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This article examines relational category learning in light of 2 influential theories of concept acquisition:
the structure-mapping theory of analogy and theories of feature-based category learning. According to
current theories of analogy, comparing 2 instances of a relational concept enables alignment of their
elements and reveals their shared relational structure. Therefore, learning relationally defined categories
should be faster when comparing items of the same category than when comparing items of different
categories. By contrast, feature-based theories predict a benefit of between-category comparisons,
because such comparisons direct attention to the features that discriminate the categories. The present
experiments tested these predictions using a 2-category classification-learning task in which 2 items are
presented on every trial: either in the same category (match condition) or in different categories (contrast
condition). Subjects in the contrast condition outperformed those in the match condition for feature-based
categories (Experiment 1) and across 4 different types of relational categories (Experiments 1–4).
Although theorists have posited that structure-mapping theory is directly applicable to relational category
learning, the present findings pose a distinct challenge to this assertion. We propose that many relational
categories are learnable based solely on which relations are present in the stimulus rather than requiring
explicitly compositional representations based on role-filler binding. This process would be akin to
feature processing and would not require structural alignment. This theoretical proposal, together with the
empirical results, may lead to a better understanding of when people do and do not engage in the
cognitively demanding process of structural alignment.
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Structured relational concepts have been argued to be central to
the power of human cognition (Gentner, 2010; Gentner & Kurtz,
2005; Penn, Holyoak, & Povinelli, 2008; see also Fodor &
Pylyshyn, 1988). The most impressive feats of the human mind,
including scientific and technological innovation, mathematics,
problem solving, natural language, and formal logic, all make use

of representations that bind objects to roles within relational sys-
tems as opposed to simpler associative mechanisms. An important
question is thus how relational concepts are learned. Two influen-
tial domains of research that bear on this question are those on
feature-based category learning and analogical learning and rea-
soning. These two traditions offer fundamentally different views
on concept acquisition, the former based on feature vectors and
global similarity (Estes, 1986; Nosofsky, 1986) and the latter on
internal relations and one-to-one correspondence among constitu-
ent elements (Gentner, 1983).

Recently, there has been increasing interest in relational cate-
gory learning, an empirical domain lying at the intersection of
category learning and analogy (Corral, 2017; Corral & Jones,
2014, 2017; Dietrich, 2010; Foster, Cañas, & Jones, 2012; Gold-
water, Don, Krusche, & Livesey, 2018; Goldwater & Gentner,
2015; Jung & Hummel, 2011; Kittur, Hummel, & Holyoak, 2004;
Kurtz, 2015; Lassaline & Murphy, 1998; Patterson & Kurtz,
2018). Instead of categories defined by features, rules, similarity,
or family resemblance, relational category learning is concerned
with categories defined by shared relational structure. For exam-
ple, Foster et al. (2012) trained people to discriminate two types of
outcome for an alien spaceship tournament. Each tournament
comprised three ships racing in pairs. In one category, the results
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formed a cycle (e.g., A beats B, B beats C, C beats A), and in the
other, they formed a hierarchy (e.g., A beats B, B beats C, A beats
C). Every trial contained the same elements (three ships, three
pairwise races) and the ships varied randomly across trials, and
thus the only information shared within each category was how
these elements fit together into a relational system. The experiment
followed a standard classification paradigm, in which the subject
viewed a stimulus (a tournament), classified it as Category 1 or 2,
and then received corrective feedback. After several dozen trials,
most subjects were able to induce the correct concepts and reliably
classify the stimuli.

The goal of the present work was to test differential predictions
of accounts of relational category learning derived from theories of
feature-based category learning and from theories of analogy. The
starting point was the role of comparison between stimuli. Com-
parison has been shown to facilitate many high-level cognitive
tasks, including concept learning, analogical reasoning, problem
solving, and decision making (for a review and meta-analysis, see
Alfieri, Nokes-Malach, & Schunn, 2013). Classic research on
analogical transfer showed that comparing analogous story prob-
lems facilitates learning a solution schema that can be applied to
future problems (Gick & Holyoak, 1983). Related work has found
that examining side-by-side examples can improve mathematical
problem solving (Ward & Sweller, 1990). Work in the field of
education has shown that comparison can improve student learning
in the classroom (Bransford & Schwartz, 1999; Schwartz & Brans-
ford, 1998). Likewise, research on conceptual development has
shown that object comparison can aid conceptual understanding
and expedite the process of category formation (Gentner & Namy,
1999; Namy & Gentner, 2002), providing a route to acquiring
increasingly abstract concepts (Kotovsky & Gentner, 1996). Thus,
comparison seems to play a critical role in discovering and high-
lighting concepts that are relevant to a given task.

Comparison plays a critical role in theories of analogy, as
exemplified by structure-mapping theory (Gentner, 1983), the
dominant framework in that domain. Structure-mapping theory
holds that stimuli are represented compositionally, as systems of
objects and relations linked by role-filler bindings (Markman &
Gentner, 2000), such as under(object1, object2). Comparing two
instances of the same relational concept triggers an alignment
process, whereby the instances’ elements are put into correspon-
dence in a way that preserves and highlights their shared relational
structure (Gentner, 1983, 2003; Hummel & Holyoak, 2003). This
alignment process allows for schema induction (Gick & Holyoak,
1983; Holyoak & Thagard, 1997), whereby superfluous properties
from each scenario are stripped away and their shared structure is
abstracted and represented as a new concept. For example, con-
sider two scenarios, one in which a man uses an umbrella to shelter
himself from the rain, and another wherein a cat runs under a tree
to stay dry during a storm. These two scenarios are analogous
because in both cases an agent places itself under an object to be
protected from the rain. Thus, there is a common relational struc-
ture that both scenarios exemplify. By comparing these scenarios
and putting their elements into correspondence (man ↔ cat, um-
brella ↔ tree), this common structure can be aligned and ab-
stracted (e.g., cause[under(agent, object), protected(agent, rain)]),
leading to the removal of idiosyncratic features from the original
representations (i.e., features specific to men, cats, umbrellas, or
trees) and yielding a representation of the abstract relational con-

cept. Thus, structure-mapping theory makes the strong prediction,
supported in many experiments (Bowdle & Gentner, 1997; Clem-
ent & Gentner, 1991; Gentner & Markman, 1994; Gentner, Rat-
termann, & Forbus, 1993; Gick & Holyoak, 1983; Holyoak &
Koh, 1987; Markman & Gentner, 1993a, 1993b), that relational
concepts are best learned by comparing items that share a rela-
tional structure. Such comparisons allow for alignment and schema
induction, whereas alignment is, by definition, not possible when
two items have different relational structures.

Structure-mapping theory and related theories of analogy were
originally formulated for cases of reasoning from just one or a few
comparisons (Doumas, Hummel, & Sandhofer, 2008; Falken-
hainer, Forbus, & Gentner, 1989; Forbus, Gentner, & Law, 1995;
Gentner, 1983; Holyoak & Thagard, 1989; Hummel & Holyoak,
1997, 2003; Kokinov, 1988, 1994; Larkey & Love, 2003). This is
in contrast to traditional category learning paradigms, in which
subjects are typically expected to learn only after scores or hun-
dreds of trials (e.g., Ashby & Lee, 1991; Goldstone, 1994; McKin-
ley & Nosofsky, 1995). Nevertheless, analogical reasoning has
been posited to share important psychological commonalities with
relational category learning (Dietrich, 2010; Gentner & Namy,
1999; Goldwater & Schalk, 2016; Ramscar & Pain, 1996). Indeed,
a relational category can be defined as a set of items sharing a
common relational structure (Gentner & Kurtz, 2005; Markman &
Stilwell, 2001). Thus, judging that two scenarios are analogous or
alignable amounts to indicating they are members of the same
relational category. Building on this connection, many researchers
have proposed extending structure-mapping theory to relational
category learning, by assuming that classification involves align-
ing the current stimulus to previous stimuli or to learned schemas
for the categories (Corral & Jones, 2014; Kittur et al., 2004;
Kuehne, Forbus, Gentner, & Quinn, 2000; Kurtz, Boukrina, &
Gentner, 2013; Lassaline & Murphy, 1998; McLure, Friedman, &
Forbus, 2010). This account leads to the prediction that relational
category learning should be facilitated by leading subjects to
compare items from the same category, whereas between-category
comparisons should be of little benefit (Higgins, 2012; Higgins &
Ross, 2011).

This predicted advantage for same-category comparison also
follows from computational models of relational category learning
based on structure mapping (Barbella & Forbus, 2013; Chang &
Forbus, 2013, 2014; Corral & Jones, 2014; McLure et al., 2010;
McLure, Friedman, Lovett, & Forbus, 2011; Taylor, Friedman,
Forbus, Goldwater, & Gentner, 2011; Tomlinson & Love, 2006).
For example, SEQL (Kuehne et al., 2000; Skorstad, Gentner, &
Medin, 1988) compares new items to previously stored exemplars
or schemas and attempts to align their structures. When the align-
ment process is successful, meaning the items belong to a common
relational category, the model induces a new schema that repre-
sents the shared substructure of the items that were aligned, which
then serves as a representation of the category. Learning in these
models is thus driven by within-category comparisons. In contrast,
current models do not have mechanisms that would enable effi-
cient learning from between-category comparisons.

Despite the attempts to link category learning and analogical
reasoning, there are important distinctions between them. Learning
relational categories over hundreds of trials is a substantially
different task than analogical reasoning from as few as two items.
Analogical reasoning also supports many functions beyond clas-
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sification. Partial analogy between two items enables a powerful
bootstrapping process, termed analogical transfer, in which a
person can build on the alignment to draw further inferences from
one item to the other (Gentner, 1983; Gentner & Markman, 1997;
Holyoak & Thagard, 1997; Krawczyk, Holyoak, & Hummel,
2005; Markman & Gentner, 2000; Spellman & Holyoak, 1992,
1996). For example, recognizing that two scenarios both contain
instances of support could lead a learner to infer that properties of
one (e.g., the supporting object is sturdy and has greater mass than
the supported object) also hold in the other. Although structural
alignment enables this form of inferential transfer, the latter is not
necessary for recognition of the initial commonality between two
scenarios. This is an important point because structural alignment
is posited to be cognitively expensive (Forbus et al., 1995) and can
strain working memory (Kintsch & Bowles, 2002; Waltz, Lau,
Grewal, & Holyoak, 2000). Thus, people might be less likely to
engage in careful comparison and alignment over hundreds of
trials during a classification task than they are during the sort of
one-shot learning tasks that form the core domain of structure-
mapping theory.

