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Much current research on speeded choice utilizes models in which the response is triggered by a

stochastic process crossing a deterministic threshold. This article focuses on two such model classes,

one based on continuous-time diffusion and the other on linear ballistic accumulation (LBA). Both

models assume random variability in growth rates and in other model components across trials.

We show that if the form of this variability is unconstrained, the models can exactly match any

possible pattern of response probabilities and response time distributions. Thus, the explana-

tory or predictive content of these models is determined not by their structural assumptions, but

rather by distributional assumptions (e.g., Gaussian distributions) that are traditionally regarded

as implementation details. Selective influence assumptions (i.e., which experimental manipulations

affect which model parameters) are shown to have no restrictive effect, except for the theoretically

questionable assumption that speed-accuracy instructions do not affect growth rates. The second

contribution of this article concerns translation of falsifiable models between universal modeling

languages. Specifically, we translate the predictions of the diffusion and LBA models (with their

parametric and selective influence assumptions intact) into the Grice modeling framework, in which

accumulation processes are deterministic and thresholds are random variables. The Grice frame-

work is also known to reproduce any possible pattern of response probabilities and times, and hence

it can be used as a common language for comparing models. It is found that only a few simple

properties of empirical data are necessary predictions of the diffusion and LBA models.

Keywords: choice reaction time, diffusion model, linear ballistic accumulator, Grice framework,

model falsifiability

Matt Jones, Department of Psychology and Neuroscience, University of Colorado; Ehtibar N. Dzhafarov,
Department of Psychological Sciences, Purdue University. This research was supported by AFOSR grant
FA9550-10-1-0177 to MJ and NSF grant SES-1155956 to END. We thank Jerome Busemeyer, Andrew
Heathcote, Roger Ratcliff, Rich Shiffrin, and Jim Townsend for helpful comments on this work, and
Roger Ratcliff for sharing his data. Correspondence regarding this article should be addressed to MJ at
mcj@colorado.edu.

1



2 Jones and Dzhafarov

1. INTRODUCTION

A number of theoretical frameworks have been developed for modeling choice reaction
time (RT) in terms of certain psychological processes developing until they reach threshold
levels, or boundaries. Such processes may be thought of as evidence accumulation or response
readiness, but we use the neutral term response processes. In most contemporary models,
the response processes are stochastic, and the decision thresholds are fixed under given
observation conditions. In this article we focus on two classes of such models: the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008) and the class of diffusion models,
which includes the Wiener diffusion model (Ratcliff, 1978) and the Ornstein-Uhlenbeck (OU)
model (Busemeyer & Townsend, 1993).

As an alternative, Grice (1968, 1972; Grice, Cahnam & Boroughs, 1984; Grice, Nullmeyer,
& Spiker, 1982) proposed a class of models in which the response processes are deterministic,
and the thresholds are stochastically sampled for each trial. Grice’s formulation involved
specific assumptions about the shape of the response processes (linear or negatively accel-
erated exponential) and the distributions of the thresholds (independent normal). These
assumptions are clearly of a “technical” nature rather than part of Grice’s “main idea”—they
are introduced to fit empirical data and are supposed to be freely modifiable if needed.
Thus, the linear response processes posited in Grice (1968) were replaced with the nega-
tively accelerated exponential ones in Grice’s later publications, and this was not presented
as changing the essence of the model. Dzhafarov (1993) showed, however, that with these
technical assumptions removed, the Grice framework can match any pattern of response
probabilities and RTs, across any set of stimuli and other experimental conditions (this re-
sult is recapitulated below as Theorem 1). This mathematical result means that the Grice
architecture (deterministic response processes racing to probabilistically chosen thresholds)
is not a falsifiable model but rather a universal modeling language. Its only testable aspects
are the “technical” constraints that may be imposed on its constituents.

The distinction between universal theoretical languages and empirically falsifiable models
formulated in these languages is the leitmotif of this article. A comparison of competing
models is often thought of as a contrast of their main ideas. This is incorrect, however, if
the competing main ideas can be shown to be universally applicable theoretical languages.1

In that case they are equivalent, and one can always translate a model formulated in one

1 RT distributions are usually assumed to satisfy some regularity conditions, such as being representable
by probability density functions, and the universality of a theoretical language may be confined to such
regularity conditions. This should not prevent one from calling the language “universal” insofar as the
regularity conditions in question are considered firmly established.
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language into the other. The contrast in such a case occurs between the technical assump-
tions of the models only, such as the common assumption of normality in the distribution
of growth rates of each response process.

