Forbus, 
2010). This account leads to the prediction that relational category 
learning should be facilitated by leading subjects to compare items 
from the same category, whereas between-category comparisons 
should be of little benefit (Higgins, 2012; Higgins & Ross, 2011). 

This predicted advantage for same-category comparison also 
follows from computational models of relational category learning 
based on structure-mapping (Barbella & Forbus, 2013; Chang & 
Forbus, 2013, 2014; Corral & Jones, 2014; McLure et al., 2010; 
McLure, Friedman, Lovett, & Forbus, 2011; Taylor, Friedman, 
Forbus, Goldwater, & Gentner, 2011; Tomlinson & Love, 2006). 
For example, SEQL (Kuehne et al., 2000; Skorstad, Gentner, & 
Medin, 1988) compares new items to previously stored exemplars 
or schemas and attempts to align their structures. When the 
alignment process is successful, meaning the items belong to a 
common relational category, the model induces a new schema that 
represents the shared substructure of the items that were aligned, 
which then serves as a representation of the category. Learning in 
these models is thus driven by within-category comparisons. In 
contrast, current models do not have mechanisms that would 
enable efficient learning from between-category comparisons. 

Despite the attempts to link category learning and analogical 
reasoning, there are important distinctions between them. Learning 
relational categories over hundreds of trials is a substantially 
different task than analogical reasoning from as few as two items. 
Analogical reasoning also supports many functions beyond 
classification. Partial analogy between two items enables a 
powerful bootstrapping process, termed analogical transfer, in 
which a person can build on the alignment to draw further 
inferences from one item to the other (Gentner, 1983; Gentner & 
Markman, 1997; Holyoak & Thagard, 1997; Krawczyk, Holyoak, 
& Hummel, 2005; Markman & Gentner, 2000; Spellman & 
Holyoak, 1992, 1996). For example, recognizing that two scenarios 
both contain instances of support could lead a learner to infer that 
properties of one (e.g., the supporting object is sturdy and has 
greater mass than the supported object) also hold in the other. 
Although structural alignment enables this form of inferential 
transfer, the latter is not necessary for recognition of the initial 
commonality between two scenarios. This is an important point 
because structural alignment is posited to be cognitively expensive 
(Forbus et al., 1995) and can strain working memory (Kintsch & 
Bowles, 2002; Waltz, Lau, Grewal, & Holyoak, 2000). Thus, 
people might be less likely to engage in careful comparison and 
alignment over hundreds of trials during a classification task than 
they are during the sort of one-shot learning tasks that form the 
core domain of structure-mapping theory.  

An alternative to the position of relational category learning as a 
form of analogy is that relational category learning is best 
explained by the same principles that have been successful with 
feature-based categories. The field of feature-based category 
learning has a long history marked by well-developed models 
capable of highly accurate quantitative predictions (Ashby, 
Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Lee, 1991; 
Gluck & Bower, 1988; Kruschke, 1992; Nosofsky, 1986; Nosofsky 
& Palmeri, 1997; Smith & Minda, 1998; Tenenbaum & Griffiths, 
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2001). One principle that is central to many of these models, and 
that has received extensive empirical support (Goldstone, 1994; 
Jones, Maddox, & Love, 2005; Kruschke, 1992; Maddox, 2002; 
Nosofsky, 1986, 1989, 1991; Rehder & Hoffman, 2005), is that of 
selective attention among stimulus dimensions. Under this 
principle, an important component of learning is identification of 
which features or dimensions are most diagnostic of category 
membership, and shifting attention to these dimensions such that 
they contribute more to similarity or associative learning 
(Kruschke, 1992; Mackintosh, 1975; Nosofsky, 1986). Although 
comparison between stimuli is not explicitly part of this theory, a 
natural prediction is that discovery of diagnostic dimensions will 
be facilitated by between-category comparisons, which highlight 
the way in which members of opposing categories differ. Indeed, 
existing work using feature-based categories suggests that learning 
is superior from between-category comparisons relative to within-
category comparisons (Andrews, Livingston, & Kurtz, 2011; for 
related work see Hammer, Hertz, Hochstein, & Weinshall, 2009; 
Higgins, 2012; Higgins & Ross, 2011). Thus, to the extent that the 
mechanisms of feature-based category learning also apply to 
relational categories, relational category learning should be best 
from between-category comparisons. This prediction directly 
opposes that derived from structure-mapping theory.  

The present work tests between these opposing predictions by 
building on recent research on the role of comparison in relational 
category learning. This recent work has modified the standard 
classification-learning paradigm, so that instead of presenting the 
subject with a single item at a time to classify, stimuli are 
presented in pairs and the subject is invited to compare the co-
presented stimuli as part of deciding their category memberships.  
This paired stimulus presentation has been shown to produce better 
learning and generalization of relational categories (relative to an 
equal number of item exposures presented one at a time) using a 
mix of same-category and cross-category pairs (Kurtz et al., 2013) 
and using uniform pair types under a supervised observational 
learning mode (Patterson & Kurtz, 2015, 2016, under review). 

The experiments reported here extend this approach, to 
investigate whether it is more beneficial to present item pairs from 
the same category (to highlight within-category commonalities) or 
to present item pairs from contrasting categories (to highlight 
between-category differences). The experiments used a supervised 
classification task with two categories (as opposed to the three-way 
classifications used in the work just cited), with two stimuli 
presented simultaneously on each trial. Subjects in the match 
condition were always shown pairs of stimuli in the same category 
and were asked whether the items were both members of Category 
A or both members of Category B (or nonmembers of A, in 
Experiment 4). Subjects in the contrast condition were always 
shown pairs of stimuli from different categories and asked which 
item was in Category A and which was in Category B (or which 
was not in Category A, in Experiment 4). In both conditions, the 
correct answer was shown after the subject responded. In order to 
control for any inherent differences in task difficulty and to allow 
for an equitable comparison of learning between conditions, on 
every fifth trial subjects were asked to classify a single item 
presented alone; no feedback was presented on these trials. 
Comparing performance on these single-item trials provides a 
direct test of the learning benefits of within- versus between-
category comparison.  

The novelty of our experiment design, relative to other recent 
research on categorization of co-presented items, is that it is (a) the 
first to contrast same-category and different-category comparison 
in learning of relational categories, and (b) the first to evaluate the 
effect of comparison in a diverse set of relational category 
domains. The manipulation of same- versus different-category 

comparison is critical because of its theoretical connection to 
posited learning mechanisms within competing accounts of 
relational category learning. Accounts based on structure-mapping 
theory predict superior learning in the match condition, because 
aligning co-presented items from the same category enables their 
shared relational structure to be discovered and abstracted as a 
schema that represents the category. Structural alignment should 
be less useful in the contrast condition, because attempting to align 
co-presented items from opposing categories will either fail or else 
yield some partial alignment that serves only to identify the 
structure common to both categories and hence is useless for 
discriminating them. On the other hand, accounts based on feature-
based theories of category learning predict superior learning in the 
contrast condition, because comparing co-presented stimuli from 
opposing categories should aid discovery of diagnostic differences, 
thus helping subjects to allocate attention in a way that facilitates 
learning. 

We conducted four experiments using five different category 
structures, all following the above design. Experiment 1 used a 
feature-based category structure and a relation-based category 
structure, constructed from the same set of stimuli, manipulated 
between subjects and crossed with the match/contrast 
manipulation. For the feature-based category structure, a learning 
advantage was found for the contrast group over the match group, 
confirming the prediction from selective attention. In addition, we 
observed a strong trend in the same direction for relational 
category structure, supporting the feature-based account of 
relational category learning over the structure-mapping account. 
Spurred by this latter result, Experiments 2-4 investigated the 
effect of comparison type on a wide range of other relational 
category structures with varying types of stimuli. Despite a 
concerted effort to find a relational category structure that yielded 
an advantage for the match condition, all studies demonstrated the 
opposite, namely that between-category comparisons led to 
superior learning. Thus the results provide robust support for the 
feature-based account and challenge the extension of structure-
mapping theory. Following presentation of these findings, we 
discuss their connections to other work in feature-based 
categorization, including blocking/interleaving effects, as well as 
implications for structure-mapping theory and its application to 
category learning.  In particular, we propose an explanation of how 
relational categories might be learned in a feature-based manner, 
which in turn suggests a natural unification between feature 
representations and the compositional representations that underpin 
theories of analogy. We hope this new proposal regarding concept 
representation, together with the findings of the present 
experiments, will provide a starting point for better understanding 
the limits on humans’ use of structural alignment as a strategy for 
learning and reasoning. 

Experiment 1 
Experiment 1 examined how between- and within-category 

comparison affect the learning of featural and relational categories. 
Each stimulus was a pair of geometric objects, with each object 
characterized by values along three dimensions (size, brightness, 
and tilt of radius; see Figure 1). Orthogonal to the match/contrast 
manipulation described above, subjects learned to classify the 
objects into categories defined either by features or by relations. 
For subjects in the feature condition, the categories were defined 
by the objects’ separate values on one dimension (e.g., Category 
A: both objects large, Category B: both objects small). For subjects 
in the relation condition, the categories were defined by the 
objects’ relative values on one dimension (e.g., Category A: right 
object larger, Category B: left object larger). Within all four cells 
of the 2´2 design (feature-match, feature-contrast, relation-match, 
relation-contrast), the dimension defining the categories was 
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counterbalanced across subjects. The comparisons of interest were 
between the feature-match and feature-contrast groups, and 
between the relation-match and relation-contrast groups, to test the 
effect of comparison type separately on feature-based and 
relational category learning. (No predictions were made comparing 
the feature groups to the relation groups, because the relative 
difficulty of learning featural versus relational categories was not a 
focus here.) A contrast advantage was predicted for the feature-
based categories (i.e., the feature-contrast group outperforming the 
feature-match group), based on feature-based theories of category 
learning and selective attention (Nosofsky, 1986). The critical 
comparison was for the relational categories: If relational 
categories are learned by similar mechanisms to those governing 
feature-based learning, then the relational groups should also 
exhibit a contrast advantage. On the other hand, if relational 
categories are learned by structural alignment, then the relational 
groups should exhibit a match advantage. Thus, applying feature-
based theories to relational category learning predicts a main effect 
of comparison, such that the contrast groups should outperform the 
match groups (irrespective of category type), whereas viewing 
relational category learning as a form of analogical reasoning 
predicts an interaction between comparison type (match vs. 
contrast) and category type (featural vs. relational).  
Method 
Subjects 

One hundred seventy-one undergraduate students from the 
University of Colorado Boulder participated for course credit in an 
introductory psychology course. This and all subsequent 
experiments were approved by the institutional review board at the 
University of Colorado Boulder. 
Stimuli 