An alternative to the position of relational category learning as
a form of analogy is that relational category learning is best
explained by the same principles that have been successful with
feature-based categories. The field of feature-based category learn-
ing has a long history marked by well-developed models capable
of highly accurate quantitative predictions (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Lee, 1991; Gluck & Bower,
1988; Kruschke, 1992; Nosofsky, 1986; Nosofsky & Palmeri,
1997; J. D. Smith & Minda, 1998; Tenenbaum & Griffiths, 2001).
One principle that is central to many of these models, and that has
received extensive empirical support (Goldstone, 1994; Jones,
Maddox, & Love, 2005; Kruschke, 1992; Maddox, 2002; Nosof-
sky, 1986, 1989, 1991; Rehder & Hoffman, 2005), is that of
selective attention among stimulus dimensions. Under this princi-
ple, an important component of learning is identification of which
features or dimensions are most diagnostic of category member-
ship and shifting attention to these dimensions such that they
contribute more to similarity or associative learning (Kruschke,
1992; Mackintosh, 1975; Nosofsky, 1986). Although comparison
between stimuli is not explicitly part of this theory, a natural
prediction is that discovery of diagnostic dimensions will be fa-
cilitated by between-category comparisons, which highlight the
way in which members of opposing categories differ. Indeed,
existing work using feature-based categories suggests that learning
is superior from between-category comparisons relative to within-
category comparisons (Andrews, Livingston, & Kurtz, 2011; for
related work, see Hammer, Hertz, Hochstein, & Weinshall, 2009;
Higgins, 2012; Higgins & Ross, 2011). Thus, to the extent that the
mechanisms of feature-based category learning also apply to rela-
tional categories, relational category learning should be best from
between-category comparisons. This prediction directly opposes
that derived from structure-mapping theory.

The present work tests between these opposing predictions by
building on recent research on the role of comparison in relational
category learning. This recent work has modified the standard
classification-learning paradigm, so that instead of presenting the
subject with a single item at a time to classify, stimuli are pre-
sented in pairs and the subject is invited to compare the copre-
sented stimuli as part of deciding their category memberships. This

paired stimulus presentation has been shown to produce better
learning and generalization of relational categories (relative to an
equal number of item exposures presented one at a time) using a
mix of same-category and cross-category pairs (Kurtz et al., 2013)
and using uniform pair types under a supervised observational
learning mode (Patterson & Kurtz, 2015, 2016, 2018).

The experiments reported here extend this approach in order to
investigate whether it is more beneficial to present item pairs from
the same category (to highlight within-category commonalities) or
to present item pairs from contrasting categories (to highlight
between-category differences). The experiments used a supervised
classification task with two categories (as opposed to the three-
way classifications used in the work just cited), with two stimuli
presented simultaneously on each trial. Subjects in the match
condition were always shown pairs of stimuli in the same category
and were asked whether the items were both members of Category
A or both members of Category B (or nonmembers of A, in
Experiment 4). Subjects in the contrast condition were always
shown pairs of stimuli from different categories and asked which
item was in Category A and which was in Category B (or which
was not in Category A, in Experiment 4). In both conditions, the
correct answer was shown after the subject responded. In order to
control for any inherent differences in task difficulty and to allow
for an equitable comparison of learning between conditions, on
every fifth trial, subjects were asked to classify a single item
presented alone; no feedback was presented on these trials. Com-
paring performance on these single-item trials provides a direct
test of the learning benefits of within- versus between-category
comparison.

The novelty of our experiment design, relative to other recent
research on categorization of copresented items, is that it is (a) the
first to contrast same-category and different-category comparison
in learning of relational categories and (b) the first to evaluate the
effect of comparison in a diverse set of relational category do-
mains. The manipulation of same- versus different-category com-
parison is critical because of its theoretical connection to posited
learning mechanisms within competing accounts of relational cat-
egory learning. Accounts based on structure-mapping theory pre-
dict superior learning in the match condition, because aligning
copresented items from the same category enables their shared
relational structure to be discovered and abstracted as a schema
that represents the category. Structural alignment should be less
useful in the contrast condition, because attempting to align co-
presented items from opposing categories will either fail or else
yield some partial alignment that serves only to identify the struc-
ture common to both categories, and hence is useless for discrim-
inating them. On the other hand, accounts based on feature-based
theories of category learning predict superior learning in the con-
trast condition, because comparing copresented stimuli from op-
posing categories should aid discovery of diagnostic differences,
thus helping subjects to allocate attention in a way that facilitates
learning.

We conducted four experiments using five different category
structures, all following the design just described. Experiment 1
used a feature-based category structure and a relation-based cate-
gory structure, constructed from the same set of stimuli, manipu-
lated between subjects and crossed with the match–contrast ma-
nipulation. For the feature-based category structure, a learning
advantage was found for the contrast group over the match group,

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1573BETWEEN- AND WITHIN-CATEGORY COMPARISON



confirming the prediction from selective attention. In addition, we
observed a strong trend in the same direction for the relational
category structure, supporting the feature-based account of rela-
tional category learning over the structure-mapping account.
Spurred by this latter result, Experiments 2 to 4 investigated the
effect of comparison type on a wide range of other relational
category structures with varying types of stimuli. Despite a con-
certed effort to find a relational category structure that yielded an
advantage for the match condition, all studies demonstrated the
opposite—namely, that between-category comparisons led to su-
perior learning. Thus, the results provide robust support for the
feature-based account and challenge the extension of structure-
mapping theory. Following presentation of these findings, we
discuss their connections to other work in feature-based categori-
zation, including the effects of blocking versus interleaving, as
well as implications for structure-mapping theory and its applica-
tion to category learning. In particular, we propose an explanation
of how relational categories might be learned in a feature-based
manner, which, in turn, suggests a natural unification between
feature representations and the compositional representations that
underpin theories of analogy. We hope this new proposal regarding
concept representation, together with the findings of the present
experiments, will provide a starting point for better understanding
the limits on humans’ use of structural alignment as a strategy for
learning and reasoning.

Experiment 1

Experiment 1 examined how between- and within-category
comparison affect the learning of featural and relational categories.
Each stimulus was a pair of geometric objects, with each object
characterized by values along three dimensions (size, brightness,
and tilt of radius; see Figure 1). Orthogonal to the match–contrast
manipulation described in the previous section, subjects learned to
classify the objects into categories defined either by features or by
relations. For subjects in the feature condition, the categories were
defined by the objects’ separate values on one dimension (e.g.,

Category A: both objects large; Category B: both objects small).
For subjects in the relation condition, the categories were defined
by the objects’ relative values on one dimension (e.g., Category A:
right object larger; Category B: left object larger). Within all four
cells of the 2 � 2 design (feature-match, feature-contrast, relation-
match, relation-contrast), the dimension defining the categories
was counterbalanced across subjects. The comparisons of interest
were between the feature-match and feature-contrast groups, and
between the relation-match and relation-contrast groups, to test the
effect of comparison type separately on feature-based and rela-
tional category learning. (No predictions were made comparing the
feature groups to the relation groups because the relative difficulty
of learning featural vs. relational categories was not a focus here.)
A contrast advantage was predicted for the feature-based catego-
ries (i.e., the feature-contrast group outperforming the feature-
match group), based on feature-based theories of category learning
and selective attention (Nosofsky, 1986). The critical comparison
was for the relational categories: If relational categories are
learned by similar mechanisms to those governing feature-based
learning, then the relational groups should also exhibit a contrast
advantage. On the other hand, if relational categories are learned
by structural alignment, then the relational groups should exhibit a
match advantage. Thus, applying feature-based theories to rela-
tional category learning predicts a main effect of comparison, such
that the contrast groups should outperform the match groups
(irrespective of category type), whereas viewing relational cate-
gory learning as a form of analogical reasoning predicts an inter-
action between comparison type (match vs. contrast) and category
type (featural vs. relational).

Method

Subjects. One hundred seventy-one undergraduate students
from the University of Colorado Boulder participated for course
credit in an introductory psychology course. This and all subse-
quent experiments were approved by the institutional review board
at the University of Colorado Boulder.

Stimuli. Each stimulus contained two objects, as shown in
Figure 1. Each object was defined by values on three dimensions
(size, brightness, and radius tilt), and each dimension had four
possible values, which were easily discriminable. Thus, there were
64 (43) possible objects. The objects’ brightness values (on a
0–255 gray scale on a standard LCD monitor) were 15, 60, 80, and
250; their sizes (in radius) were 1.04, 1.73, 2.07, and 3.20 cm; and
their radius tilts were 23°, 49°, 61°, and 85°. The values of each
dimension were jointly assigned to the two objects within a stim-
ulus as (1,2), (2,1), (3,4), or (4,3). For example, the pair (1,2)
indicates a stimulus in which the left object had Brightness Level
1 and the right object had Brightness Level 2. Thus, there were 64
possible stimuli (i.e., object pairs), obtained by crossing these four
value pairs on all three dimensions. These assignments enabled
construction of feature-based and relational categories from the
same set of stimuli, as shown in Figure 2 and described next in the
Design section.

Design. Subjects were randomly assigned to four conditions
that crossed featural versus relational categories with contrast
versus match learning: feature-match (n � 43), feature-contrast
(n � 44), relation-match (n � 40), and relation-contrast (n � 44).
For each subject, categorization depended only on the stimulus

Figure 1. Example stimulus for Experiment 1 (on two-item trials, two of
these were copresented). The stimulus contains two objects (each a semi-
circle with a radius, adapted from Shepard, 1964). Each object is defined
by values on three dimensions (size, brightness, and radius tilt), but for any
given subject, only one dimension was relevant for defining the categories.
In the feature condition, categories were defined by the absolute values of
both objects on the relevant dimension (e.g., both objects large vs. both
objects small). In the relation condition, categories were defined by the
objects’ relative values on the relevant dimension (e.g., left object larger
vs. right object larger). See the online article for the color version of this
figure.
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values on one dimension (which was counterbalanced within each
condition), according to the scheme in Figure 2. In the feature
conditions, stimuli in Category A had objects with Values 1 and 2
on the relevant dimension (top row of Figure 2), and stimuli in

Category B had objects with Values 3 and 4 (bottom row). In the
relation conditions, stimuli in Category A always had a greater
value for the right object than for the left object (left column of
Figure 2), and stimuli in Category B always had a greater value for
the left object than for the right object (right column). For both the
feature conditions and the relation conditions, the values on the
other two dimensions were always irrelevant and could be chosen
from any of the assignments (1,2), (2,1), (3,4), or (4,3). Thus, by
this construction, the feature-based and relational conditions both
used the same set of stimuli, the only difference being how the 64
stimuli were partitioned into two categories of 32 stimuli each.

Procedure. As a cover story, subjects were told that two alien
species (Alkins and Bafsters) created different patterns of crop
circles, and their task was to learn the difference. Full instructions
are presented in Appendix C.

Each subject completed 700 classification trials. The majority of
these trials were two-item trials, in which two stimuli were gen-
erated at random (from the 64 possible stimuli), subject to the
constraint that they were in the same category but not identical
(match condition) or in opposing categories (contrast condition).
Figure 3 shows the display for an example two-item trial in the
match (Figure 3A) and contrast (Figure 3B) conditions. In the
match condition, each two-item trial included a response prompt,
“Type R if BOTH crop circles are from Alkins; Type C if BOTH
crop circles are from Bafsters.” In the contrast condition, the
prompt read, “Type R if the crop circles are from the Alkins (left)
and Bafsters (right); Type C if the crop circles are from the
Bafsters (left) and Alkins (right).” Responses were self-paced.
After each response, the correct labels were presented directly
beneath both stimuli, together with the word “Correct” or “Wrong”
in the center of the screen. This feedback and the stimuli were
displayed together for 800 ms, and the screen was then cleared for
400 ms before the start of the next trial.