To clarify this argument by a simple analogy, any RT distribution can be repre-
sented by a cumulative distribution function F (t) = Pr [RT ≤ t], log survival function
S (t) = − log Pr [RT > t], odds ratio function H (t) = Pr [RT ≤ t] /Pr [RT > t], etc. Un-
der the commonly accepted assumption of differentiability, one can add to this list density
functions f (t) = dF (t) /dt, hazard functions h (t) = f (t) / (1− F (t)), reverse hazards
s (t) = f (t) /F (t), etc. Due to the simplicity and familiarity of these representations, their
universality and their mutual equivalence are obvious. Using one representation over another
is merely a matter of convenience. However, if one makes a simplifying assumption within
one of these representations, for example that F (t) is a linear function on some interval
a < t < b, and someone else makes the simplifying assumption that S (t) is a linear function
on the same interval, then the two descriptions become falsifiable models, one of which may
very well be more correct than the other.

This simple analogy also illustrates that non-falsifiability need not mean deficiency or
“emptiness” of one’s construction. A modeling language might be universal but nevertheless
valuable in enabling formulation of falsifiable models that otherwise could not be stated.
Using our analogy, one cannot make the falsifiable statement that F (t) is linear on some
interval without first introducing the universally applicable notion of a cumulative distri-
bution function. Problems only arise when one does not distinguish a descriptive language
from a model formulated in that language. In some fields of psychology this distinction may
not be easy to achieve, but in areas amenable to rigorous mathematical formulations (such
as the models of RT analyzed in this article) it is relatively straightforward.

The present article pursues two goals. First, we prove that both the LBA and diffu-
sion models, when stripped of their “technical” assumptions, are non-falsifiable modeling
languages, on a par with the Grice modeling framework (see Section 2). Specifically, both
the LBA and diffusion models assume random trial-by-trial variability in the growth rates
and starting points of their response processes, respectively following Gaussian and uniform
distributions. These distributions were chosen for mathematical convenience rather than
theoretical reasons. The models also assume the growth-rate distribution is invariant with
respect to certain experimental manipulations, although we argue that this assumption is
poorly motivated (see Section 3). The primary results of this article are proofs that, if the
constraints on the distributions of growth rates are removed, the diffusion and LBA models
become universal: Any pattern of response probabilities and RT distributions, across any
set of stimuli and experimental conditions, can be fit exactly. In certain nonlinear ballistic
accumulator models (including that of Brown & Heathcote, 2005, except for one additional
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technical detail), universality can also arise from start-point variability, if that distribution
is unconstrained. These unfalsifiability results for the generalized models, with distribu-
tional constraints removed, imply that the predictive content of the standard models is fully
determined by their assumptions about these distributions. This conclusion does not ap-
ply to stochastic accumulation models that exclude between-trial variability in growth rates
or starting points (e.g., Link & Heath, 1975; Palmer, Huk, & Shadlen, 2005), but it has
significant implications for models that do.

Our second goal is to develop methods for translating falsifiable models between universal
modeling languages. When two languages are universal, any constrained model (e.g., defined
by parametric restrictions on one or more of its components) expressed in one language can
be re-expressed as an equivalent model in the other language. Here we translate the diffusion
and LBA models (with all their technical assumptions included) into the Grice modeling
language, by deriving Grice models that make the same predictions (see Section 4). The
specific goal is to determine the role that the technical assumptions of the LBA and diffusion
models play in explaining empirical data, and to develop an understanding of the predictive
constraints these assumptions impose that is not tied to one modeling framework. The free
parameters of the original models are systematically varied to investigate how they affect
the course of the Grice response processes. Grice representations are then derived for the
diffusion and LBA models with their parameters fit to empirical data, as well as for the
empirical data themselves (taken from Ratcliff, Thapar, & McKoon, 2001), to understand
what aspects of the data the models capture, and how. These analyses demonstrate that
translating technical assumptions (i.e., specific models) between different modeling languages
can provide greater insight into their logical content, as well as into the patterns of behavior
those assumptions can explain.