Each stimulus contained two objects as shown in Figure 1. Each 
object was defined by values on three dimensions (size, brightness, 
and radius tilt), and each dimension had four possible values, 
which were easily discriminable. Thus there were 64 (43) possible 
objects. The objects’ brightness values (on a 0-255 gray scale on a 
standard LCD monitor) were 15, 60, 80, 250; their sizes (in radius) 
were 1.04, 1.73, 2.07, and 3.20 cm; and their radius tilts were 23°, 
49°, 61°, and 85°. The values of each dimension were jointly 
assigned to the two objects within a stimulus as (1,2), (2,1), (3,4), 

or (4,3). For example, the pair (1,2) indicates a stimulus in which 
the left object had brightness level 1 and the right object had 
brightness level 2. Thus there were 64 possible stimuli (i.e., object 
pairs), obtained by crossing these 4 value pairs on all 3 
dimensions. These assignments enabled construction of feature-
based and relational categories from the same set of stimuli, as 
shown in Figure 2 and described next in the Design section.  
Design 

Subjects were randomly assigned to four conditions that 
crossed featural versus relational categories with contrast versus 
match learning: feature-match (N = 43), feature-contrast (N = 44), 
relation-match (N = 40), and relation-contrast (N = 44). For each 
subject, categorization depended only on the stimulus values on 
one dimension (which was counterbalanced within each condition), 
according to the scheme in Figure 2. In the feature conditions, 
stimuli in Category A had objects with values 1 and 2 on the 
relevant dimension (top row of Figure 2), and stimuli in Category 
B had objects with values 3 and 4 (bottom row). In the relation 
conditions, stimuli in Category A always had a greater value for 
the right object than for the left object (left column of Figure 2), 
and stimuli in Category B always had a greater value for the left 
object than for the right object (right column). For both the feature 
conditions and the relation conditions, the values on the other two 
dimensions were always irrelevant and could be chosen from any 
of the assignments (1,2), (2,1), (3,4), or (4,3). Thus by this 
construction the feature-based and relational conditions both used 
the same set of stimuli, the only difference being how the 64 
stimuli were partitioned into two categories of 32 stimuli each.  
Procedure 

As a cover story, subjects were told that two alien species 
(Alkins and Bafsters) created different patterns of crop circles, and 
their task was to learn the difference. Full instructions are 
presented in Appendix C. 

 
Figure 1. Example stimulus for Experiment 1 (on two-item 
trials, two of these were co-presented). The stimulus contains 
two objects (each a semicircle with a radius, adapted from 
Shepard, 1964). Each object is defined by values on three 
dimensions (size, brightness, and radius tilt), but for any given 
subject only one dimension was relevant for defining the 
categories. In the feature condition, categories were defined by 
the absolute values of both objects on the relevant dimension 
(e.g., both objects large vs. both objects small). In the relation 
condition, categories were defined by the objects’ relative 
values on the relevant dimension (e.g., left object larger vs. 
right object larger). 

 
Figure 2. Stimulus values for the relevant dimension in 
Experiment 1. Each red border indicates a single stimulus, with 
numerals indicating values of the two objects in that stimulus. 
For example, if the relevant dimension for a subject were 
brightness, then the upper-left quadrant would represent 
stimuli with brightness level 1 for the left object and brightness 
level 2 for the right object (there are 16 such stimuli, differing 
in their values on the other two dimensions). Feature-based 
categories are separated by the horizontal partition (i.e., top vs. 
bottom rows) and are defined by the absolute values of both 
objects. Thus, when the relevant dimension was brightness, 
any stimulus from Category A had two dim objects (brightness 
levels 1 and 2), whereas any stimulus from Category B had 
two bright objects (brightness levels 3 and 4). Relation-based 
categories are separated by the vertical partition (i.e., left vs. 
right columns) and are defined by the relative values of the 
objects in each stimulus. Thus, when the relevant dimension 
was brightness, any stimulus in Category A had a dimmer 
object on the left than on the right (1 & 2, or 3 & 4), whereas 
any stimulus in Category B had a brighter object on the left 
than on the right (2 & 1, or 4 & 3). 

Relation-Based 
Category A

Relation-Based 
Category B

1 2

3 4

2 1

4 3

Feature-Based 
Category A

Feature-Based 
Category B
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Each subject completed 700 classification trials. The majority of 
these trials were two-item trials, in which two stimuli were 
generated at random (from the 64 possible stimuli), subject to the 
constraint that they were in the same category but not identical 
(match condition) or in opposing categories (contrast condition). 
Figure 3 shows the display for an example two-item trial in the 
match (Figure 3A) and contrast (Figure 3B) conditions. In the 
match condition, each two-item trial included a response prompt, 
“Type "R" if BOTH crop circles are from Alkins; Type "C" if 
BOTH crop circles are from Bafsters.” In the contrast condition, 
the prompt read, “Type "R" if the crop circles are from the Alkins 
(left) and Bafsters (right); Type "C" if the crop circles are from the 
Bafsters (left) and Alkins (right).” Responses were self-paced. 
After each response, the correct labels were presented directly 
beneath both stimuli, together with the word “Correct” or “Wrong” 
in the center of the screen. This feedback and the stimuli were 
displayed together for 800 ms, and the screen was then cleared for 
400 ms before the start of the next trial. 

Every fifth trial (starting on Trial 5) was a one-item test trial, in 
which a single randomly selected stimulus was displayed below 
the response prompt, “Test: Type "A" for Alkins, or "B" for 
Bafsters.” No feedback was provided on one-item trials. After the 

response, the stimulus was removed and “Thank You” was 
displayed for 500 ms in the center of the screen. The purpose of the 
one-item trials was to provide a direct comparison of learning 
between the match and contrast conditions, controlling for any 
possible difference in difficulty of performing the two-item match 
and contrast classification tasks. 

After every 50 trials, subjects were given a self-paced rest break, 
during which they were shown their percentage correct on those 50 
trials and the number of remaining trials in the experiment. The 
experiment lasted 30-50 minutes. 
Results and Discussion 

Figure 4 presents individual learning curves, which show the 
proportion correct by each subject on each block of 50 trials 
(including both one- and two-item trials). Most subjects show 
approximately all-or-none learning, with performance at chance 
until it jumps to being nearly perfect.1 Although individual curves 
are difficult to trace, the critical pattern in the figure is the strong 
bimodal clustering around 50% and 100%. This pattern was found 
for all other experiments reported in this paper. Although such data 
can be analyzed based on the proportion of subjects in each 
condition that are deemed to have learned the categories (by 
defining an appropriate learning criterion), dichotomizing a quasi-
continuous dependent measure can mask information that is 
present in the data and lead to a reduction in power (DeCoster, 
Iselin, & Gallucci, 2009). Thus, all data reported in this paper were 
analyzed based on each subject’s proportion of correct responses 
throughout the experiment. This measure is sensitive both to 
whether a subject learned the task and to the approximate point in 
the trial sequence at which learning occurred; for example, a 
subject who learned around trial 50 should have a higher 
proportion correct than a subject who learned around trial 400, 
who in turn should have a higher proportion correct than a subject 
who never learned. 

Figure 5A shows average learning curves for all four subject 
groups on one-item trials, and Figure 5B shows the corresponding 
curves for two-item trials. Because of the nature of the individual 
learning curves, the group curves are best thought of as indexing 

                                                             
1 A few subjects reverted to chance performance later in the experiment 
(e.g., the downward-sloping segments at trials 550 and 650), and one 
subject gave all incorrect responses for a period (trials 601-650). These 
indications of lack of cooperation could be taken as grounds for exclusion, 
although we chose not to do this in order to keep the analysis as unbiased 
as possible. 

A. 

 
 

B.

 
Figure 3. Examples of two-item trials from the match and 
contrast conditions in Experiment 1. This figure applies to both 
the relational and feature-based conditions, and in all cases the 
relevant dimension for this example is size. A: Match 
conditions. For the match-feature condition, the category is 
defined by both objects being small, whereas for the match-
relation condition the category is defined by the object on the 
left side of the stimulus being larger than the object on the 
right side of the stimulus. B: Contrast conditions. For the 
contrast-feature condition, the category for the left stimulus is 
defined by both objects being small, whereas the category for 
the right stimulus is defined by both objects being large. For 
the contrast-relation condition, the category for the left 
stimulus is defined by the left object being larger than the right 
object, whereas the category for the right stimulus is defined 
by the right object being larger than the left object. 

Type R if both crop circles are from Alkins
Type C if both crop circles are from Bafsters

A.

Press R if the objects are Category A (left) and B (right)
Press C if the objects are Category B (left) and A (right)

B.

Type R if the crop circles are from Alkins (left) and Bafsters (right)
Type C if the crop circles are from Bafsters (left) and Alkins (right)

Type R if both crop circles are from Alkins
Type C if both crop circles are from Bafsters

A.

Press R if the objects are Category A (left) and B (right)
Press C if the objects are Category B (left) and A (right)

B.

Type R if the crop circles are from Alkins (left) and Bafsters (right)
Type C if the crop circles are from Bafsters (left) and Alkins (right)

 
Figure 4. Individual learning curves for all subjects in 
Experiment 1, based on blocks of 50 trials (one- and two-item 
trials combined). The strong clustering of the data around 50% 
and 100% indicates nearly all-or-none learning. 
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the proportions of subjects who have learned by each point in the 
experiment. The primary statistical analysis addressed accuracy on 
one-item trials, because the task on those trials was identical for 
the match and contrast groups, and thus any differences are due to 
differential learning of the categories and not to any differential 
difficulty of carrying out the two-item match and contrast tasks. In 
line with the prediction that follows from feature-based learning 
and theories of attention, a two-way ANOVA revealed a main 
effect of comparison on one-item trials, F(1, 167) = 5.26, p = .023, 
MSE = .038. Contrary to the prediction that follows from structure-
mapping theory, there was no evidence of an interaction between 
category type and comparison type, F(1, 167) = 0.17, p = .69. As 
can be seen in Figure 5, subjects in the contrast conditions 
achieved higher accuracy than subjects in the match conditions, for 
feature-based categories and also for relational categories. To 
further test the reliability of the contrast advantage observed for 
both category types, separate planned t-tests were conducted to 
compare the feature-contrast and feature-match groups, as well as 
the relation-contrast and relation-match groups, both restricted to 
one-item trials. In the feature condition, a non-significant trend 
was found such that the contrast group outperformed the match 
group, Mfeature-contrast = .872, Mfeature-match = .816, t(85) = 1.41, p = 
.164, MSE = .035, d = .306. In the relation condition, a marginally 
significant advantage of the contrast group was found, Mrelation-

contrast = .676, Mrelation-match = .597, t(82) = 1.82, p = .073, MSE = 
.041, d = .402.  