Relation-Based 
Category A

Relation-Based 
Category B

1 2

3 4

2 1

4 3

Feature-Based 
Category A

Feature-Based 
Category B

Figure 2. Stimulus values for the relevant dimension in Experiment 1.
Each red border indicates a single stimulus, with numerals indicating
values of the two objects in that stimulus. For example, if the relevant
dimension for a subject were brightness, then the upper left quadrant would
represent stimuli with Brightness Level 1 for the left object and Brightness
Level 2 for the right object (there are 16 such stimuli, differing in their
values on the other two dimensions). Feature-based categories are sepa-
rated by the horizontal partition (i.e., top vs. bottom rows) and are defined
by the absolute values of both objects. Thus, when the relevant dimension was
brightness, any stimulus from Category A had two dim objects (Brightness
Levels 1 and 2), whereas any stimulus from Category B had two bright objects
(Brightness Levels 3 and 4). Relation-based categories are separated by the
vertical partition (i.e., left vs. right columns) and are defined by the relative
values of the objects in each stimulus. Thus, when the relevant dimension was
brightness, any stimulus in Category A had a dimmer object on the left than on
the right (1 and 2, or 3 and 4), whereas any stimulus in Category B had a
brighter object on the left than on the right (2 and 1, or 4 and 3). See the online
article for the color version of this figure.

Figure 3. Examples of two-item trials from the match and contrast conditions in Experiment 1. This figure applies
to both the relational and feature-based conditions, and in all cases, the relevant dimension for this example is size.
(A) Match conditions. For the match-feature condition, the category is defined by both objects being small, whereas
for the match-relation condition the category is defined by the object on the left side of the stimulus being larger than
the object on the right side of the stimulus. (B) Contrast conditions. For the contrast-feature condition, the category
for the left stimulus is defined by both objects being small, whereas the category for the right stimulus is defined by
both objects being large. For the contrast-relation condition, the category for the left stimulus is defined by the left
object being larger than the right object, whereas the category for the right stimulus is defined by the right object being
larger than the left object. See the online article for the color version of this figure.
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Every fifth trial (starting on Trial 5) was a one-item test trial, in
which a single randomly selected stimulus was displayed below
the response prompt, “Test: Type A for Alkins, or B for Bafsters.”
No feedback was provided on one-item trials. After the response,
the stimulus was removed and “Thank You” was displayed for 500
ms in the center of the screen. The purpose of the one-item trials
was to provide a direct comparison of learning between the match
and contrast conditions, controlling for any possible difference in
difficulty of performing the two-item match and contrast classifi-
cation tasks.

After every 50 trials, subjects were given a self-paced rest break,
during which they were shown their percent correct on those 50
trials and the number of remaining trials in the experiment. The
experiment lasted 30 to 50 min.

Results and Discussion

Figure 4 presents individual learning curves, which show the
proportion correct by each subject on each block of 50 trials
(including both one- and two-item trials). Most subjects show
approximately all-or-none learning, with performance at chance
until it jumps to being nearly perfect.1 Although individual curves
are difficult to trace, the critical pattern in the figure is the strong
bimodal clustering around 50% and 100%. This pattern was found
for all other experiments reported in this article. Although such
data can be analyzed based on the proportion of subjects in each
condition that are deemed to have learned the categories (by
defining an appropriate learning criterion), dichotomizing a quasi-
continuous dependent measure can mask information that is pres-
ent in the data and lead to a reduction in power (DeCoster, Iselin,
& Gallucci, 2009). Thus, all data reported in this article were
analyzed based on each subject’s proportion of correct responses
throughout the experiment. This measure is sensitive both to
whether a subject learned the task and to the approximate point in
the trial sequence at which learning occurred; for example, a
subject who learned around Trial 50 should have a higher propor-
tion correct than a subject who learned around Trial 400, who, in

turn, should have a higher proportion correct than a subject who
never learned.

Figure 5A shows average learning curves for all four subject
groups on one-item trials, and Figure 5B shows the correspond-
ing curves for two-item trials. Because of the nature of the
individual learning curves, the group curves are best thought of
as indexing the proportions of subjects who have learned by
each point in the experiment. The primary statistical analysis
addressed accuracy on one-item trials, because the task on those
trials was identical for the match and contrast groups, and thus
any differences reflect differential learning of the categories
and not any differential difficulty of carrying out the two-item
match and contrast tasks. In line with the prediction that follows
from feature-based learning and theories of attention, a two-
way ANOVA revealed a main effect of comparison on one-item
trials, F(1, 167) � 5.26, p � .023, MSE � .038. Contrary to the
prediction that follows from structure-mapping theory, there
was no evidence of an interaction between category type and
comparison type, F(1, 167) � 0.17, p � .69. As can be seen in
Figure 5, subjects in the contrast conditions achieved higher
accuracy than subjects in the match conditions for feature-based
categories and also for relational categories. To further test the
reliability of the contrast advantage observed for both category
types, separate planned t tests were conducted to compare the
feature-contrast and feature-match groups, as well as the
relation-contrast and relation-match groups, both restricted to
one-item trials. In the feature condition, a nonsignificant trend
was found such that the contrast group outperformed the match
group (Mfeature-contrast � .872, Mfeature-match � .816), t(85) �
1.41, p � .164, MSE � .035, d � .306. In the relation condition,
a marginally significant advantage of the contrast group was
found (Mrelation-contrast � .676, Mrelation-match � .597), t(82) �
1.82, p � .073, MSE � .041, d � .402.

Parallel analyses were conducted on two-item trials, which
revealed a similar, but stronger, set of results. The main effect of
comparison type was significant, F(1, 167) � 12.19, p � .0006,
MSE � .032, and there was no evidence of an interaction with
category type, F(1, 167) � .002, p � .97. In planned t tests, the
feature-contrast group reliably outperformed the feature-match
group (Mfeature-contrast � .904, Mfeature-match � .810), t(85) � 2.63,
p � .011, MSE � .028, d � .571, and the relation-contrast group
reliably outperformed the relation-match group (Mrelation-contrast �
.711, Mrelation-match � .615), t(82) � 2.33, p � .023, MSE � .036,
d � .515.

In order to more fully assess the effect of comparison type
within each type of category structure, we merged the data from
Experiment 1 with data from two pilot studies that had been

1 A few subjects reverted to chance performance later in the experiment
(e.g., the downward-sloping segments at Trials 550 and 650), and one
subject gave all incorrect responses for a period (Trials 601 to 650). These
indications of lack of cooperation could be taken as grounds for exclusion,
although we chose not to do this in order to keep the analysis as unbiased
as possible.

Figure 4. Individual learning curves for all subjects in Experiment 1,
based on blocks of 50 trials (one- and two-item trials combined). The
strong clustering of the data around 50% and 100% indicates nearly
all-or-none learning.
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conducted to calibrate the stimulus values (Ns � 65 and 166).2

These pilot studies were identical to Experiment 1 in all re-
spects except for the physical values of the stimuli on the three
dimensions. Combining these data sets afforded more power to
the primary analysis of performance differences on one-item
trials. The data from all three studies (nfeature-match � 98,
nfeature-contrast � 103, nrelation-match � 104, nrelation-contrast � 97)
were subjected to an ANOVA restricted to one-item trials, with
between-subjects factors of comparison type (match vs. contrast),
category type (relational vs. featural), and study (Experiment 1 vs.
Pilot 1 vs. Pilot 2, to control for any differences in difficulty across
the three stimulus sets). This analysis revealed a main effect of
comparison, F(1, 398) � 8.49, p � .004, MSE � .038, as subjects
in the contrast groups (M � .759) outperformed subjects in the
match groups (M � .696), and no interaction between comparison
and category type, F(1, 398) � .001, p � .946, MSE � .038.
Within the two category types, the feature-contrast group reliably
outperformed the feature-match group (Mfeature-contrast � .852,
Mfeature-match � .797), t(199) � 2.03, p � .044, d � .288, and the
relation-contrast group reliably outperformed the relation-match
group (Mrelation-contrast � .661, Mrelation-match � .603), t(199) �
2.09, p � .038, d � .296. Critically, no interaction was found
between study and comparison type, F(1, 390) � .35, p � .707,
MSE � .038, supporting the validity of the combined analysis.

Finally, to ensure that the present findings reflect true concept
learning and not memorization of individual items, an analysis was
conducted of Experiment 1, restricted to trials that included only
novel stimuli (i.e., ones not presented on any previous trial). Once
again, a main effect of comparison was found for one-item trials,
F(1, 167) � 9.69, p � .002, MSE � .056, as subjects in the
contrast condition outperformed subjects in the match condition
(Mcontrast � .644, Mmatch � .525). Follow-up analyses showed this
difference was reliable for the relation groups (Mrelation-contrast �
.536, Mrelation-match � .412), t(82) � 2.63, p � .010, MSE � .045,
d � .581, and marginally significant for the feature groups
(Mfeature-contrast � .743, Mfeature-match � .640), t(85) � 1.87, p �
.065, MSE � .066, d � .406. No interaction was found between
type of comparison and type of category, F(1, 167) � .07, p � .79,
MSE � .056. The analysis of two-item trials also showed evidence
of a contrast advantage, albeit weaker: The main effect of com-
parison was marginally significant (Mcontrast � .625, Mmatch �
.575), F(1, 167) � 2.90, p � .091, MSE � .033, with no interac-
tion between type of comparison and type of category, F(1, 167) �
.001, p � .998, MSE � .033, but separate paired comparisons were
nonsignificant (relation: Mrelation-contrast � .574, Mrelation-match �
.526, p � .15; feature: Mfeature-contrast � .672, Mfeature-match � .625,
p � .29).3 This finding of a contrast advantage with novel items,
which was reliable in the primary analysis of one-item trials,
shows that the effect holds when subjects generalize to new stimuli
and is hence a product of concept learning and not memorization.

In conclusion, we find evidence of a contrast advantage for the
feature-based categories that is consistent with previous findings
(Higgins, 2012) and with theories of selective attention in feature-
based categorization (Nosofsky, 1986). More importantly, we also
find evidence of a contrast advantage for the relational categories.
The latter finding is consistent with the hypothesis that relational
categories are learned similarly to feature-based ones, and it chal-
lenges the hypothesis that relational category learning depends on
structural alignment. The evidence for the relational contrast ad-

vantage spans several different analyses, using one-item and two-
item trials, the main experiment and two pilot studies, and trials
with only novel items. However, the effect was statistically sig-
nificant in only a subset of these analyses, and the primary planned
analysis (of all one-item trials in the main experiment) showed
only a marginally significant effect. Therefore, we maintain a
cautious interpretation of the results and pursue further experi-
ments to clarify and extend this finding.

Experiment 2

If there is an advantage to learning relational categories from
between-category comparisons, one question is whether this ad-
vantage is limited to simple perceptual relations, such as those
used in Experiment 1, or whether it extends to more conceptual or
semantic relations. Thus, the goal of Experiment 2 was to evaluate
the contrast advantage for relational categories using verbal stim-
uli. The stimuli differed from those in Experiment 1 in that they
consisted only of semantic information and were thus more ab-
stract. Specifically, stimuli in Experiment 2 were pairs of words,
and each category was defined by a relation that held in each of its
member pairs. Stimuli from one category were instances of the
contain relation, such that one object can contain the other (e.g.,
jug, milk). Stimuli from the other category were instances of the
support relation, such that one object can support the other (e.g.,
legs, table). Figure 6 shows how the word pairs were presented to
subjects. Both categories included concrete (spatial) and more
abstract instances (e.g., movie, actors for containment).

2 The primary goal of the pilot studies was to find stimulus values that
yielded equivalent performance for the feature-based and the relational
categories. As illustrated by Figure 2, the difficulty of the feature-based
categories in this design is determined by the difference between the lower
values (1 and 2) and the upper values (3 and 4) on each dimension, whereas
the difficulty of the relational categories is determined by the differences
between Values 1 and 2 and between Values 3 and 4. In Pilot Study 1, the
objects’ brightness values (on a 0–255 gray scale) were 15, 45, 120, and
250; their sizes (radii) were .85, 1.36, 2.30, and 3.20 cm; and their radius
tilts were 5°, 23°, 59°, and 88°. This study showed a strong main effect of
task type, such that the relation condition (M � .643) was considerably
more challenging than the feature condition (M � .903), F(1, 61) � 31.76,
p � .0001. Therefore, in Pilot Study 2, we decreased the differences
between Values 2 and 3 and increased the differences between Values 1
and 2 and between Values 3 and 4, on all three dimensions; Values 2 and
3 were collapsed to be identical on each dimension, as a strategy to make
the feature condition as difficult as possible. In Pilot Study 2, the objects’
brightness values were 15, 65, 65, and 250; their sizes were 1.04, 1.82,
1.82, and 3.20 cm; and their radius tilts were 23°, 55°, 55°, and 85°. These
changes reduced but did not eliminate the differences in performance
between the relation (M � .645) and feature (M � .805), F(1, 161) �
37.03, p � .0001, conditions. Both pilot studies showed nonsignificant
trends of an overall contrast advantage (collapsing across the relation and
feature categories). Because we were unable to eliminate the difference in
difficulty between the two category structures, and because using identical
or overlapping values (i.e., Level 2 � Level 3) might introduce unantici-
pated complications in the feature condition, the dimension values in
Experiment 1 were chosen as a middle ground between the values used in
Pilot Studies 1 and 2. Note that equivalent performance in the feature and
relation conditions is not strictly necessary in this design, because the
analysis concerns the effect of the match–contrast manipulation separately
for each category type.

3 Because a two-item trial is more likely to contain a repeated item, this
analysis contained fewer trials per subject, coming from earlier in learning,
than did the analysis of novel one-item trials. These differences likely
explain why the two-item analysis showed less reliable results.
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Method

Subjects. One hundred forty undergraduates from the Univer-
sity of Colorado Boulder participated for course credit. Subjects
were randomly assigned to match (n � 69) and contrast (n � 71)
conditions.

Stimuli. The stimuli are listed in Appendix A. Eighty word pairs
were constructed for each category. Each word pair was displayed as
in Figure 6, with the containing or supporting object always on the
left.

Design and procedure. Every trial was a two-item trial, con-
taining two word pairs (the one-item trials used in the other experi-
ments were omitted because of a programming oversight). Subjects
completed 400 trials, logically divided (i.e., for the purpose of defin-
ing the experiment design) into five blocks of 80, with each of the 160
stimuli appearing exactly once in each of these blocks. Assignment of
stimuli to trials within each block was random, under the constraint
that each trial contained two stimuli from the same category (match
condition) or from opposite categories (contrast condition).

Subjects were given the cover story that rogue secret agents
were using word pairs to communicate in two different types of

code (Code A and Code B). Full instructions are presented in
Appendix C. The categories (i.e., containment and support) corre-
sponding to Codes A and B were counterbalanced within each
condition. It was the subject’s task to identify which word pairs
were from Code A and which were from Code B. Subjects in the
match condition were asked to type “A” if both items were from
Code A, or “B” if they were both from Code B. Subjects in the
contrast condition were asked to type “A” if the item on the left
was from Code A and the item on the right was from Code B, or
“B” for the reverse. The rest of the design and procedure (i.e.,
presentation and timing of feedback, rest breaks, and approximate
duration of the study) were identical to Experiment 1.

Results and Discussion

Figure 7 shows average learning curves for the contrast and
match groups. These curves show an advantage for the contrast
condition, which was significant by a t test (Mcontrast � .809,
Mmatch � .746), t(138) � 2.28, p � .024, MSE � .027, d � .39.
To ensure that the effect was driven by learning of the concepts
underlying the categories, and not by memorization of individual
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Figure 5. Average learning curves and standard errors for each group in Experiment 1. (A) One-item trials.
Each data point represents an average over 20 one-item trials (spanning 100 trials total). (B) Two-item trials.
Each data point represents an average over 80 two-item trials (spanning 100 trials total).
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items, a second t test was conducted using only the first 80 trials
for each subject, which contained only the first presentation of
each item. This test also showed a significant effect (Mcontrast �
.687, Mmatch � .629), t(138) � 2.12, p � .036, MSE � .026, d �
.361. These findings more definitively establish the contrast ad-
vantage in relational category learning seen in Experiment 1, and
they extend the result by showing the effect with verbal stimuli.

Experiment 3

One possible explanation for the contrast advantage observed in
Experiments 1 and 2—elaborated in the General Discussion—is that
structural alignment is not necessary for learning relational concepts
that are defined by a single relation, and that structure mapping’s
predicted learning advantage for within-category comparison may
arise only for richer relationally structured concepts. To test this
possibility, Experiment 3 used more complex relational stimuli, such
that each category was defined by a configuration of multiple relations
operating on a shared set of objects. Every stimulus in Experiment 3
contained four simple geometrical objects, arranged as in the exam-
ples in Figure 8. The objects within a stimulus varied on three
dimensions—size, color, and shape—and the categories were defined
by the pattern of agreement among these dimensions. For a stimulus

in Category A, the objects that matched in color also matched in shape
but mismatched in size. Thus, the example Category A stimulus in
Figure 8 contains two red circles (same color and shape but different
sizes) and two blue diamonds. For stimuli in Category B, the objects
that matched in color also matched in size but mismatched in shape.
Thus, the example in Figure 8 contains two large green objects (same
color and size, different shapes) and two small orange objects.

There are multiple ways these stimuli might be represented (an
issue we highlight in the General Discussion), but one simple
possibility in line with previous work (e.g., Kotovsky & Gentner,
1996) is to assume same-color, same-shape, and same-size rela-
tions representing whether objects match on each of these dimen-
sions. Thus, members of Category A would all satisfy sets of
relations such as

same-color(object1, object2)

same-shape(object1, object2)

different-size(object1, object2)

(where different-size stands for the negation, ¬same-size). Like-
wise, members of Category B would all satisfy sets of relations
such as

Figure 6. Example word pair from each category. The word pair in Category A is an instantiation of the contain
relation. The word pair in Category B is an instantiation of the support relation. The positioning of words within
all pairs was the same, such that the supporting or containing object was always displayed on the left. See the
online article for the color version of this figure.
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Figure 7. Average learning curves and standard errors across blocks of 50 trials for each condition in Experiment 2.
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same-color(object1, object2)

same-size(object1, object2)

different-shape(object1, object2).

According to structure-mapping theory, these systems of pred-
icates should be alignable between members of the same category
(and not between members of opposing categories), which should
enable abstraction of a category-defining schema that could be
used to identify future category members.

Importantly, the categories cannot be distinguished merely on
the basis of the individual objects present in a given stimulus,
because any given object (e.g., a large red square) is equally likely
to occur in a stimulus from either category. Likewise, a stimulus
cannot be categorized only on the basis of the pairwise relations
between its objects, because those relations are the same for
stimuli in both categories. Specifically, every stimulus contains
two objects of one color and two objects of another color (e.g., two
red objects and two blue objects) regardless of which category it is
in. Thus, there are always two instances of same-color relations
(one between the two red objects, another between the two blue
objects) and four instances of different-color relations (between
either of the red objects and either of the blue objects) within any
stimulus. The same holds for the size and shape dimensions. What
distinguishes the categories is how the different relations are
linked by shared objects—for example, that same-shape and same-
color relations can operate on the same pair of objects in Category
A stimuli but not in Category B stimuli. That is, every Category A
stimulus contains pairs of objects that match on both shape and
color (e.g., two red circles and two blue diamonds, as in Figure 8),
whereas in a Category B stimulus, no two objects can match on
both shape and color. Likewise, every Category B stimulus con-
tains pairs of objects that match on both size and color (e.g., two
large green objects and two small orange objects, as in Figure 8),
whereas in a Category A stimulus, no two objects can match on
both size and color. This pattern of role binding across multiple
relations with shared objects (i.e., a relational system as opposed to
a single relation) is exactly the information that structural align-
ment and schema induction operate to discover (Corral & Jones,
2014).

Other than the shift from single to multiple relations, Experi-
ment 3 matched the approach of Experiments 1 and 2. The use of
categories defined by complex relational structures was predicted
to engage structural alignment more reliably than in the previous

experiments and, according to structure-mapping theory, should be
more likely to produce a match advantage.

Method

Subjects. One hundred sixteen undergraduates from the Uni-
versity of Colorado Boulder participated for course credit. Subjects
were randomly assigned to contrast (n � 56) and match (n � 60)
conditions.

Stimuli. Each stimulus consisted of four geometric objects on
a black background enclosed by a gray rectangle, as shown in
Figure 8. The four objects were always arranged in two concentric
pairs: a small object inside a large object on the left and a small
object inside a large object on the right. The objects also varied in
shape (circle, square, diamond, triangle, or hexagon) and color
(red, green, blue, yellow, or white), with exactly two shapes and
two colors present within any one stimulus. For every stimulus in
both categories, the large object on the left and the small object on
the right matched in shape, as did the small object on the left and
the large object on the right. Thus, objects matching in size always
mismatched in shape, and vice versa. The two categories differed
in how the color dimension related to the size and shape dimen-
sions. In Category A, the large object on the left and the small
object on the right matched in color, as did the small object on the
left and large object on the right. Thus, the objects matching in
shape also matched in color, whereas objects matching in size
always mismatched in color. In Category B, the two large objects
matched in color, as did the two small objects. Thus, the objects
matching in size also matched in color, whereas objects matching
in shape always mismatched in color.

Design and procedure. Subjects were given the cover story
that two alien species were creating different types of symbols, and
it was the subject’s job to figure out which species created each
symbol. Full instructions are presented in Appendix C. Every
subject performed 400 trials. Every fifth item was a one-item trial,
starting with Trial 5, and the remainder were two-item trials. For
each two-item trial, two stimuli were generated at random under
the constraint defining the experimental condition (i.e., being in
the same or opposing categories). For each one-item trial, the
stimulus was generated fully at random. Response keys, feedback,
and timing all matched the procedures of Experiment 1. The
experiment lasted approximately 25 min.