Parallel analyses were conducted on two-item trials, which 
revealed a similar, but stronger set of results. The main effect of 
comparison type was significant, F(1, 167) = 12.19, p = .0006, 
MSE = .032, and there was no evidence of an interaction with 
category type, F(1, 167) = .002, p = .97. In planned t-tests, the 
feature-contrast group reliably outperformed the feature-match 

group, Mfeature-contrast = .904, Mfeature-match = .810, t(85) = 2.63, p = 
.011, MSE = .028, d = .571, and the relation-contrast group reliably 
outperformed the relation-match group, Mrelation-contrast = .711, 
Mrelation-match = .615, t(82) = 2.33, p = .023, MSE = .036, d = .515. 

In order to more fully assess the effect of comparison type within 
each type of category structure, we merged the data from 
Experiment 1 with data from two pilot studies that had been 
conducted to calibrate the stimulus values (Ns = 65 and 166).2 
These pilot studies were identical to Experiment 1 in all respects 
except for the physical values of the stimuli on the three 
dimensions. Combining these datasets afforded more power to the 
primary analysis of performance differences on one-item trials. 
The data from all three studies (Nfeature-match = 98, Nfeature-contrast = 
103, Nrelation-match = 104, Nrelation-contrast = 97) were subjected to an 
ANOVA restricted to one-item trials, with between-subjects 
factors of comparison type (match vs. contrast), category type 
(relational vs. featural), and study (Experiment 1 vs. Pilot 1 vs. 
Pilot 2, to control for any differences in difficulty across the three 
stimulus sets). This analysis revealed a main effect of comparison, 
F(1, 398) = 8.49, p = .004, MSE = .038, as subjects in the contrast 
groups (M = .759) outperformed subjects in the match groups (M = 
.696), and no interaction between comparison and category type, 
F(1, 398) = .001, p = .946, MSE = .038. Within the two category 
types, the feature-contrast group reliably outperformed the feature-
match group, Mfeature-contrast = .852, Mfeature-match = .797, t(199) = 
2.03, p = .044, d = .288, and the relation-contrast group reliably 
outperformed the relation-match group, Mrelation-contrast = .661, 
Mrelation-match = .603, t(199) = 2.09, p = .038, d = .296. Critically, no 
interaction was found between study and comparison type, F(1, 
390) = .35, p = .707, MSE = .038, supporting the validity of the 
combined analysis. 

                                                             
2 The primary goal of the pilot studies was to find stimulus values that 
yielded equivalent performance for the feature-based and the relational 
categories. As illustrated by Figure 2, the difficulty of the feature-based 
categories in this design is determined by the difference between the lower 
values (1 & 2) and the upper values (3 & 4) on each dimension, whereas 
the difficulty of the relational categories is determined by the differences 
between values 1 and 2 and between values 3 and 4. In Pilot Study 1, the 
objects’ brightness values (on a 0-255 gray scale) were 15, 45, 120 and 
250; their sizes (radii) were .85, 1.36, 2.30, and 3.20 cm; and their radius 
tilts were 5°, 23°, 59°, and 88°. This study showed a strong main effect of 
task type, such that the relation condition (M = .643) was considerably 
more challenging than the feature condition (M = .903), F(1, 61) = 31.76, p 
< .0001. Therefore, in Pilot Study 2 we decreased the differences between 
values 2 and 3 and increased the differences between values 1 and 2 and 
between values 3 and 4, on all three dimensions; values 2 and 3 were 
collapsed to be identical on each dimension, as a strategy to make the 
feature condition as difficult as possible. In Pilot Study 2, the objects’ 
brightness values were 15, 65, 65, and 250; their sizes were 1.04, 1.82, 
1.82, and 3.20 cm; and their radius tilts were 23°, 55°, 55°, and 85°. These 
changes reduced but did not eliminate the differences in performance 
between the relation (M = .645) and feature conditions (M = .805), F(1, 
161) = 37.03, p < .0001. Both pilot studies showed non-significant trends 
of an overall contrast advantage (collapsing across the relation and feature 
categories). Because we were unable to eliminate the difference in 
difficulty between the two category structures, and because using identical 
or overlapping values (i.e., level 2 ≥ level 3) might introduce unanticipated 
complications in the feature condition, the dimension values in Experiment 
1 were chosen as a middle ground between the values used in Pilot Studies 
1 and 2. Note that equivalent performance in the feature and relation 
conditions is not strictly necessary in this design, because the analysis 
concerns the effect of the match-contrast manipulation separately for each 
category type. 

 

 
Figure 5. Average learning curves and standard errors for each 
group in Experiment 1. A: One-item trials. Each data point 
represents an average over 20 one-item trials (spanning 100 
trials total). B: Two-item trials. Each data point represents an 
average over 80 two-item trials (spanning 100 trials total). 
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Finally, to ensure the present findings reflect true concept 
learning and not memorization of individual items, an analysis was 
conducted of Experiment 1 restricted to trials that included only 
novel stimuli (i.e., ones not presented on any previous trial). Once 
again, a main effect of comparison was found for one-item trials, 
F(1, 167) = 9.69, p = .002, MSE = .056, as subjects in the contrast 
condition outperformed subjects in the match condition, Mcontrast = 
.644, Mmatch = .525. Follow-up analyses showed this difference was 
reliable for the relation groups, Mrelation-contrast = .536, Mrelation-match = 
.412, t(82) = 2.63, p = .010, MSE = .045, d = .581, and marginally 
significant for the feature groups, Mfeature-contrast = .743, Mfeature-match 
= .640, t(85) = 1.87, p = .065, MSE = .066, d = .406. No interaction 
was found between type of comparison and type of category, F(1, 
167) = .07, p = .79, MSE  = .056. The analysis of two-item trials 
also showed evidence of a contrast advantage, albeit weaker: The 
main effect of comparison was marginally significant, F(1, 167) = 
2.90, p = .091, MSE = .033, Mcontrast = .625, Mmatch = .575, with no 
interaction between type of comparison and type of category, F(1, 
167) = .001, p = .998, MSE  = .033, but separate paired 
comparisons were non-significant (relation: Mrelation-contrast = .574, 
Mrelation-match = .526, p = .15; feature: Mfeature-contrast = .672, Mfeature-

match = .625, p = .29).3 This finding of a contrast advantage with 
novel items, which was reliable in the primary analysis of one-item 
trials, shows that the effect holds when subjects generalize to new 
stimuli and is hence a product of concept learning and not 
memorization. 

In conclusion, we find evidence of a contrast advantage for the 
feature-based categories that is consistent with previous findings 
(Higgins, 2012) and with theories of selective attention in feature-
based categorization (Nosofsky, 1986). More importantly, we also 
find evidence of a contrast advantage for the relational categories. 
The latter finding is consistent with the hypothesis that relational 
categories are learned similarly to feature-based ones, and it 
challenges the hypothesis that relational category learning depends 
on structural alignment. The evidence for the relational contrast 
advantage spans several different analyses, using one-item and 
two-item trials, the main experiment and two pilot studies, and 
trials with novel items. However, the effect was statistically 
significant in only a subset of these analyses, and the primary 
planned analysis (of all one-item trials in the main experiment) 
showed only a marginally significant effect. Therefore we maintain 
a cautious interpretation of the results and pursue further 
experiments to clarify and extend this finding. 

Experiment 2 
If there is an advantage to learning relational categories from 

between-category comparisons, one question is whether this 
advantage is limited to simple perceptual relations, such as those 
used in Experiment 1, or whether it extends to more conceptual or 
semantic relations. Thus, the goal of Experiment 2 was to evaluate 
the contrast advantage for relational categories using verbal 
stimuli. The stimuli differed from those in Experiment 1 in that 
they consisted only of semantic information and were thus more 
abstract. Specifically, stimuli in Experiment 2 were pairs of words, 
and each category was defined by a relation that held in each of its 
member pairs. Stimuli from one category were instances of the 
contain relation, such that one object can contain the other (e.g., 
jug, milk). Stimuli from the other category were instances of the 
support relation, such that one object can support the other (e.g., 
legs, table). Figure 6 shows how the word pairs were presented to 

                                                             
3 Because a two-item trial is more likely to contain a repeated item, this 
analysis contained fewer trials per subject, coming from earlier in learning, 
than did the analysis of novel one-item trials. These differences likely 
explain why the two-item analysis showed less reliable results. 

subjects. Both categories included concrete (spatial) and more 
abstract instances (e.g., movie, actors for containment). 
Method 
Subjects 

One hundred forty undergraduates from the University of 
Colorado Boulder participated for course credit. Subjects were 
randomly assigned to match (N = 69) and contrast (N = 71) 
conditions.  
Stimuli 

The stimuli are listed in Appendix A. Eighty word pairs were 
constructed for each category. Each word pair was displayed as in 
Figure 6 with the containing or supporting object always on the 
left.  
Design and Procedure 

Every trial was a two-item trial, containing two word pairs (the 
one-item trials used in the other experiments were omitted due to a 
programming oversight). Subjects completed 400 trials, logically 
divided (i.e., for the purpose of defining the experiment design) 
into 5 blocks of 80, with each of the 160 stimuli appearing exactly 
once in each of these blocks. Assignment of stimuli to trials within 
each block was random, under the constraint that each trial 
contained two stimuli from the same category (match condition) or 
from opposite categories (contrast condition).  

Subjects were given the cover story that rogue secret agents were 
using word pairs to communicate in two different types of code 
(Code A and Code B). Full instructions are presented in Appendix 
C. The categories (i.e., containment and support) corresponding to 
Codes A and B were counterbalanced within each condition. It was 
the subject’s task to identify which word pairs were from Code A 
and which were from Code B. Subjects in the match condition 
were asked to type ‘A’ if both items were from Code A or ‘B’ if 
they were both from Code B. Subjects in the contrast condition 
were asked to type ‘A’ if the item on the left was from Code A and 
the item on the right was from Code B, or ‘B’ for the reverse. The 
rest of the design and procedure (i.e., presentation and timing of 
feedback, rest breaks, and approximate duration of the study) were 
identical to Experiment 1. 
Results and Discussion 

Figure 7 shows average learning curves for the contrast and 
match groups. These curves show an advantage for the contrast 
condition, which was significant by a t-test, Mcontrast = .809, Mmatch 
= .746, t(138) = 2.28, p = .024, MSE = .027, d = .39. To ensure that 
the effect was driven by learning of the concepts underlying the 
categories, and not by memorization of individual items, a second 
t-test was conducted using only the first 80 trials for each subject, 
which contained only the first presentation of each item. This test 
also showed a significant effect, Mcontrast = .687, Mmatch = .629, 

 
Figure 6. Example word pair from each category. The word 
pair in Category A is an instantiation of the contain relation. 
The word pair in Category B is an instantiation of the support 
relation. The positioning of words within all pairs was the 
same, such that the supporting or containing object was always 
displayed on the left. 