Category A Category B

Figure 8. Examples of stimuli from both categories in Experiment 3. Each gray rectangle encloses a single
stimulus. In Category A stimuli, objects of the same color always match in shape (two red circles and two blue
diamonds in this example). In Category B stimuli, objects of the same color always match in size (two large
green objects and two small orange objects in this example). See the online article for the color version of this
figure.
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Results and Discussion

Figure 9 shows average learning curves for the contrast and match
conditions on one- and two-item trials. The primary analysis on
one-item trials revealed that subjects in the contrast condition reliably
outperformed those in the match condition (Mcontrast � .879,
Mmatch � .801), t(114) � 1.99, p � .048, MSE � .035, d � .373. This
same pattern of results was also found on two-item trials, although it
was not significant (Mcontrast � .870, Mmatch � .821), t(114) � 1.49,
p � .144, MSE � .032, d � .28. A similar pattern of results was
observed when the analysis was restricted to trials that did not contain
repeated stimuli: A reliable contrast advantage was observed on
one-item trials (Mcontrast � .867, Mmatch � .795), t(114) � 2.06, p �
.042, MSE � .035, d � .386, and a trend of a contrast advantage was
observed on two-item trials (Mcontrast � .840, Mmatch � .795),
t(114) � 1.30, p � .195, MSE � .031, d � .244. Taken together, these
results demonstrate that the learning advantage of between-category
comparison extends to perceptual concepts that are defined by rela-
tional structures composed of more than a single relation.

Experiment 4

A fourth experiment was conducted to test whether the contrast
advantage observed across Experiments 1 to 3 holds for more
abstract relational concepts. Previous work suggests that many
abstract concepts are determined by people’s prior knowledge of
the relationships that exist among a concept’s features (Rehder &
Ross, 2001). Experiment 4 adopted stimuli developed by Rehder
and Ross (2001) that form categories defined by the abstract
coherence among each stimulus’ components. Each stimulus con-
sists of three short sentences describing features of a machine that
works to remove waste products. The first sentence describes the
location in which the machine operates, the second describes the
waste product the machine works to remove, and the third de-
scribes the implement the machine uses. The machines are divided
into two categories, determined by how these three features relate
to each other. For an item in the coherent category, the machine’s
implement is well-suited for collecting the machine’s target waste
material, and that waste material is typically found in the ma-
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Figure 9. Average learning curves and standard errors for each condition in Experiment 3. (A) One-item trials.
Each data point represents an average over 10 one-item trials (spanning 50 trials total). (B) Two-item trials. Each
data point represents an average over 40 two-item trials (spanning 50 trials total).
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chine’s operating location. For example, one member of the co-
herent category is defined by the properties “Operates on the
surface of the water, works to clean spilled oil, and has a spongy
material.” This item is coherent because of additional relations
(presumably known by the subject) that oil slicks are found on
water and that a sponge can absorb oil. In contrast, an item in the
incoherent category has features that do not share such relations
with one another: The machine’s implement cannot collect the
material being cleaned, nor can that material be found in the
machine’s operating location. Figure 10 illustrates how stimuli
from the two categories can be represented in the framework of
structure-mapping theory. The additional relations among the fea-
tures of a coherent item yield a different (richer) relational struc-
ture than that of an incoherent item, which should be discoverable
through alignment of two items from the same category. Indeed,
Higgins (2012) found an advantage of within-category comparison
using a subset of these stimuli (Items 1 to 9 from both categories
in Appendix B), using a more elaborate training procedure that
required subjects to carefully consider the substructure of the
stimuli. Therefore, a goal of Experiment 4 was to test whether a
match advantage would be found under the more neutral condi-
tions of the present paradigm (see the Implications for Structure-
Mapping Theory section for further discussion).

As in the previous experiments reported here, subjects’ task was
to learn to classify the items (in pairs) to the two categories. An
initial version of the experiment followed previous experiments
with these stimuli (Rehder & Ross, 2001) by using labels for both
categories (Morkel and Krenshaw), but subjects in both the match
and contrast conditions performed at chance. One possibility is that
subjects were searching for, and could not find, a relational rule
that defined the incoherent category (see Jung & Hummel, 2011,
for a similar result). We therefore switched from an A/B task to an
A/¬A task. That is, only the coherent category was given a label
(Morkel), and subjects’ task was to determine whether each stim-
ulus was or was not a member of that category. Subjects were not
told anything about what constituted a Morkel, just that some
machines were Morkels and others were not. This framing of the
task was expected to encourage subjects to learn the category rule
for the coherent items, without attempting to discover a separate
category rule defining the incoherent items.

Method

Subjects. One hundred twenty-nine undergraduates from the
University of Colorado Boulder participated for course credit.
They were randomly assigned to contrast (n � 62) and match (n �
67) conditions.

Stimuli. The stimuli are listed in Appendix B. Half were taken
from Rehder and Ross (2001) and Higgins (2012). Rehder and
Ross made three coherent items and three incoherent items; the
latter set was generated by shuffling the features of the former set
such that each incoherent item took one property from each of the
three coherent items. Higgins used a similar method to create an
additional 12 items (six coherent and six incoherent). An addi-
tional 18 items (nine coherent and nine incoherent) were created
by the present authors using the same shuffling method as Rehder
and Ross. There were thus a total of 36 stimuli, 18 from each
category. Each stimulus was presented to subjects as three lines of
text bounded by a red border, as shown in the example display for
a two-item trial in Figure 11.

Design and procedure. Subjects were told they would learn
about machines named Morkels and, specifically, that their task
was to learn to identify which machines were Morkels and which
were not. They were given no prior information about what qual-
ified a machine as a Morkel. Full instructions are presented in
Appendix C. Each subject completed 300 trials, with self-paced
rest breaks every 20 trials in the same format as in previous
experiments. Every fifth trial was a one-item trial and the others
were two-item trials. Each of the 36 stimuli appeared exactly once
in each block of 20 trials (16 two-item trials and 4 one-item trials),
with the assignment made randomly subject to the constraint
defining the subject’s condition (match or contrast). On two-item
trials, two stimuli were displayed side by side, labeled Machine A
and Machine B (see Figure 11). In the match condition, subjects
were asked to type “2” if both machines were Morkels and “0” if
they were not. In the contrast condition, subjects were asked to
type “2” if Machine A was a Morkel and Machine B was not, and
“0” if Machine A was not a Morkel and Machine B was. After each
trial, corrective feedback (provided as in the previous experiments)
was shown directly under the stimuli for 3 s. On one-item trials,
subjects were asked to type “M” if the machine was a Morkel and
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Figure 10. Illustration of how a coherent item and an incoherent item from Experiment 4 can be represented
in the compositional role-binding framework of structure-mapping theory. The text at the top shows the
descriptions presented to the subjects. Partially recreated from Corral and Jones (2014).
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“K” if it was not. The rest of the design and procedure were
identical to those of Experiments 1 and 3.

Results and Discussion

Figure 12 shows average learning curves on one- and two-item
trials for both conditions. As in the previous experiments, a learn-
ing advantage was found for the contrast group. This effect was
reliable on one-item trials (Mcontrast � .825, Mmatch � .765),
t(127) � 2.50, p � .015, MSE � .020, d � .44, and on two-item
trials (Mcontrast � .844, Mmatch � .774), t(114) � 2.71, p � .008,
MSE � .021, d � .481. An analysis restricted to trials with only
novel stimuli (Trials 1–20) showed nonsignificant contrast advan-
tages for one-item trials (Mcontrast � .552, Mmatch � .489),
t(127) � 1.42, p � .158, MSE � .065, d � .252, and for two-item
trials (Mcontrast � .550, Mmatch � .506), t(127) � 1.55, p � .124,
MSE � .026, d � .244. The raw effect size for novel stimuli is
similar to that for all trials, but the novel-item analysis is noisier
because of the small number of stimuli in this experiment: The
one-novel-item analysis includes only four trials per subject, and
the two-novel-items analysis includes 16. In sum, the results for
Experiment 4 replicate the findings from Experiments 1 to 3 and
show that the contrast advantage extends to the learning of ab-
stract, richly structured relational concepts.

General Discussion

The present series of studies examined how comparing items
from the same or different categories affects relational concept
acquisition. The difference in learning performance between match
and contrast conditions in this paradigm is theoretically significant
because it discriminates between two fundamentally different ac-
counts of relational category learning. Characterizing relational
category learning as a form of analogical reasoning predicts a
match advantage, based on the central role of comparing items
with common structure within theories of analogy (Gentner, 1983).
Treating relational categories as akin to feature-based categories
predicts a contrast advantage, based on the central role of selective
attention to diagnostic dimensions in theories of feature-based
category learning (Nosofsky, 1986). The present results demon-
strate strong and robust support for the latter prediction. The

relational categories tested here consisted of both geometric stim-
uli with visuospatial relations (Experiments 1 and 3) and abstract
verbal stimuli with conceptual relations (Experiments 2 and 4).
They were defined both by single relations (Experiments 1 and 2)
and by interconnections among multiple relations (Experiments 3
and 4). The tasks were cast as two-category (A/B, Experiments
1–3) and single-category (A/¬A, Experiment 4), which recent
work suggests are learned in different ways (Hendrickson, Perfors,
Navarro, & Ransom, in press). Moreover, the analyses of novel
items in all four experiments show the observed contrast advantage
reflects true concept learning, not memory for individual items.

It might be argued that the contrast condition provides more
information than the match condition, because a contrast trial
affords learning about both categories simultaneously, whereas a
match trial affords learning about only one category. However, it
is important to note that subjects in both conditions were shown
the same set of stimuli. After n trials, the average subject will have
been presented with n stimuli from each category regardless of
condition. More importantly, this explanation does not accord with
structure-mapping theory, which holds that learning simultane-
ously from two alignable stimuli (i.e., two stimuli in the same
category) is more effective than learning from both stimuli sepa-
rately.

The present findings thus stand as a challenge to recent attempts
to extend theories of analogy to relational category learning (e.g.,
Corral & Jones, 2014; Kittur et al., 2004; Kuehne et al., 2000;
Kurtz et al., 2013; Lassaline & Murphy, 1998). Some manner of
comparison was taking place in these experiments (if subjects were
processing the stimuli individually, then there should have been no
effect of the match–contrast manipulation at all), but evidently it
did not rely on discovery of shared structure in the way structure-
mapping theory assumes. Instead, the pattern of results is consis-
tent with feature processing and selective attention, and indeed the
same finding was obtained with feature-based categories (Exper-
iment 1). However, it would be wrong to conclude from the
present results that relational categories are psychologically no
different from feature-based ones. There is abundant evidence that
relational structure matters to human concept representations
(Jones & Love, 2007; Markman & Gentner, 1993a, 1993b; Slo-
man, Love, & Ahn, 1998). Thus, the challenge is to understand

Figure 11. An example of a two-item trial from the match condition in Experiment 4. See the online article for
the color version of this figure.
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how a process akin to feature-based learning might operate in the
presence of structured representations and to delineate the circum-
stances that lead people to engage in structural alignment versus
less cognitively demanding strategies based on features. We dis-
cuss both issues in detail in the next two subsections, respectively.