Glass, Water Chair, Person

Category A Category B
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t(138) = 2.12, p = .036, MSE = .026, d = .361. These findings more 
definitively establish the contrast advantage in relational category 
learning seen in Experiment 1, and they extend the result by 
showing the effect with verbal stimuli. 

Experiment 3 
One possible explanation for the contrast advantage observed in 

Experiments 1 and 2—elaborated in the General Discussion—is 
that structural alignment is not necessary for learning relational 
concepts that are defined by a single relation, and that structure-
mapping’s predicted learning advantage for within-category 
comparison may arise only for richer relationally structured 
concepts. To test this possibility, Experiment 3 used more complex 
relational stimuli, such that each category was defined by a 
configuration of multiple relations operating on a shared set of 
objects. Every stimulus in Experiment 3 contained four simple 
geometrical objects, arranged as in the examples in Figure 8. The 
objects within a stimulus varied on three dimensions—size, color, 
and shape—and the categories were defined by the pattern of 
agreement among these dimensions. For a stimulus in Category A, 
the objects that matched in color also matched in shape but 
mismatched in size. Thus the example Category A stimulus in 
Figure 8 contains two red circles (same color and shape but 
different sizes) and two blue diamonds. For stimuli in Category B, 
the objects that matched in color also matched in size but 
mismatched in shape. Thus the example in Figure 8 contains two 
large green objects (same color and size, different shapes) and two 
small orange objects.  

There are multiple ways these stimuli might be represented (an 
issue we highlight in the General Discussion), but one simple 
possibility in line with previous work (e.g., Kotovsky & Gentner, 
1996) is to assume same-color, same-shape, and same-size 
relations representing whether objects match on each of these 
dimensions. Thus members of Category A would all satisfy sets of 
relations such as:  

same-color(object1, object2) 
same-shape(object1, object2) 

different-size(object1, object2) 
 (where different-size stands for the negation, ¬same-size). 
Likewise, members of Category B would all satisfy sets of 
relations such as: 

same-color(object1, object2) 
same-size(object1, object2) 

different-shape(object1, object2). 
According to structure-mapping theory, these systems of predicates 
should be alignable between members of the same category (and 
not between members of opposing categories), which should 
enable abstraction of a category-defining schema that could be 
used to identify future category members. 

Importantly, the categories cannot be distinguished merely on the 
basis of the individual objects present in a given stimulus, because 
any given object (e.g., a large red square) is equally likely to occur 
in a stimulus from either category. Likewise, a stimulus cannot be 
categorized only on the basis of the pairwise relations between its 
objects, because those relations are the same for stimuli in both 
categories. Specifically, every stimulus contains two objects of one 
color and two objects of another color (e.g., two red objects and 
two blue objects), regardless of which category it is in. Thus there 
are always two instances of same-color relations (one between the 
two red objects, another between the two blue objects) and four 
instances of different-color relations (between either of the red 
objects and either of the blue objects) within any stimulus. The 
same holds for the size and shape dimensions. What distinguishes 
the categories is how the different relations are linked by shared 
objects—for example that same-shape and same-color relations 
can operate on the same pair of objects in Category A stimuli, but 
not in Category B stimuli. That is, every Category A stimulus 
contains pairs of objects that match on both shape and color (e.g., 
two red circles and two blue diamonds, as in Figure 8), whereas in 
a Category B stimulus no two objects can match on both shape and 
color. Likewise, every Category B stimulus contains pairs of 
objects that match on both size and color (e.g., two large green 
objects, and two small orange objects, as in Figure 8), whereas in a 
Category A stimulus no two objects can match on both size and 
color. This pattern of role binding across multiple relations with 
shared objects (i.e., a relational system as opposed to a single 
relation) is exactly the information that structural alignment and 
schema induction operate to discover (Corral & Jones, 2014). 

Other than the shift from single to multiple relations, Experiment 
3 matched the approach of Experiments 1 and 2. The use of 
categories defined by complex relational structures was predicted 
to engage structural alignment more reliably than in the previous 
experiments and, according to structure-mapping theory, should be 
more likely to produce a match advantage. 
Method 
Subjects 

One hundred sixteen undergraduates from the University of 
Colorado Boulder participated for course credit. Subjects were 
randomly assigned to contrast (N = 56) and match (N = 60) 
conditions.  
Stimuli 

Each stimulus consisted of four geometric objects on a black 
background enclosed by a grey rectangle, as shown in Figure 8. 
The four objects were always arranged in two concentric pairs: a 
small object inside a large object on the left, and a small object 
inside a large object on the right. The objects also varied in shape 
(circle, square, diamond, triangle, or hexagon) and color (red, 
green, blue, yellow, or white) with exactly two shapes and two 

 
Figure 7. Average learning curves and standard errors across 
blocks of 50 trials for each condition in Experiment 2. 
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Figure 8. Examples of stimuli from both categories in 
Experiment 3. Each grey rectangle encloses a single stimulus. 
In Category A stimuli, objects of the same color always match 
in shape (two red circles and two blue diamonds in this 
example). In Category B stimuli, objects of the same color 
always match in size (two large green objects and two small 
orange objects in this example). See the online article for the 
color version of this figure. 

Category A Category B
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colors present within any one stimulus. For every stimulus in both 
categories, the large object on the left and the small object on the 
right matched in shape, as did the small object on the left and the 
large object on the right. Thus objects matching in size always 
mismatched in shape and vice versa. The two categories differed in 
how the color dimension related to the size and shape dimensions. 
In Category A, the large object on the left and the small object on 
the right matched in color, as did the small object on the left and 
large object on the right. Thus the objects matching in shape also 
matched in color, whereas objects matching in size always 
mismatched in color. In Category B, the two large objects matched 
in color, as did the two small objects. Thus the objects matching in 
size also matched in color, whereas objects matching in shape 
always mismatched in color.  
Design and Procedure 

Subjects were given the cover story that two alien species were 
creating different types of symbols, and it was the subject’s job to 
figure out which species created each symbol. Full instructions are 
presented in Appendix C. Every subject performed 400 trials. 
Every fifth item was a one-item trial, starting with Trial 5, and the 
remainder were two-item trials. For each two-item trial, two 
stimuli were generated at random under the constraint defining the 
experimental condition (i.e., being in the same or opposing 
categories). For each one-item trial, the stimulus was generated 
fully at random. Response keys, feedback, and timing all matched 
the procedures of Experiment 1. The experiment lasted 
approximately 25 minutes. 
Results and Discussion 

Figure 9 shows average learning curves for the contrast and 
match conditions on one- and two-item trials. The primary analysis 
on one-item trials revealed that subjects in the contrast condition 
reliably outperformed those in the match condition, Mcontrast = .879, 
Mmatch = .801, t(114) = 1.99, p = .048, MSE = .035, d = .373. This 
same pattern of results was also found on two-item trials, although 

it was not significant, Mcontrast = .870, Mmatch = .821, t(114) = 1.49, 
p = .144, MSE = .032, d = .28. A similar pattern of results was 
observed when the analysis was restricted to trials that did not 
contain repeated stimuli: A reliable contrast advantage was 
observed on one-item trials, Mcontrast = .867, Mmatch = .795, t(114) = 
2.06, p = .042, MSE = .035, d = .386, and a trend of a contrast 
advantage was observed on two-item trials, Mcontrast = .840, Mmatch 
= .795, t(114) = 1.30, p = .195, MSE = .031, d = .244. Taken 
together, these results demonstrate that the learning advantage of 
between-category comparison extends to perceptual concepts that 
are defined by relational structures composed of more than a single 
relation. 

Experiment 4 
A fourth experiment was conducted to test whether the contrast 

advantage observed across Experiments 1-3 holds for more 
abstract relational concepts. Previous work suggests that many 
abstract concepts are determined by people’s prior knowledge of 
the relationships that exist among a concept’s features (Rehder & 
Ross, 2001). Experiment 4 adopted stimuli developed by Rehder 
and Ross that form categories defined by the abstract coherence 
among each stimulus’ components. Each stimulus consists of three 
short sentences describing features of a machine that works to 
remove waste products. The first sentence describes the location in 
which the machine operates, the second describes the waste 
product the machine works to remove, and the third describes the 
implement the machine uses. The machines are divided into two 
categories determined by how these three features relate to each 
other. For an item in the coherent category, the machine’s 
implement is well-suited for collecting the machine’s target waste 
material, and that waste material is typically found in the 
machine’s operating location. For example, one member of the 
coherent category is defined by the properties “Operates on the 
surface of the water, works to clean spilled oil, and has a spongy 
material.” This item is coherent because of additional relations 
(presumably known by the subject) that oil slicks are found on 
water and that a sponge can absorb oil. In contrast, an item in the 
incoherent category has features that do not share such relations 
with one another: the machine’s implement cannot collect the 
material being cleaned nor can that material be found in the 
machine’s operating location. Figure 10 illustrates how stimuli 
from the two categories can be represented in the framework of 
structure-mapping theory. The additional relations among the 
features of a coherent item yield a different (richer) relational 
structure than that of an incoherent item, which should be 
discoverable through alignment of two items from the same 
category. Indeed, Higgins (2012) found an advantage of within-
category comparison using a subset of these stimuli (Items 1-9 
from both categories in Appendix B), using a more elaborate 

 

 
Figure 9. Average learning curves and standard errors for each 
condition in Experiment 3. A: One-item trials. Each data point 
represents an average over 10 one-item trials (spanning 50 
trials total). B: Two item trials. Each data point represents an 
average over 40 two-item trials (spanning 50 trials total). 
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Figure 10. Illustration of how a coherent item and an 
incoherent item from Experiment 4 can be represented in the 
compositional role-binding framework of structure-mapping 
theory. The text at the top shows the descriptions presented to 
the subjects. Partially recreated from Corral & Jones (2014). 
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training procedure that required subjects to carefully consider the 
substructure of the stimuli. Therefore a goal of Experiment 4 was 
to test whether a match advantage would be found under the more 
neutral conditions of the present paradigm (see the Implications for 
Structure-Mapping Theory section for further discussion). 

As in the previous experiments reported here, subjects’ task was 
to learn to classify the items (in pairs) to the two categories. An 
initial version of the experiment followed previous experiments 
with these stimuli (Rehder & Ross, 2001) by using labels for both 
categories (Morkel and Krenshaw), but subjects in both the match 
and contrast conditions performed at chance. One possibility is that 
subjects were searching for and could not find a relational rule that 
defined the incoherent category (see Jung & Hummel, 2011, for a 
similar result). We therefore switched from an A/B task to an 
A/¬A task. That is, only the coherent category was given a label 
(Morkel), and subjects’ task was to determine whether each 
stimulus was or was not a member of that category. Subjects were 
not told anything about what constituted a Morkel, just that some 
machines were Morkels and others were not. This framing of the 
task was expected to encourage subjects to learn the category rule 
for the coherent items, without attempting to discover a separate 
category rule defining the incoherent items. 
Method 
Subjects 

One hundred twenty-nine undergraduates from the University of 
Colorado Boulder participated for course credit. They were 
randomly assigned to contrast (N = 62) and match (N = 67) 
conditions.  
Stimuli 

The stimuli are listed in Appendix B. Half were taken from 
Rehder and Ross (2001) and Higgins (2012). Rehder and Ross 
made three coherent items and three incoherent items; the latter set 
was generated by shuffling the features of the former set such that 
each incoherent item took one property from each of the three 
coherent items. Higgins used a similar method to create an 
additional 12 items (six coherent and six incoherent). A further 18 
items (nine coherent and nine incoherent) were created by the 
present authors using the same shuffling method as Rehder and 
Ross. There were thus a total of 36 stimuli, 18 from each category. 
Each stimulus was presented to subjects as three lines of text 
bounded by a red border, as shown in the example display for a 
two-item trial in Figure 11. 
Design and Procedure 

Subjects were told they would learn about machines named 
Morkels, specifically that their task was to learn to identify which 
machines were Morkels and which were not. They were given no 
prior information about what qualified a machine as a Morkel. Full 
instructions are presented in Appendix C. Each subject completed 
300 trials, with self-paced rest breaks every 20 trials in the same 
format as in previous experiments. Every fifth trial was a one-item 
trial and the others were two-item trials. Each of the 36 stimuli 
appeared exactly once in each block of 20 trials (16 two-item trials 

and 4 one-item trials), with the assignment made randomly subject 
to the constraint defining the subject’s condition (match or 
contrast). On two-item trials, two stimuli were displayed side by 
side, labeled Machine A and Machine B (see Figure 11). In the 
match condition, subjects were asked to type ‘2’ if both machines 
were Morkels and ‘0’ if they were not. In the contrast condition, 
subjects were asked to type ‘2’ if Machine A was a Morkel and 
Machine B was not, and ‘0’ if Machine A was not a Morkel and 
Machine B was. After each trial, corrective feedback (provided as 
in the previous experiments) was shown directly under the stimuli 
for three seconds. On one-item trials, subjects were asked to type 
‘M’ if the machine was a Morkel and ‘K’ if it was not. The rest of 
the design and procedure were identical to those of Experiments 1 
and 3. 
Results and Discussion 

Figure 12 shows average learning curves on one- and two-item 
trials for both conditions. As in the previous experiments, a 
learning advantage was found for the contrast group. This effect 
was reliable on one-item trials, Mcontrast = .825, Mmatch = .765, 
t(127) = 2.50, p = .015, MSE = .020, d = .44, and on two-item 
trials, Mcontrast = .844, Mmatch = .774, t(114) = 2.71, p = .008, MSE = 
.021, d = .481. An analysis restricted to trials with only novel 
stimuli (Trials 1-20) showed non-significant contrast advantages 
for one-item trials, Mcontrast = .552, Mmatch = .489, t(127) = 1.42, p = 
.158, MSE = .065, d = .252, and for two-item trials, Mcontrast = .550, 
Mmatch = .506, t(127) = 1.55, p = .124, MSE = .026, d = .244. The 
raw effect size for novel stimuli is similar to that for all trials, but 
the novel-item analysis is noisier due to the small number of 
stimuli in this experiment: The one-novel-item analysis includes 
only four trials per subject, and the two-novel-items analysis 
includes 16. In sum, the results for Experiment 4 replicate the 
findings from Experiments 1-3 and show that the contrast 
advantage extends to the learning of abstract, richly structured 
relational concepts. 

 
Figure 11. An example of a two-item trial from the match 
condition in Experiment 4. 

Operates on wood floors

Works to remove stains

Has absorbent cloth

Operates on thick woven fabric

Works to remove brush

Has a large shovel

Machine A Machine B

Press 2 if the BOTH machines are Morkels
Press 0 if NEITHER machine is a Morkel

 

 
Figure 12. Average learning curves and standard errors for 
each condition in Experiment 4. A: One-item trials. Each data 
point represents an average over 10 one-item trials (spanning 
50 total trials). B: Two-item trials. Each data point represents 
an average over 40 two-item trials (spanning 50 total trials). 
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General Discussion 
The present series of studies examined how comparing items 

from the same or different categories affects relational concept 
acquisition. The difference in learning performance between match 
and contrast conditions in this paradigm is theoretically significant 
because it discriminates between two fundamentally different 
accounts of relational category learning. Characterizing relational 
category learning as a form of analogical reasoning predicts a 
match advantage, based on the central role of comparing items 
with common structure within theories of analogy (Gentner, 1983). 
Treating relational categories as akin to feature-based categories 
predicts a contrast advantage, based on the central role of selective 
attention to diagnostic dimensions in theories of feature-based 
category learning (Nosofsky, 1986). The present results 
demonstrate strong and robust support for the latter prediction. The 
relational categories tested here consisted of both geometric stimuli 
with visuospatial relations (Experiments 1 & 3) and abstract verbal 
stimuli with conceptual relations (Experiments 2 & 4). They were 
defined both by single relations (Experiments 1 & 2) and by 
interconnections among multiple relations (Experiments 3 & 4). 
The tasks were cast as two-category (A/B, Experiments 1-3) and 
single-category (A/¬A, Experiment 4), which recent work 
suggests are learned in different ways (Hendrickson, Perfors, 
Navarro, & Ransom, in press).  Moreover, the analyses of novel 
items in all four experiments show the observed contrast advantage 
reflects true concept learning, not memory for individual items.  

It might be argued that the contrast condition provides more 
information than the match condition, because a contrast trial 
affords learning about both categories simultaneously, whereas a 
match trial affords learning about only one category. However, it is 
important to note that subjects in both conditions were shown the 
same set of stimuli. After n trials, the average subject will have 
been presented with n stimuli from each category, regardless of 
condition. More importantly, this explanation does not accord with 
structure-mapping theory, which holds that learning 
simultaneously from two alignable stimuli (i.e., two stimuli in the 
same category) is more effective than learning from both stimuli 
separately. 

The present findings thus stand as a challenge to recent attempts 
to extend theories of analogy to relational category learning (e.g., 
Corral & Jones, 2014; Kittur et al., 2004; Kuehne et al., 2000; 
Kurtz et al., 2013; Lassaline & Murphy, 1998). Some manner of 
comparison was taking place in these experiments (if subjects were 
processing the stimuli individually, then there should have been no 
effect of the match/contrast manipulation at all), but evidently it 
did not rely on discovery of shared structure in the way structure-
mapping theory assumes. Instead, the pattern of results is 
consistent with feature processing and selective attention, and 
indeed the same finding was obtained with feature-based 
categories (Experiment 1). However, it would be wrong to 
conclude from the present results that relational categories are 
psychologically no different from feature-based ones. There is 
abundant evidence that relational structure matters to human 
concept representations (Jones & Love, 2007; Markman & 
Gentner, 1993a, 1993b; Sloman, Love, & Ahn, 1998). Thus the 
challenge is to understand how a process akin to feature-based 
learning might operate in the presence of structured 
representations, and to delineate the circumstances that lead people 
to engage in structural alignment versus less cognitively 
demanding strategies based on features. We discuss both issues in 
detail below. 

Our findings are related to previous work examining how 
interleaved versus blocked stimulus presentation affects category 
learning (Carvalho & Goldstone, 2014a, 2014b, 2015; Goldstone, 
1996; Kang & Pashler, 2012; Kornell & Bjork, 2008; Kornell, 

Castel, Eich, & Bjork, 2010; Wahlheim, Dunlosky, & Jacoby, 
2011). Building on earlier work by Goldstone (1996), Carvalho 
and Goldstone (2014a) compared performance on a feature-based 
classification task (with one stimulus per trial) between two 
conditions: a blocked condition in which the correct category 
matched the category from the previous trial on 75% of trials, and 
an interleaved condition in which the correct category matched that 
of the previous trial on 25% of trials. To the extent that subjects 
compare stimuli on successive trials, blocked training emphasizes 
within-category comparison (similar to our match condition), 
whereas interleaved training emphasizes between-category 
comparison (similar to our contrast condition). Carvalho and 
Goldstone’s main finding was that the relative advantage of these 
two conditions depended on the degree of within-category versus 
between-category similarity among the stimuli. Specifically, they 
found that blocked training was superior to interleaved training 
when the stimuli varied on a large number of irrelevant features, 
whereas interleaved training was superior when there were few 
irrelevant features. This finding might suggest that the contrast 
advantage found in the present experiment reflects the patterns of 
similarity in the stimuli used here, rather than constituting evidence 
for feature processing over analogy. However, the nature of our 
materials makes this explanation unlikely, and in fact Carvalho and 
Goldstone’s interpretation of their results reinforces our 
conclusions regarding feature processing. 

First, the degree of irrelevant stimulus variation differed 
significantly across our studies. In Experiments 1 and 3, the stimuli 
in both categories were highly similar, with little irrelevant 
variation. In both cases, all stimuli followed a very specific pattern 
(a pair of semicircles with inscribed radii, or four regular 
geometric figures arranged in two concentric pairs), with only a 
few dimensions of variation (size, brightness, and angle, or color 
and shape). In contrast, the stimuli in Experiments 2 and 4 varied 
widely. In Experiment 2, the stimuli in the containment and 
support categories respectively ranged from {bank, teller} to 
{forest, trees} and from {foundation, building} to {tires, vehicle}. 
The same was true for the stimuli in Experiment 4, as exemplified 
in Figure 11. Despite these large differences across studies in the 
amount of irrelevant stimulus variation, the contrast advantage was 
observed in all four experiments. 