Our findings are related to previous work examining how inter-
leaved versus blocked stimulus presentation affects category learn-
ing (Carvalho & Goldstone, 2014a, 2014b, 2015; Goldstone, 1996;
Kang & Pashler, 2012; Kornell & Bjork, 2008; Kornell, Castel,
Eich, & Bjork, 2010; Wahlheim, Dunlosky, & Jacoby, 2011).
Building on earlier work by Goldstone (1996), Carvalho and
Goldstone (2014b) compared performance on a feature-based clas-
sification task (with one stimulus per trial) between two condi-
tions: a blocked condition in which the correct category matched
the category from the previous trial on 75% of trials, and an
interleaved condition in which the correct category matched that of
the previous trial on 25% of trials. To the extent that subjects
compare stimuli on successive trials, blocked training emphasizes
within-category comparison (similar to our match condition),
whereas interleaved training emphasizes between-category com-

parison (similar to our contrast condition). Carvalho and Gold-
stone’s main finding was that the relative advantage of these two
conditions depended on the degree of within-category versus
between-category similarity among the stimuli. Specifically, they
found that blocked training was superior to interleaved training
when the stimuli varied on a large number of irrelevant features,
whereas interleaved training was superior when there were few
irrelevant features. This finding might suggest that the contrast
advantage found in the present experiment reflects the patterns of
similarity in the stimuli used here, rather than constituting evi-
dence for feature processing over analogy. However, the nature of
our materials makes this explanation unlikely, and, in fact, Car-
valho and Goldstone’s interpretation of their results reinforces our
conclusions regarding feature processing.

First, the degree of irrelevant stimulus variation differed signif-
icantly across our studies. In Experiments 1 and 3, the stimuli in
both categories were highly similar, with little irrelevant variation.
In both cases, all stimuli followed a very specific pattern (a pair of
semicircles with inscribed radii, or four regular geometric figures
arranged in two concentric pairs), with only a few dimensions of
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Figure 12. Average learning curves and standard errors for each condition in Experiment 4. (A) One-item
trials. Each data point represents an average over 10 one-item trials (spanning 50 total trials). (B) Two-item trials.
Each data point represents an average over 40 two-item trials (spanning 50 total trials).
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variation (size, brightness, and angle, or color and shape). In
contrast, the stimuli in Experiments 2 and 4 varied widely. In
Experiment 2, the stimuli in the containment and support catego-
ries, respectively, ranged from {bank, teller} to {forest, trees} and
from {foundation, building} to {tires, vehicle}. The same was true
for the stimuli in Experiment 4, as exemplified in Figure 11.
Despite these large differences across studies in the amount of
irrelevant stimulus variation, the contrast advantage was observed
in all four experiments.

Second, even if increasing the irrelevant stimulus variation did
produce a match advantage in our paradigm, such an effect would
support feature processing, not structural alignment. According to
Carvalho and Goldstone (2014b), learning from between-category
comparisons encourages identification of diagnostic differences,
which are more salient when there are a small number of irrelevant
features among the stimuli, whereas learning from within-category
comparisons encourages subjects to seek commonalities between
items, which are more salient under greater amounts of random
stimulus variation. This is fundamentally an attentional explana-
tion. Moreover, research on analogy has consistently demonstrated
that analogical learning does not follow this pattern. Instead,
decreasing surface similarity (i.e., increasing irrelevant variation)
makes discovering the common relational structure between two
scenarios more difficult (Gick & Holyoak, 1983; Holyoak & Koh,
1987; Reed, 1989; Ross, 1987, 1989). Therefore, finding that
Carvalho and Goldstone’s results regarding similarity structure
extend from feature-based categories to relational ones (and from
a blocked–interleaved manipulation to our match–contrast para-
digm) would contribute further support for our conclusion that the
effects of comparison on relational category learning support ac-
counts based on feature processing over accounts based on anal-
ogy.

Unitary Versus Compositional Representations of
Relational Concepts

At the heart of the distinction between feature-based and ana-
logical models is the information on which they operate. Feature-
based models encode a stimulus as either a vector of dimension
values (Estes, 1986) or a set of attributes (Tversky, 1977). Al-
though vector and set approaches are often viewed as competitors,
both imply a “flat” type of comparison process that can identify
only the shared and unique attributes of two stimuli, without regard
for their structure. In contrast, structure-mapping and related the-
ories represent stimuli as relational systems defined by role bind-
ing, which captures how constituent objects and relations are
composed to form the whole stimulus (Gentner, 1983). This struc-
tural information supports a richer and more sensitive form of
comparison, embodied by structural alignment. In particular,
structure-mapping theory’s principle of parallel connectivity en-
tails that having the same elements is insufficient for two stimuli
to be aligned, and that instead what matters is that they are bound
into isomorphic structures (Corral & Jones, 2014).

This difference in information and in corresponding comparison
processes clarifies the conditions under which feature-based pro-
cessing is, in principle, sufficient for a task like categorization.
Specifically, if two categories differ in the individual objects,
features, or relations their members contain—without regard for
the bindings among them—then the sort of flat comparison as-

sumed by feature-based models should be able to distinguish them.
For example, a subject in Experiment 2 presented with the stimuli
{cup, water} and {chair, person} might not have to construct a
structured representation for each stimulus like contains(cup, wa-
ter) and supports(chair, person) and then attempt to align these
structures. Instead, the subject may simply recognize that there is
a containment relation implied by one stimulus and a support
relation in the other—just as directly as she could recognize that
one item contains something liquid or that the other contains
something animate. The stimuli could hence be represented as lists
or sets of elements, such as {cup, water, contain . . .} and {chair,
person, support, . . .}. The difference between the categories
should be easily learnable under this representation, particularly
after many trials in which the A and B items always include
contain and support, respectively.

If two categories are defined by the same elements, differing
only in their role-binding structure, then the difference will be
invisible to feature processing and something like structural align-
ment will be necessary for successful learning. However, this is a
psychological question, not a logical one. Logically, any relational
system (i.e., set of relations linked through role binding to shared
objects) is equivalent to an atomic relation operating directly on all
the objects jointly. Likewise, as noted by Gentner (1983, Footnote
4), an atomic relation among a set of objects is logically inter-
changeable with an attribute of the system as a whole. Thus, to use
the spaceships example from Foster et al. (2012) described in the
introduction, a relational system such as beats(A,B), beats(B,C),
beats(A,C) might also be represented as an atomic relation well-
ordered(A,B,C) or as an attribute transitive(tournament). To our
knowledge, these observations have never been pursued as a
possible distinction among cognitive representations, with psycho-
logical consequences.

We thus propose a distinction between unitary and composi-
tional representations of relational concepts. The key observation
is that the same concept (i.e., the same semantics) can be repre-
sented in psychologically distinct ways. A unitary representation is
either an atomic relation among objects, such as bigger-than(x,y),
or an attribute of a whole system that expresses a relation among
its components, such as lopsided(z), to express a size relation
among the parts of z. These two possibilities have the same
implications for the present investigation, because both can be
treated as elements of a stimulus under flat comparison. Following
the reasoning given in the introduction, unitary representations
should lead to a contrast advantage in our paradigm, because
between-category comparison highlights the elements that are di-
agnostic of category membership. In contrast, a compositional
representation encodes a relational concept as a structure or system
of (atomic) relations connected by role binding to shared objects.
The meaning of the concept as a whole is not explicitly represented
but emerges only from this pattern of interconnections. Thus,
learning or recognizing concepts represented compositionally re-
quires structural alignment, which, in turn, predicts a match ad-
vantage in our paradigm.

It seems intuitively evident that many concepts can be repre-
sented both unitarily and compositionally. Indeed, most everyday
objects that are thought of by default as atomic entities have
substructure. What one typically conceives as simply a dog can
also be understood as a complicated configuration of organs and
systems (e.g., circulatory, respiratory, immune, digestive). The
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same flexibility arguably applies for abstract concepts that one
might consider to be truly relational. Consider the concept trade-
off (see Loewenstein, Thompson, & Gentner, 1999). A trade-off is
a rich relational system involving an agent, two or more goal
dimensions, two or more options, and a particular pattern of
relations between the options’ values on those dimensions (A is
better on Dimension X, but B is better on Y). Nevertheless, it
seems likely that an average person can conceive of a trade-off
more directly as an atomic relation operating on the options and
preferences of the agent, just as one can comprehend the sentence
“I have a dog” without needing to actively represent how the dog
digests food and delivers oxygen to its tissues. The availability of
these unitary representations is consistent with superior learning
from between-category comparisons: Just as one does not need to
align the anatomies of two animals to recognize that one is a dog
and the other is a cat, one might not need to align the structures of
two decision scenarios to recognize that one involves a trade-off,
whereas the other scenario is a win-win.

When people have both unitary and compositional representa-
tions available to solve a task, cognitive economy suggests they
will prefer the former. Behavioral research on analogy has dem-
onstrated that the cognitive processes of structural alignment load
heavily on working memory (Forbus et al., 1995; Morrison, Ho-
lyoak, & Truong, 2001; Waltz et al., 2000), and neurophysiolog-
ical studies have linked relational processing to dorsolateral pre-
frontal cortex (Christoff et al., 2001; Kroger et al., 2002;
Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997; Waltz et
al., 1999). In contrast, flat comparison using feature vectors is
generally assumed to be rapid and automatic, as in models of
parallel retrieval from long-term memory (Forbus et al., 1995;
Shiffrin & Steyvers, 1997). This difference in cognitive demand
might lead people to seek unitary representations, especially in a
categorization task that requires processing of hundreds of stimuli
or comparisons.

The present findings can thus be interpreted as evidence of how
adept people are at finding or inferring unitary properties that
embody relational concepts, enabling them to solve the categori-
zation tasks without the need for structural alignment. The
category-distinguishing unitary relations in Experiment 2 are self-
evident (support vs. contain, or perhaps more simply, on vs. in). In
Experiment 4, the abstract relational coherence of Morkel stimuli
could be captured by found-in and can-remove relations among
their components (see Figure 10), or more generally by the prop-
erty that the components (or any two of them) “work” or “make
sense” together. Although these properties fit within structured
role-binding representations of the stimuli, they would also be
accessible to flat comparison on unstructured representations. In
Experiments 1 and 3, the materials were designed with the aim of
matching the atomic relations present in members of each category
(larger, same-color, etc.), but it is not difficult to speculate on
more sophisticated relations that subjects may have discovered.
Although a category in Experiment 1 can be represented compo-
sitionally as, for example, brighter(left object, right object), it
could be represented more compactly (and unitarily) as a Gestalt
property of a combined object having more brightness in its left
half (i.e., a left–right brightness gradient) that one might write as
left-brighter. In Experiment 3, subjects may have recognized con-
junctions of the primitive relations we assumed in designing the
stimuli, such as same-shape-and-color or same-except-for-size,

which was present only in Category A (see Figure 8). Alterna-
tively, subjects may have recognized the patterns of spatial sym-
metry present in the stimuli: For a stimulus in Category B, the
arrangements of colors on the left and right are the same, whereas
for a stimulus in Category A, the arrangements of color on the two
sides are reversed. These perceptual patterns may have been di-
rectly apparent in each stimulus, that is, as global, unitary prop-
erties.

These particular possibilities are certainly post hoc, and more
generally, the unitary–compositional distinction does not consti-
tute a predictive theory without independent means to predict or
assess what type of representation is operating in any given situ-
ation. As previous researchers in analogy have argued, people have
enormous flexibility in how they represent concepts, and the real
challenge of explaining abstract reasoning lies in how they select
among these representations (Chalmers, French, & Hofstadter,
1992; French, 1997; Mitchell & Hofstadter, 1990). Although we
do not aim to answer this question here, we believe the represen-
tational proposal sketched in this section offers a framework for
formalizing these issues of flexibility. Moreover, it offers a way to
bridge the literatures on feature-based learning models and
structure-mapping theory, and to show concretely how relational
categories might be learned in a feature-based manner. These
theoretical considerations plus the present empirical results will
hopefully provide the foundation for a systematic study of when
people use feature representations and flat comparison processes
versus role-binding structure and structural alignment.

Recent work building on the present investigation has begun to
address this question. One viable approach might be to ask subjects
directly what representations they used. Self-reports of cognitive
processes must, of course, be interpreted cautiously, because they
often reflect post hoc inferences based on observing one’s own
behavior rather than introspective access (Nisbett & Wilson, 1977).
Within categorization, much of behavior is governed by processes and
representations that are not verbalizable (Ashby et al., 1998), and
subjects who believe they are following a particular rule exhibit
influences of other processes in their classification responses (Allen &
Brooks, 1991). On the other hand, the all-or-none character of learn-
ing in the present experiments suggests that subjects’ category knowl-
edge might be particularly explicit. With this in mind, Corral (2017)
conducted a series of studies (with various materials, including those
of Experiment 4) wherein subjects were asked after learning to select
which of two options best described how they were thinking about the
categories: a unitary description (e.g., the machine functioned) and a
compositional one (e.g., what the machine worked to remove could be
found where the machine operates and could be removed with the
machine’s tool). Subjects overwhelmingly selected the unitary de-
scription in four of five experiments, with no differences found in the
fifth. In another recent study, using the materials from Experiment 4,
Corral and Jones (2017) gave each subject a hint about the category
rule at the outset of learning. The hint encouraged either a unitary
representation (“The machine is intuitive”) or a compositional one
(“Think about how each of the machine’s components are related to
one another”). Subjects who were encouraged to represent the cate-
gory unitarily outperformed subjects who were encouraged to repre-
sent it compositionally. Together with the present results, these find-
ings bolster the hypothesis that people prefer to represent relational
concepts unitarily, at least in the context of repeated classification.
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Finally, we note that the distinction proposed here may also inform
research on metaphor comprehension. The debate between theories of
metaphor based on structural alignment (Gentner & Bowdle, 2008;
Gentner & Wolff, 1997) and based on categorization (Glucksberg,
2003; Glucksberg, McGlone, & Manfredi, 1997) might be seen to
come down to a question of compositional versus unitary represen-
tations. If the concept conveyed by the metaphor can be represented
directly as an attribute of the base, then it seems likely that the
comprehender can evaluate whether that attribute applies to the target,
in a process akin to categorization. If, instead, the concept is repre-
sented only as a system of substituent relations within the base, then
some manner of structural alignment to the target should be necessary.
We leave this idea as conjecture, but we find it intriguing that the
mechanisms of metaphor processing might ultimately depend on the
issues of representation considered here.

Implications for Structure-Mapping Theory

The central principle of structure-mapping theory is that ana-
logical learning and reasoning are driven by discovery of shared
relational structure between two scenarios (Gentner, 1983). The
experimental results reported here challenge that principle, at least
in the context of category learning, by showing that people learn
relational categories better by comparing items instantiating con-
trasting relational concepts. The results suggest instead that people
do not make use of compositional role-binding representations or
of structural alignment processes, at least not when simpler,
feature-based mechanisms are adequate for the task at hand. Al-
though the representational apparatus of structure-mapping theory
implicitly incorporates the distinction delineated in the previous
subsection between unitary (global attributes and atomic relations)
and compositional (systems of interconnected relations) represen-
tations of relational concepts, this distinction has not been previ-
ously appreciated for its psychological implications. More impor-
tantly, the core tenet of the theory is that relational concepts are
learned in a compositional, structure-based manner (Markman,
1999; Markman & Gentner, 2000), and the present findings sug-
gest significant limitations to the applicability of this idea.

One possibility that proponents of structure-mapping theory
might pursue is that, in addition to learning from successful align-
ment, people can also learn from the ways in which alignment
fails, by identifying relations that prevent a partial alignment
between two scenarios from being extended further. These imped-
iments to alignment could highlight the structural differences
between opposing relational categories and thus drive learning
from between-category comparisons. For example, a subject in
Experiment 4 who compares the items in Figure 10 might align
sponge with shovel and oil with gas and then recognize that the
mapping cannot extend to include can collect. Indeed, recent work
by L. A. Smith and Gentner (2014) suggests that encouraging
people to partially align instances of contrasting relational catego-
ries makes them better able to identify the structural differences
between them (see also Gick & Paterson, 1992). This idea can be
seen as an extension of the work on alignable differences, which
has shown that successful alignment between two members of the
same relational category can highlight differences in their corre-
sponding features (Gentner & Markman, 1994, 1997; Markman &
Gentner, 1993a, 1993b). It also relates to Corral and Jones’s (2014)
proposal of schema elaboration, a mechanism for schema learning

from between-category comparisons whereby the schema for a
category is augmented with structure that an opposing item vio-
lates. Although learning from impediments to alignment seems
plausible with the framework of structure-mapping theory, it begs
the question of why or when learning from failed alignment should
be more effective than from successful alignment. Thus, it threat-
ens to make the theory unfalsifiable, in that it could equally predict
a match advantage through successful alignment or a contrast
advantage through impediments to alignment, depending on which
is assumed to be more effective for learning.

Perhaps a more interesting way forward would be to consider what
aspects of the present methods might have encouraged subjects to
embark on feature-based processing, and conversely to try to delineate
the conditions under which people are more likely to engage in
structural alignment. One factor that has already been discussed is the
number of comparisons a person must make: Structure-mapping the-
ory is perhaps best suited for explaining cases of one-shot learning,
whereas an extended categorization task might motivate subjects to
rely on less cognitively demanding strategies. In support of this
interpretation, Higgins and Ross (2011) found better learning of
mathematical combinatorics concepts (permutation vs. combination)
from within-category comparison in a design involving only a single
comparison between training items.

A second possible factor is the nature of the categorization task
and the types of comparison it encourages. The present experi-
ments used classification, by far the most common task used to
study category learning (e.g., Ashby & Maddox, 2005), and they
used neutral instructions designed to give subjects minimal direc-
tive on how to compare the stimuli on two-item trials (see Appen-
dix C). In this regard, we take the present results to reflect default
behavior in human category learning. However, different results
might be obtained under conditions encouraging subjects to en-
gage in more effortful comparison (see Alfieri et al., 2013). Pre-
vious research has used more elaborate comparison tasks, such as
listing commonalities and differences or mapping corresponding
elements, as a way to focus subjects on the substructure of stimuli
and thereby encourage structural alignment (Doumas & Hummel,
2004; Gentner & Gunn, 2001; Kurtz, Miao, & Gentner, 2001).
Additionally, inference learning—a categorization task wherein
the category labels are given and the subject has to infer hidden
features of the stimuli—has been shown to enhance learning of
relations among stimulus features relative to classification learning
(Markman & Ross, 2003; Yamauchi & Markman, 1998). As noted in
the introduction to Experiment 4, Higgins (2012) found a match
advantage on a classification task using half of the stimuli we used in
Experiment 4, after subjects were provided with an inference training
task and a task of listing similarities and differences between items,
providing evidence that requiring more effortful comparison can lead
people to engage in structural alignment. This finding, together with
the present results, suggests that systematic manipulation of catego-
rization tasks and comparison instructions could help to pin down the
conditions under which people might use structural alignment in
category learning.

A third potential factor influencing the use of structural align-
ment is the learner’s prior knowledge. Observe that a subject in
Experiment 3 is likely not learning anew the concepts contain and
support, but rather determining that these already-known concepts
provide the solution to the task. More generally, a person should
have a unitary representation for a relational concept only if he or
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she has previously learned it (see also Doumas et al., 2008). Clark
(2006) ascribes a critical role in this process to language, with verbal
labels for relational concepts providing the explicit representations
that enable them to be targets for explicit thought, much as we
propose for feature-based processing of unitary representations. If
such a representation is not available, then we would predict learners
to be more likely to engage in structural alignment. To use Higgins
and Ross’s (2011) combinatorics categories as an example, advanced
mathematics students might be more likely to exhibit a contrast
advantage in our paradigm than high school students learning these
concepts for the first time. As with language, the power of composi-
tional representations lies in their productivity and systematicity—the
fact that novel concepts can be built and understood by arranging
known (unitary) relations in ways a person has not previously en-
countered (Fodor & Pylyshyn, 1988). Thus, although our results
suggest that people engage in alignment of explicitly structured rep-
resentations only when less-demanding approaches are inadequate,
this does not diminish the importance of structural alignment for the
more impressive feats of human cognition, such as problem solving,
invention, and scientific discovery (French, 2002; Gentner & Forbus,
2011; Gentner & Markman, 1997).

Context of the Research

This project was motivated by two factors: (a) the connection
between relational category learning and analogical reasoning and (b)
the theoretical distinction between feature processing and structural
alignment. Based on these ideas, we initially expected to find an
interaction between category type and comparison type, with a con-
trast advantage for feature-based categories and a match advantage for
relational categories. Our goal was to demonstrate that feature-based
and relational categories are learned in fundamentally different ways.
However, despite an extensive effort to find conditions that would
produce a relational match advantage, we found a contrast advantage
in every case that we tested, including one feature-based category
structure and four relational ones. Therefore, we consider the present
results especially strong evidence that relational category learning is
more efficient from between-category comparisons. These findings
have shifted our theoretical outlook, such that we have grown more
skeptical toward the applicability of structure-mapping theory to re-
lational category learning, at least in its most direct form. Our research
program has shifted as well, such that the first author is now closely
investigating how compositional versus unitary representations affect
relational concept learning as well as the factors that lead people to
represent relational concepts compositionally and unitarily (Corral,
2017).