Second, even if increasing the irrelevant stimulus variation did 
produce a match advantage in our paradigm, such an effect would 
support feature processing, not structural alignment. According to 
Carvalho and Goldstone (2014a), learning from between-category 
comparisons encourages identification of diagnostic differences, 
which are more salient when there are a small number of irrelevant 
features among the stimuli, whereas learning from within-category 
comparisons encourages subjects to seek commonalities between 
items, which are more salient under greater amounts of random 
stimulus variation. This is fundamentally an attentional 
explanation. Moreover, research on analogy has consistently 
demonstrated that analogical learning does not follow this pattern. 
Instead, decreasing surface similarity (i.e., increasing irrelevant 
variation) makes discovering the common relational structure 
between two scenarios more difficult (Gick & Holyoak, 1983; 
Holyoak & Koh, 1987; Reed, 1989; Ross, 1987, 1989). Therefore, 
finding that Carvalho and Goldstone’s results regarding similarity 
structure extend from feature-based categories to relational ones 
(and from a blocked/interleaved manipulation to our 
match/contrast paradigm) would contribute further support for our 
conclusion that the effects of comparison on relational category 
learning support accounts based on feature processing over 
accounts based on analogy. 
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Unitary versus Compositional Representations of Relational 
Concepts 

At the heart of the distinction between feature-based and 
analogical models is the information on which they operate. 
Feature-based models encode a stimulus as either a vector of 
dimension values (Estes, 1986) or a set of attributes (Tversky, 
1977). Although vector and set approaches are often viewed as 
competitors, both imply a “flat” type of comparison process that 
can identify only the shared and unique attributes of two stimuli, 
without regard for their structure. In contrast, structure-mapping 
and related theories represent stimuli as relational systems defined 
by role binding, which captures how constituent objects and 
relations are composed to form the whole stimulus (Gentner, 
1983). This structural information supports a richer and more 
sensitive form of comparison, embodied by structural alignment. In 
particular, structure-mapping theory’s principle of parallel 
connectivity entails that having the same elements is insufficient 
for two stimuli to be aligned, and that instead what matters is that 
they are bound into isomorphic structures (Corral & Jones, 2014). 

This difference in information and in corresponding comparison 
processes clarifies the conditions under which feature-based 
processing is in principle sufficient for a task like categorization. 
Specifically, if two categories differ in the individual objects, 
features, or relations their members contain—without regard for 
the bindings among them—then the sort of flat comparison 
assumed by feature-based models should be able to distinguish 
them. For example, a subject in Experiment 2 presented with the 
stimuli {cup, water} and {chair, person} might not have to 
construct a structured representation for each stimulus like 
contains(cup, water) and supports(chair, person) and then attempt 
to align these structures. Instead the subject may simply recognize 
that there is a containment relation implied by one stimulus and a 
support relation in the other—just as directly as she could 
recognize that one item contains something liquid or that the other 
contains something animate. The stimuli could hence be 
represented as lists or sets of elements, such as {cup, water, 
contain, …} and {chair, person, support, …}. The difference 
between the categories should be easily learnable under this 
representation, particularly after many trials in which the A and B 
items always include contain and support, respectively. 

If two categories are defined by the same elements, differing 
only in their role-binding structure, then the difference will be 
invisible to feature processing and something like structural 
alignment will be necessary for successful learning. However, this 
is a psychological question, not a logical one. Logically, any 
relational system (i.e., set of relations linked through role-binding 
to shared objects) is equivalent to an atomic relation operating 
directly on all the objects jointly. Likewise, as noted by Gentner 
(1983, Footnote 4), an atomic relation among a set of objects is 
logically interchangeable with an attribute of the system as a 
whole. Thus, to use the spaceships example above from Foster et 
al. (2012), a relational system such as beats(A,B), beats(B,C), 
beats(A,C) might also be represented as an atomic relation well-
ordered(A,B,C) or as an attribute transitive(tournament). To our 
knowledge these observations have never been pursued as a 
possible distinction among cognitive representations, with 
psychological consequences. 

We thus propose a distinction between unitary and 
compositional representations of relational concepts. The key 
observation is that the same concept (i.e., the same semantics) can 
be represented in psychologically distinct ways. A unitary 
representation is either an atomic relation among objects, such as 
bigger-than(x,y), or an attribute of a whole system that expresses a 
relation among its components, such as lopsided(z) to express a 
size relation among the parts of z. These two possibilities have the 

same implications for the present investigation, because both can 
be treated as elements of a stimulus under flat comparison. 
Following the reasoning given earlier, unitary representations 
should lead to a contrast advantage in our paradigm, because 
between-category comparison highlights the elements that are 
diagnostic of category membership. In contrast, a compositional 
representation encodes a relational concept as a structure or system 
of (atomic) relations connected by role-binding to shared objects. 
The meaning of the concept as a whole is not explicitly represented 
but emerges only from this pattern of interconnections. Thus, 
learning or recognizing concepts represented compositionally 
requires structural alignment, which in turn predicts a match 
advantage in our paradigm. 

It seems intuitively evident that many concepts can be 
represented both unitarily and compositionally. Indeed, most 
everyday objects that are thought of by default as atomic entities 
have substructure. What one typically conceives as simply a dog 
can also be understood as a complicated configuration of organs 
and systems (e.g., circulatory, respiratory, immune, digestive). The 
same flexibility arguably applies for abstract concepts that one 
might consider to be truly relational. Consider the concept tradeoff 
(see Loewenstein, Thompson, & Gentner, 1999). A tradeoff is a 
rich relational system involving an agent, two or more goal 
dimensions, two or more options, and a particular pattern of 
relations between the options’ values on those dimensions (A is 
better on dimension X, but B is better on Y). Nevertheless, it 
seems likely that an average person can conceive of a tradeoff 
more directly as an atomic relation operating on the options and 
preferences of the agent, just as one can comprehend the sentence 
“I have a dog” without needing to actively represent how the dog 
digests food and delivers oxygen to its tissues. The availability of 
these unitary representations is consistent with superior learning 
from between-category comparisons: Just as one does not need to 
align the anatomies of two animals to recognize that one is a dog 
and the other is a cat, one might not need to align the structures of 
two decision scenarios to recognize that one involves a tradeoff 
whereas the other scenario is a win-win. 

When people have both unitary and compositional 
representations available to solve a task, cognitive economy 
suggests they will prefer the former. Behavioral research on 
analogy has demonstrated that the cognitive processes of structural 
alignment load heavily on working memory (Forbus at al., 1995; 
Morrison, Holyoak, & Truong, 2001; Waltz et al., 2000), and 
neurophysiological studies have linked relational processing to 
dorsolateral prefrontal cortex (Christoff et al., 2001; Kroger et al., 
2002; Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997; 
Waltz et al., 1999). In contrast, flat comparison using feature 
vectors is generally assumed to be rapid and automatic, as in 
models of parallel retrieval from long-term memory (Forbus et al., 
1995; Shiffrin & Steyvers, 1997). This difference in cognitive 
demand might lead people to seek unitary representations, 
especially in a categorization task that requires processing of 
hundreds of stimuli or comparisons. 

The present findings can thus be interpreted as evidence of how 
adept people are at finding or inferring unitary properties that 
embody relational concepts, enabling them to solve the 
categorization tasks without the need for structural alignment. The 
category-distinguishing unitary relations in Experiment 2 are self-
evident (support vs. contain, or perhaps more simply, on vs. in). In 
Experiment 4, the abstract relational coherence of Morkel stimuli 
could be captured by found-in and can-remove relations among 
their components (see Figure 10), or more generally by the 
property that the components (or any two of them) “work” or 
“make sense” together. Although these properties fit within 
structured role-binding representations of the stimuli, they would 
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also be accessible to flat comparison on unstructured 
representations. In Experiments 1 and 3, the materials were 
designed with the aim of matching the atomic relations present in 
members of each category (larger, same-color, etc.), but it is not 
difficult to speculate on more sophisticated relations that subjects 
may have discovered. Although a category in Experiment 1 can be 
represented compositionally as, for example, brighter(left object, 
right object), it could be represented more compactly (and 
unitarily) as a Gestalt property of a combined object having more 
brightness in its left half (i.e., a left-right brightness gradient) that 
one might write as left-brighter. In Experiment 3, subjects may 
have recognized conjunctions of the primitive relations we 
assumed in designing the stimuli, such as same-shape-and-color or 
same-except-for-size, which was present only in Category A (see 
Figure 8). Alternatively, subjects may have recognized the patterns 
of spatial symmetry present in the stimuli: For a stimulus in 
Category B, the arrangements of colors on the left and right are the 
same, whereas for a stimulus in Category A the arrangements of 
color on the two sides are reversed. These perceptual patterns may 
have been directly apparent in each stimulus, that is, as global, 
unitary properties. 

These particular possibilities are certainly post-hoc, and more 
generally the unitary/compositional distinction does not constitute 
a predictive theory without independent means to predict or assess 
what type of representation is operating in any given situation. As 
previous researchers in analogy have argued, people have 
enormous flexibility in how they represent concepts, and the real 
challenge of explaining abstract reasoning lies in how they select 
among these representations (Chalmers, French, & Hofstadter, 
1992; French, 1997; Mitchell & Hofstadter, 1990). Although we do 
not aim to answer this question here, we believe the 
representational proposal sketched in this section offers a 
framework for formalizing these issues of flexibility. Moreover, it 
offers a way to bridge the literatures on feature-based learning 
models and structure-mapping theory, and to show concretely how 
relational categories might be learned in a feature-based manner. 
These theoretical considerations plus the present empirical results 
will hopefully provide the foundation for a systematic study of 
when people use feature representations and flat comparison 
processes, versus role-binding structure and structural alignment. 

Recent work building on the present investigation has begun to 
address this question. One viable approach might be to ask subjects 
directly what representations they used. Self-reports of cognitive 
processes must of course be interpreted cautiously, because they 
often reflect post hoc inferences based on observing one’s own 
behavior, rather than introspective access (Nisbett & Wilson, 
1977). Within categorization, much of behavior is governed by 
processes and representations that are not verbalizable (Ashby et 
al., 1998), and subjects who believe they are following a particular 
rule exhibit influences of other processes in their classification 
responses (Allen & Brooks, 1991). On the other hand, the all-or-
none character of learning in the present experiments suggests that 
subjects’ category knowledge might be particularly explicit. With 
this in mind, Corral (2017) conducted a series of studies (with 
various materials, including those of Experiment 4) wherein 
subjects were asked after learning to select which of two options 
best described how they were thinking about the categories: a 
unitary description (e.g., the machine functioned) and a 
compositional one (e.g., what the machine worked to remove could 
be found where the machine operates and could be removed with 
the machine’s tool). Subjects overwhelmingly selected the unitary 
description in 4 out of 5 of experiments, with no differences found 
in the fifth. In another recent study, using the materials from 
Experiment 4, Corral and Jones (2017) gave each subject a hint 
about the category rule at the outset of learning. The hint 

encouraged either a unitary representation (“the machine is 
intuitive”) or a compositional one (“think about how each of the 
machine’s components are related to one another”). Subjects who 
were encouraged to represent the category unitarily outperformed 
subjects who were encouraged to represent it compositionally. 
Together with the present results, these findings bolster the 
hypothesis that people prefer to represent relational concepts 
unitarily, at least in the context of repeated classification. 