Conclusions

Although there has been much recent interest in potential con-
nections between analogical reasoning and relational category
learning, the present findings suggest important differences.
Structure-mapping theory makes a clear prediction of an advantage
of within-category comparisons, which is refuted by the experi-
ments reported here. Instead, the results are consistent with
feature-based processing. Rather than viewing feature-based and
analogical models as strict competitors, we see more promise in
integrated accounts like the unitary–compositional framework de-
scribed here. Hopefully, the present results and theoretical inter-

pretation will lead to a better understanding of the interplay be-
tween representations of individual features and representations of
relational structure as well as the conditions under which people do
and do not engage in structural alignment.
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Appendix A

Stimuli for Experiment 2

Category A Category B

1. Bathtub, Water 1. Foundation, Building
2. Bottle, Perfume 2. Legs, Table
3. Cup, Juice 3. Stand, Television
4. Spoon, Medicine 4. Shelf, Books
5. Reservoir, Water 5. Tires, Vehicle
6. Automobile, Gas 6. Parachute, Skydiver
7. House, People 7. Hanger, Clothes
8. School, Students 8. Road, Vehicle
9. Bank, Teller 9. Bench, People

10. Vehicle, Passengers 10. Backboard, Basketball Rim
11. Ocean, Fish 11. Walls, Ceiling
12. Solar System, Planets 12. Tracks, Train
13. Forest, Trees 13. Rod, Curtain
14. Courtroom, Lawyers 14. String, Yoyo
15. Swamp, Alligator 15. Rope, Climber
16. Jungle, Leopard 16. Balance Beam, Gymnast
17. Zoo, Animals 17. Bicycle, Bicyclist
18. Antarctica, Penguins 18. Nail, Clock
19. Shoe, Foot 19. Belt, Pants
20. Glove, Hand 20. Barbell, Weights
21. Building, Furniture 21. Bridge, Cars
22. Living Room, Sofa 22. Neck, Tie
23. Library, Books 23. Cable, Elevator
24. Frame, Picture 24. Horse, Jockey
25. Dishwasher, Utensils 25. Pole, Flag
26. Refrigerator, Food 26. Ladder, Firefighter
27. Register, Money 27. Crutch, Person
28. Book, Words 28. Rack, Towel
29. Glass, Water 29. Ear, Earring
30. Toaster, Bread 30. Bed, People
31. Jar, Cookies 31. Closet Rod, Hangers
32. Gym, Treadmill 32. Hook, Picture
33. Carafe, Lemonade 33. Tree, Tree House
34. Envelope, Letter 34. Stand, Aquarium
35. Vault, Money 35. Nose, Glasses
36. Sky, Clouds 36. Tree, Hammock
37. Hangar, Airplane 37. Hinges, Door
38. Harbor, Boat 38. Stake, Scarecrow
39. Garage, Car 39. Perch, Bird
40. Closet, Clothes 40. Columns, Coliseum
41. Pot, Coffee 41. Suspensions, Bridge
42. Tube, Toothpaste 42. Rope, Acrobat
43. Aquarium, Fish 43. Rope, Piñata
44. Farm, Pigs 44. Suspenders, Pants
45. Stable, Horse 45. Crane, Piano

(Appendices continue)
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Appendix A (continued)

Category A Category B

46. Engine, Oil 46. Scaffolding, Workers
47. Safe, Valuables 47. Tree, Swing
48. Mall, Stores 48. Hot Air Balloon, Basket
49. Pitcher, Beer 49. Tripod, Telescope
50. Classroom, Desk 50. Railing, Ballerina
51. Volcano, Magma 51. Ceiling, Chandelier
52. Spaceship, Astronauts 52. Post, Sign
53. Airplane, Pilot 53. Straps, Backpack
54. Wastebasket, Trash 54. Wind, Kite
55. Movie, Actors 55. Life Preserver, Person
56. Concert, Musicians 56. Stretcher, Person
57. Wallet, Money 57. Pull-Up Bar, Person
58. Mouth, Teeth 58. Fishing Line, Fishing Hook
59. Restaurant, Menu 59. Branch, Nest
60. Galaxy, Stars 60. Crane, Cable
61. Forest, Plants 61. Branch, Leaves
62. Canyon, Rocks 62. Trunk, Branches
63. Bedroom, Bed 63. Balloon, String
64. Bathroom, Toothbrush 64. Pole, Clothesline
65. Hamper, Clothes 65. Toothbrush, Toothpaste
66. Kitchen, Sink 66. Face, Beard
67. Birdcage, Bird 67. Brackets, Shelf
68. Firearm, Ammunition 68. Post, Fence
69. Military, Soldiers 69. Building, Gargoyle
70. Race, Runners 70. Tray, Food
71. Pool, Swimmers 71. Strap, Purse
72. Beach, Sand 72. Table, Plates
73. Cabinet, Dishes 73. Dolly, Equipment
74. Park, Swings 74. Ski Lift, Skiers
75. Shower, Faucet 75. Pedestal, Statue
76. Sky, Birds 76. Jetpack, Person
77. Mirror, Reflection 77. Ironing Board, Iron
78. Printer, Paper 78. Basketball Rim, Net
79. Theater, Chairs 79. Handle, Mug
80. Head, Brain 80. Walker, Toddler

Note. Assignment of these two categories to the labels A and B was counterbalanced between subjects.
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Appendix B

Stimuli for Experiment 4

Morkels Non-Morkels

1. Operates on land 1. Operates on land
Works to gather harmful solids Works to clean spilled oil
Has a shovel Has an electrostatic filter

2. Operates on the surface of the water 2. Operates on the surface of the water
Works to clean spilled oil Works to collect dangerous gaseous ions
Has a spongy material Has a shovel

3. Operates in the stratosphere 3. Operates in the stratosphere
Works to collect dangerous gaseous ions Works to gather harmful solids
Has an electrostatic filter Has a spongy material

4. Operates in highway tunnels 4. Operates in highway tunnels
Works to remove carbon dioxide Works to remove lost fishing nets
Has a large intake tank Has a sifter

5. Operates in swamps 5. Operates in swamps
Works to remove malaria-ridden mosquitos Works to remove broken glass
Has a finely woven net Has a metal pole with sharpened end

6. Operates in warzones 6. Operates in warzones
Works to gather shards of metal Works to gather discarded paper
Has a large magnet Has a finely woven net

7. Operates in parks 7. Operates in parks
Works to gather discarded paper Works to gather shards of metal
Has a metal pole with a sharpened end Has a hook

8. Operates on the seafloor 8. Operates on the seafloor
Works to remove lost fishing nets Works to remove malaria-ridden mosquitoes
Has a hook Has a large intake fan

9. Operates on the beach 9. Operates on the beach
Works to remove broken glass Works to remove carbon dioxide
Has a sifter Has a large magnet

10. Operates on wood floors 10. Operates on wood floors
Works to remove stains Works to collect ocean sediments
Has absorbent cloth Has an intake port

11. Operates on solid surfaces 11. Operates on solid surfaces
Works to remove debris Works to remove large rocks
Has a dense set of bristles Has absorbent cloth

12. Operates on glass 12. Operates on glass
Works to remove liquids Works to collect small particles
Has a rubber edge Has a dense set of bristles

13. Operates on thick woven fabric 13. Operates on thick woven fabric
Works to collect small particles Works to remove brush
Has an intake port Has a large shovel

14. Operates in harbors 14. Operates in harbors
Works to collect ocean sediments Works to remove leaves
Has a large shovel Has metal teeth and a sieve

15. Operates in the jungle 15. Operates in the jungle
Works to remove brush Works to remove debris
Has sharp blades Has a rubber edge

16. Operates in farmland 16. Operates in farmland
Works to remove rocks Works to smooth rough spots
Has metal teeth and a sieve Has a rough metal surface

17. Operates on fine wood 17. Operates on fine wood
Works to smooth rough spots Works to remove liquids
Has a rough metal surface Has a nozzle and a motor

18. Operates in gardens 18. Operates in gardens
Works to remove leaves Works to remove stains
Has a nozzle and a motor Has sharp blades

Note. Morkels were coherent items and non-Morkels were incoherent items. Items 1–3 in each category were taken from
Rehder and Ross (2001), Items 4–9 were taken from Higgins (2012), and Items 10–18 were created by the present authors.
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Appendix C

Experiment Instructions

Experiment 1

Match Condition

“Recently, a large number of unexplained crop circles
have been found throughout the United States. A task force has
been appointed to investigate the matter. The task force has
identified two types of crop circles that are produced by two
different alien races: the Alkins and the Bafsters. You have
been selected to join the task force, but before you can begin
you must learn to identify the crop circles that are being
produced by each alien race. To help you in this task, we are
going to show you pairs of crop circles, each produced by the
same aliens. For each pair, your job is to decide whether they
were both produced by Alkins or Bafsters. You will be told the
right answer after you respond, so that you can learn. Press the
spacebar to begin.”

Contrast Condition

“Recently, a large number of unexplained crop circles have been
found throughout the United States. A task force has been appointed
to investigate the matter. The task force has identified two types of
crop circles that are produced by two different alien races: the Alkins
and the Bafsters. You have been selected to join the task force, but
before you can begin you must learn to identify the crop circles that
are being produced by each alien race. To help you in this task, we are
going to show you pairs of crop circles, one produced by Alkins and
the other by Bafsters. For each pair, your job is to decide which is
which. You will be told the right answer after you respond, so that you
can learn. Press the spacebar to begin.”

Experiment 2

Match Condition

“Government intelligence has recently discovered that rogue
agents are sending each other secret messages by using paired
words. A task force has been appointed to investigate the matter.
The task force has identified two types of secret codes: Code A and
Code B. You have been selected to join the task force, but before
you can begin you must learn to identify the different codes. To
help you in this task, we are going to show you two pairs of words
that the rogue agents have been using, both from the same code.
For each pair, your job is to decide whether they are both from
Code A or both from Code B. You will be told the right answer

after you respond, so that you can learn. Press the spacebar to
begin.”

Contrast Condition

“Government intelligence has recently discovered that rogue
agents are sending each other secret messages by using paired
words. A task force has been appointed to investigate the matter.
The task force has identified two types of secret codes: Code A and
Code B. You have been selected to join the task force, but before
you can begin you must learn to identify the different codes. To
help you in this task, we are going to show you two pairs of words
that the rogue agents have been using, one from Code A and one
from Code B. For each pair, your job is to decide which is from
Code A and which is from Code B. You will be told the right
answer after you respond, so that you can learn. Press the spacebar
to begin.”

Experiment 3

Match Condition

“Recently, mysterious alien writing has been found throughout
the United States. A task force has been appointed to investigate
the matter. The task force has identified two types of alien symbols
that are produced by two different alien races: the Alkins and the
Bafsters. You have been selected to join the task force, but before
you can begin you must learn to identify the symbols that are being
produced by each alien race. To help you in this task, we are going
to show you pairs of alien symbols, each produced by the same
aliens. For each pair, your job is to decide whether they were both
produced by Alkins or Bafsters. You will be told the right answer
after you respond, so that you can learn. Press the spacebar to
begin.”

Contrast Condition

“Recently, mysterious alien writing has been found throughout
the United States. A task force has been appointed to investigate
the matter. The task force has identified two types of alien symbols
that are produced by two different alien races: the Alkins and the
Bafsters. You have been selected to join the task force, but before
you can begin you must learn to identify the symbols that are being
produced by each alien race. To help you in this task, we are going
to show you pairs of alien symbols, one produced by Alkins and
the other produced by Bafsters. For each pair, your job is to decide
which is which. You will be told the right answer after you
respond, so that you can learn. Press the spacebar to begin.”

(Appendices continue)
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Experiment 4

Match Condition

“In this experiment, you will learn about a type of machine
called a Morkel. Your job will be to learn which machines are
Morkels and which are not. On each trial, you will read descrip-
tions about two machines, and you’ll need to decide whether they
are both Morkels or not. You will be told the right answer after you
respond, so that you can learn. Press the spacebar to begin.”

Contrast Condition

“In this experiment, you will learn about a type of machine
called a Morkel. Your job will be to learn which machines are

Morkels and which are not. On each trial, you will read descrip-
tions about two machines, and you’ll need to decide which is a
Morkel and which is not. You will be told the right answer after
you respond, so that you can learn. Press the spacebar to begin.”
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