Finally, we note that the distinction proposed here may also 
inform research on metaphor comprehension. The debate between 
theories of metaphor based on structural alignment (Gentner & 
Bowdle, 2008; Gentner & Wolff, 1997) and based on 
categorization (Glucksberg, 2003; Glucksberg, McGlone, & 
Manfredi, 1997) might be seen to come down to a question of 
compositional versus unitary representations. If the concept 
conveyed by the metaphor can be represented directly as an 
attribute of the base, then it seems likely that the comprehender can 
evaluate whether that attribute applies to the target, in a process 
akin to categorization. If instead the concept is represented only as 
a system of substituent relations within the base, then some manner 
of structural alignment to the target should be necessary. We leave 
this idea as conjecture, but we find it intriguing that the 
mechanisms of metaphor processing might ultimately depend on 
the issues of representation considered here. 
Implications for Structure-Mapping Theory 

The central principle of structure-mapping theory is that 
analogical learning and reasoning are driven by discovery of 
shared relational structure between two scenarios (Gentner, 1983). 
The experimental results reported here challenge that principle, at 
least in the context of category learning, by showing that people 
learn relational categories better by comparing items instantiating 
contrasting relational concepts. The results suggest instead that 
people do not make use of compositional role-binding 
representations or of structural alignment processes, at least not 
when simpler, feature-based mechanisms are adequate for the task 
at hand. Although the representational apparatus of structure-
mapping theory implicitly incorporates the distinction delineated 
above between unitary (global attributes and atomic relations) and 
compositional (systems of interconnected relations) representations 
of relational concepts, this distinction has not been previously 
appreciated for its psychological implications. More importantly, 
the core tenet of the theory is that relational concepts are learned in 
a compositional, structure-based manner (Markman, 1999, 
Markman & Gentner, 2000), and the present findings suggest 
significant limitations to the applicability of this idea. 

One possibility that proponents of structure-mapping theory 
might pursue is that, in addition to learning from successful 
alignment, people can also learn from the ways in which alignment 
fails, by identifying relations that prevent a partial alignment 
between two scenarios from being extended further. These 
impediments to alignment could highlight the structural differences 
between opposing relational categories and thus drive learning 
from between-category comparisons. For example, a subject in 
Experiment 4 who compares the items in Figure 10 might align 
sponge with shovel and oil with gas and then recognize that the 
mapping cannot extend to include can collect. Indeed, recent work 
by Smith and Gentner (2014) suggests that encouraging people to 
partially align instances of contrasting relational categories makes 
them better able to identify the structural differences between them 
(see also Gick & Paterson, 1992). This idea can be seen as an 
extension of the work on alignable differences, which has shown 
that successful alignment between two members of the same 
relational category can highlight differences in their corresponding 
features (Gentner & Markman, 1994, 1997; Markman & Gentner, 
1993a, 1993b). It also relates to Corral and Jones’ (2014) proposal 
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of schema elaboration, a mechanism for schema learning from 
between-category comparisons whereby the schema for a category 
is augmented with structure that an opposing item violates. 
Although learning from impediments to alignment seems plausible 
with the framework of structure-mapping theory, it begs the 
question of why or when learning from failed alignment should be 
more effective than from successful alignment. Thus it threatens to 
make the theory unfalsifiable, in that it could equally predict a 
match advantage through successful alignment or a contrast 
advantage through impediments to alignment, depending on which 
is assumed to be more effective for learning. 

Perhaps a more interesting way forward would be to consider 
what aspects of the present methods might have encouraged 
subjects to embark on feature-based processing, and conversely to 
try to delineate the conditions under which people are more likely 
to engage in structural alignment. One factor that has already been 
discussed is the number of comparisons a person must make: 
structure-mapping theory is perhaps best suited for explaining 
cases of one-shot learning, whereas an extended categorization 
task might motivate subjects to rely on less cognitively demanding 
strategies. In support of this interpretation, Higgins and Ross 
(2011) found better learning of mathematical combinatorics 
concepts (permutation vs. combination) from within-category 
comparison, in a design involving only a single comparison 
between training items.  

A second possible factor is the nature of the categorization task 
and the types of comparison it encourages. The present 
experiments used classification, by far the most common task used 
to study category learning (e.g., Ashby & Maddox, 2005), and they 
used neutral instructions designed to give subjects minimal 
directive on how to compare the stimuli on two-item trials (see 
Appendix C). In this regard, we take the present results to reflect 
default behavior in human category learning. However, different 
results might be obtained under conditions encouraging subjects to 
engage in more effortful comparison (see Alfieri et al., 2013). 
Previous research has used more elaborate comparison tasks, such 
as listing commonalities and differences or mapping corresponding 
elements, as a way to focus subjects on the substructure of stimuli 
and thereby encourage structural alignment (Doumas & Hummel, 
2004; Gentner & Gunn, 2001; Kurtz, Miao, & Gentner, 2001). 
Additionally, inference learning—a categorization task wherein the 
category labels are given and the subject has to infer hidden 
features of the stimuli—has been shown to enhance learning of 
relations among stimulus features relative to classification learning 
(Markman & Ross, 2003; Yamauchi & Markman, 1998). As noted 
earlier, Higgins (2012) found a match advantage on a classification 
task using half of the stimuli we used in Experiment 4, after 
subjects were provided with an inference training task and a task of 
listing similarities and differences between items, providing 
evidence that requiring more effortful comparison can lead people 
to engage in structural alignment. This finding together with the 
present results suggests that systematic manipulation of 
classification tasks and comparison instructions could help to pin 
down the conditions under which people might use structural 
alignment in category learning. 

A third potential factor influencing the use of structural 
alignment is the learner’s prior knowledge. Observe that a subject 
in Experiment 3 is likely not learning anew the concepts contain 
and support, but rather determining that these already-known 
concepts provide the solution to the task. More generally, a person 
should have a unitary representation for a relational concept only if 
he or she has previously learned it (see also Doumas et al., 2008). 
Clark (2006) ascribes a critical role in this process to language, 
with verbal labels for relational concepts providing the explicit 
representations that enable them to be targets for explicit thought, 

much as we propose for feature-based processing of unitary 
representations. If such a representation is not available, then we 
would predict learners to be more likely to engage in structural 
alignment. To use Higgins and Ross’s (2011) combinatorics 
categories as an example, advanced mathematics students might be 
more likely to exhibit a contrast advantage in our paradigm than 
high school students learning these concepts for the first time. As 
with language, the power of compositional representations lies in 
their productivity and systematicity, the fact that novel concepts 
can be built and understood by arranging known (unitary) relations 
in ways a person has not previously encountered (Fodor & 
Pylyshyn, 1988). Thus, although our results suggest that people 
engage in alignment of explicitly structured representations only 
when less-demanding approaches are inadequate, this does not 
diminish the importance of structural alignment for the more 
impressive feats of human cognition, such as problem solving, 
invention, and scientific discovery (French, 2002; Gentner & 
Forbus, 2011; Gentner & Markman, 1997). 
Context of the Research 

This project was motivated by two factors: (1) the connection 
between relational category learning and analogical reasoning and 
(2) the theoretical distinction between feature processing and 
structural alignment. Based on these ideas, we initially expected to 
find an interaction between category type and comparison type, 
with a contrast advantage for feature-based categories and a match 
advantage for relational categories. Our goal was to demonstrate 
that feature-based and relational categories are learned in 
fundamentally different ways. However, despite an extensive effort 
to find conditions that would produce a relational match advantage, 
we found a contrast advantage in every case that we tested, 
including one feature-based category structure and four relational 
ones. Therefore, we consider the present results especially strong 
evidence that relational category learning is more efficient from 
between-category comparisons. These findings have shifted our 
theoretical outlook, such that we have grown more skeptical 
towards the applicability of structure-mapping theory to relational 
category learning, at least in its most direct form. Our research 
program has shifted as well, such that the first author is now 
closely investigating how compositional versus unitary 
representations affect relational concept learning, as well as the 
factors that lead people to represent relational concepts 
compositionally and unitarily (Corral, 2017). 
Conclusions 

Although there has been much recent interest in potential 
connections between analogical reasoning and relational category 
learning, the present findings suggest important differences. 
Structure-mapping theory makes a clear prediction of an advantage 
of within-category comparisons, which is refuted by the 
experiments reported here. Instead, the results are consistent with 
feature-based processing. Rather than viewing feature-based and 
analogical models as strict competitors, we see more promise in 
integrated accounts like the unitary/compositional framework 
described here. Hopefully the present results and theoretical 
interpretation will lead to a better understanding of the interplay 
between representations of individual features and representations 
of relational structure, as well as the conditions under which 
people do and do not engage in structural alignment. 
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Appendix A: Stimuli for Experiment 2 
 

Category A 
 
1. Bathtub, Water 
2. Bottle, Perfume 
3. Cup, Juice 
4. Spoon, Medicine 
5. Reservoir, Water 
6. Automobile, Gas 
7. House, People 
8. School, Students 
9. Bank, Teller 
10. Vehicle, Passengers 
11. Ocean, Fish 
12. Solar System, Planets 
13. Forest, Trees 
14. Courtroom, Lawyers 
15. Swamp, Alligator 
16. Jungle, Leopard 
17. Zoo, Animals 
18. Antarctica, Penguins 
19. Shoe, Foot 
20. Glove, Hand 
21. Building, Furniture 
22. Living Room, Sofa 
23. Library, Books 
24. Frame, Picture 
25. Dishwasher, Utensils 
26. Refrigerator, Food 
27. Register, Money 
28. Book, Words 
29. Glass, Water 
30. Toaster, Bread 
31. Jar, Cookies 
32. Gym, Treadmill 
33. Carafe, Lemonade 
34. Envelope, Letter 
35. Vault, Money 
36. Sky, Clouds 
37. Hangar, Airplane 
38. Harbor, Boat 
39. Garage, Car 
40. Closet, Clothes 

 
41. Pot, Coffee 
42. Tube, Toothpaste 
43. Aquarium, Fish 
44. Farm, Pigs 
45. Stable, Horse 
46. Engine, Oil 
47. Safe, Valuables 
48. Mall, Stores 
49. Pitcher, Beer 
50. Classroom, Desk 
51. Volcano, Magma 
52. Spaceship, Astronauts 
53. Airplane, Pilot 
54. Wastebasket, Trash 
55. Movie, Actors 
56. Concert, Musicians 
57. Wallet, Money 
58. Mouth, Teeth 
59. Restaurant, Menu 
60. Galaxy, Stars 
61. Forest, Plants 
62. Canyon, Rocks  
63. Bedroom, Bed 
64. Bathroom, Toothbrush 
65. Hamper, Clothes 
66. Kitchen, Sink 
67. Birdcage, Bird 
68. Firearm, Ammunition 
69. Military, Soldiers 
70. Race, Runners 
71. Pool, Swimmers 
72. Beach, Sand 
73. Cabinet, Dishes 
74. Park, Swings 
75. Shower, Faucet 
76. Sky, Birds 
77. Mirror, Reflection 
78. Printer, Paper 
79. Theater, Chairs 
80. Head, Brain 

 

 
Category B 

 
1. Foundation, Building 
2. Legs, Table 
3. Stand, Television 
4. Shelf, Books 
5. Tires, Vehicle 
6. Parachute, Skydiver 
7. Hanger, Clothes 
8. Road, Vehicle 
9. Bench, People 
10. Backboard, Basketball Rim 
11. Walls, Ceiling 
12. Tracks, Train 
13. Rod, Curtain 
14. String, Yoyo 
15. Rope, Climber 
16. Balance beam, Gymnast 
17. Bicycle, Bicyclist 
18. Nail, Clock 
19. Belt, Pants 
20. Barbell, Weights 
21. Bridge, Cars 
22. Neck, Tie 
23. Cable, Elevator 
24. Horse, Jockey 
25. Pole, Flag 
26. Ladder, Firefighter 
27. Crutch, Person 
28. Rack, Towel 
29. Ear, Earring 
30. Bed, People 
31. Closet Rod, Hangers 
32. Hook, Picture 
33. Tree, Tree House 
34. Stand, Aquarium 
35. Nose, Glasses 
36. Tree, Hammock 
37. Hinges, Door 
38. Stake, Scarecrow 
39. Perch, Bird 
40. Columns, Coliseum 

 
41. Suspensions, Bridge 
42. Rope, Acrobat 
43. Rope, Piñata 
44. Suspenders, Pants 
45. Crane, Piano 
46. Scaffolding, Workers 
47. Tree, Swing 
48. Hot Air Balloon, Basket 
49. Tripod, Telescope 
50. Railing, Ballerina 
51. Ceiling, Chandelier 
52. Post, Sign 
53. Straps, Backpack 
54. Wind, Kite 
55. Life Preserver, Person 
56. Stretcher, Person 
57. Pull-Up Bar, Person 
58. Fishing Line, Fishing Hook 
59. Branch, Nest 
60. Crane, Cable 
61. Branch, Leaves 
62. Trunk, Branches 
63. Balloon, String 
64. Pole, Clothesline 
65. Toothbrush, Toothpaste 
66. Face, Beard 
67. Brackets, Shelf 
68. Post, Fence 
69. Building, Gargoyle 
70. Tray, Food 
71. Strap, Purse 
72. Table, Plates 
73. Dolly, Equipment 
74. Ski Lift, Skiers 
75. Pedestal, Statue 
76. Jetpack, Person 
77. Ironing Board, Iron 
78. Basketball Rim, Net 
79. Handle, Mug 
80. Walker, Toddler 
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Appendix B: Stimuli for Experiment 4 
 

Morkels Non-Morkels 
 

1. Operates on land 
Works to gather harmful solids  
Has a shovel 

2. Operates on the surface of the water 
Works to clean spilled oil 
Has a spongy material 

3. Operates in the stratosphere 
Works to collect dangerous gaseous ions 
Has an electrostatic filter 

4. Operates in highway tunnels 
Works to remove carbon dioxide 
Has a large intake tank 

5. Operates in swamps  
Works to remove malaria-ridden mosquitos 
Has a finely woven net 

6. Operates in warzones 
Works to gather shards of metal 
Has a large magnet 

7. Operates in parks  
Works to gather discarded paper 
Has a metal pole with a sharpened end 

8. Operates on the seafloor 
Works to remove lost fishing nets 
Has a hook 

9. Operates on the beach 
Works to remove broken glass 
Has a sifter 

10. Operates on wood floors 
Works to remove stains 
Has absorbent cloth 

11. Operates on solid surfaces 
Works to remove debris 
Has a dense set of bristles 

12. Operates on glass  
Works to remove liquids 
Has a rubber edge 

13. Operates on thick woven fabric 
Works to collect small particles 
Has an intake port 

14. Operates in harbors  
Works to collect ocean sediments 
Has a large shovel 

15. Operates in the jungle  
Works to remove brush 
Has sharp blades 

16. Operates in farmland 
Works to remove rocks 
Has metal teeth and a sieve 

17. Operates on fine wood 
Works to smooth rough spots 
Has a rough metal surface 

18. Operates in gardens 
Works to remove leaves 
Has a nozzle and a motor 

 
1. Operates on land 

Works to clean spilled oil 
Has an electrostatic filter 

2. Operates on the surface of the water 
Works to collect dangerous gaseous ions 
Has a shovel 

3. Operates in the stratosphere 
Works to gather harmful solids 
Has a spongy material 

4. Operates in highway tunnels 
Works to remove lost fishing nets 
Has a sifter 

5. Operates in swamps 
Works to remove broken glass 
Has a metal pole with sharpened end 

6. Operates in warzones 
Works to gather discarded paper 
Has a finely woven net 

7. Operates in parks 
Works to gather shards of metal 
Has a hook 

8. Operates on the seafloor 
Works to remove malaria-ridden mosquitoes 
Has a large intake fan 

9. Operates on the beach 
Works to remove carbon dioxide 
Has a large magnet 

10. Operates on wood floors 
Works to collect ocean sediments 
Has an intake port 

11. Operates on solid surfaces 
Works to remove large rocks 
Has absorbent cloth 

12. Operates on glass 
Works to collect small particles 
Has a dense set of bristles 

13. Operates on thick woven fabric 
Works to remove brush 
Has a large shovel 

14. Operates in harbors 
Works to remove leaves 
Has metal teeth and a sieve 

15. Operates in the jungle 
Works to remove debris 
Has a rubber edge 

16. Operates in farmland 
Works to smooth rough spots 
Has a rough metal surface 

17. Operates on fine wood 
Works to remove liquids 
Has a nozzle and a motor 

18. Operates in gardens 
Works to remove stains 
Has sharp blades 

Note: Morkels were coherent items and non-Morkels were incoherent items. Items1-3 in each category were taken from 
Rehder and Ross (2001), Items 4-9 were taken from Higgins (2012), and Items 10-18 were created by the present authors. 
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Appendix C: Experiment Instructions 
 

Experiment 1 
Match Condition 
“Recently, a large number of unexplained crop circles have been 
found throughout the United States. A task force has been 
appointed to investigate the matter. The task force has identified 
two types of crop circles that are produced by two different alien 
races: the Alkins and the Bafsters. You have been selected to join 
the task force, but before you can begin you must learn to identify 
the crop circles that are being produced by each alien race. To help 
you in this task, we are going to show you pairs of crop circles, 
each produced by the same aliens. For each pair, your job is to 
decide whether they were both produced by Alkins or Bafsters. 
You will be told the right answer after you respond, so that you can 
learn. Press the spacebar to begin.” 
Contrast Condition 
“Recently, a large number of unexplained crop circles have been 
found throughout the United States. A task force has been 
appointed to investigate the matter. The task force has identified 
two types of crop circles that are produced by two different alien 
races: the Alkins and the Bafsters. You have been selected to join 
the task force, but before you can begin you must learn to identify 
the crop circles that are being produced by each alien race. To help 
you in this task, we are going to show you pairs of crop circles, one 
produced by Alkins and the other by Bafsters. For each pair, your 
job is to decide which is which. You will be told the right answer 
after you respond, so that you can learn. Press the spacebar to 
begin.” 

Experiment 2 
Match Condition 
“Government intelligence has recently discovered that rogue 
agents are sending each other secret messages by using paired 
words. A task force has been appointed to investigate the matter. 
The task force has identified two types of secret codes: Code A and 
Code B. You have been selected to join the task force, but before 
you can begin you must learn to identify the different codes. To 
help you in this task, we are going to show you two pairs of words 
that the rogue agents have been using, both from the same code. 
For each pair, your job is to decide whether they are both from 
Code A or both from Code B. You will be told the right answer 
after you respond, so that you can learn. Press the spacebar to 
begin.” 
Contrast Condition 
“Government intelligence has recently discovered that rogue 
agents are sending each other secret messages by using paired 
words. A task force has been appointed to investigate the matter. 
The task force has identified two types of secret codes: Code A and 
Code B. You have been selected to join the task force, but before 
you can begin you must learn to identify the different codes. To 
help you in this task, we are going to show you two pairs of words 
that the rogue agents have been using, one from Code A and one 
from Code B. For each pair, your job is to decide which is from 
Code A and which is from Code B. You will be told the right 
answer after you respond, so that you can learn. Press the spacebar 
to begin.” 

Experiment 3 
Match Condition 
“Recently, mysterious alien writing has been found throughout the 
United States. A task force has been appointed to investigate the 
matter. The task force has identified two types of alien symbols 
that are produced by two different alien races: the Alkins and the 

Bafsters. You have been selected to join the task force, but before 
you can begin you must learn to identify the symbols that are being 
produced by each alien race. To help you in this task, we are going 
to show you pairs of alien symbols, each produced by the same 
aliens. For each pair, your job is to decide whether they were both 
produced by Alkins or Bafsters. You will be told the right answer 
after you respond, so that you can learn. Press the spacebar to 
begin.” 
Contrast Condition 
“Recently, mysterious alien writing has been found throughout the 
United States. A task force has been appointed to investigate the 
matter. The task force has identified two types of alien symbols 
that are produced by two different alien races: the Alkins and the 
Bafsters. You have been selected to join the task force, but before 
you can begin you must learn to identify the symbols that are being 
produced by each alien race. To help you in this task, we are going 
to show you pairs of alien symbols, one produced by Alkins and 
the other produced by Bafsters. For each pair, your job is to decide 
which is which. You will be told the right answer after you 
respond, so that you can learn. Press the spacebar to begin.” 

Experiment 4 
Match Condition 
“In this experiment, you will learn about a type of machine called a 
Morkel. Your job will be to learn which machines are Morkels and 
which are not. On each trial, you will read descriptions about two 
machines, and you'll need to decide whether they are both Morkels 
or not. You will be told the right answer after you respond, so that 
you can learn. Press the spacebar to begin.” 
Contrast Condition 
“In this experiment, you will learn about a type of machine called a 
Morkel. Your job will be to learn which machines are Morkels and 
which are not. On each trial, you will read descriptions about two 
machines, and you'll need to decide which is a Morkel and which 
is not. You will be told the right answer after you respond, so that 
you can learn. Press the spacebar to begin.” 