In addition to their parametric distributional assumptions, the LBA and diffusion mod-
els make two selective influence assumptions about how model parameters can depend on
different aspects of stimulus and observation conditions. First, it is assumed that variation
of stimulus difficulty (e.g., perceptual discriminability or lexical frequency) affect only the
growth rates of the response processes and not other parameters, such as threshold values
and starting points. Second, it is assumed that manipulations of speed-accuracy instruc-
tions, usually held constant across a block of trials, affect only the threshold parameter (and
start-point variability in the LBA). We consider the implications of these assumptions in
Section 3. The first selective influence assumption has no impact on our universality results
(i.e., the models are still unfalsifiable with this assumption), whereas the second assumption
introduces predictive constraints and hence makes the models falsifiable. However, whereas
the justification commonly offered for the first selective influence assumption is logically
compelling, we argue that the justification for the second is not. We also consider the im-
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plications of selective influence for mutual translatability between modeling languages, and
demonstrate that the notion of selective influence per se cannot be used to distinguish be-
tween equivalent languages. This follows from the fact that when a model is translated from
one modeling language into another, the precise parameterization of the original model can
be carried over to the new language, with all assumptions of selective influences included.
The selective influence assumptions therefore are never “lost in translation,” even though
the parameters in question may change their interpretations.

To prevent misunderstanding, we are not proposing to replace the different modeling
languages investigated in this article with just one of them (say, the Grice framework).
Universality and mutual equivalence still allow for one theoretical description to be more
convenient or more transparent than another. Returning to our simple analogy, some proper-
ties of RTs may be more apparent when represented by hazard functions than by distribution
functions (Luce, 1986). Despite the equivalence among the diffusion, LBA, and Grice mod-
eling languages, as well as the variety of modifications and simplifications of these languages
readily suggesting themselves, it is possible that one of these is more convenient than oth-
ers in a specific context or in view of a specific goal. For example, the LBA and Grice
frameworks assume a separate process for each response, with a response triggered once its
process reaches an absolute threshold. This stopping rule is equally simple regardless of the
number of response options. In contrast, the diffusion model uses a relative stopping rule
that admits a simpler formulation for the case of two responses (a single process represent-
ing the difference between the responses, with two constant thresholds) but that becomes
more complex in many-alternative tasks (Bogacz & Gurney, 2007; Draglia, Tartakovsky,
& Veeravalli, 1999; Roe, Busemeyer, & Townsend, 2001). As we elaborate in Section 5,
consideration of neurophysiological or other process-level data, in addition to behavior, may
also lead to advantages of one framework over another, although incorporation of such data
requires additional assumptions about how abstract model components map onto physical
variables. Convenience in a model (mathematical simplicity, ease of mapping special terms
into colloquial or traditional ones) is a legitimate consideration provided one does not confuse
it with truth about the system being modeled.

2. UNIVERSALITY OF MODELS OF SPEEDED CHOICE

This article focuses on speeded choice tasks, in which on each trial the subject selects one
of n response options. We index variation in stimulus values by s, and variation in other
experimental factors, such as speed versus accuracy instructions, by c, generically referring
to values of c as (experimental, or observation) conditions. In the paradigms we consider,
s always varies from trial to trial, whereas c is constant across a block of trials. Because
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of this we also refer to s and c as trial-level and block-level manipulations, leaving open
the question of whether it is the blocking scheme or the nature of each experimental factor
that determines which theoretical parameters it influences. For each choice of s and c, the
subject’s behavior can be summarized by a joint distribution over the chosen response, r,
and the response time, t. Formally, this (joint) response-and-time (R&T) distribution can
be defined as

Gs,c (r, t) = Pr [response = r and RT ≤ t|s, c] . (2.1)

The marginal distributions for the joint R&T distribution determine the response probabil-
ities

Gs,c (r, ·) = Pr [response = r|s, c] = lim
t→∞

Gs,c (r, t) (2.2)

and the overall RT distribution

Gs,c (·, t) = Pr [RT ≤ t|s, c] =
n∑

r=1

Gs,c (r, t) . (2.3)

In the following we tacitly assume that the domain of t is [0,∞), that is, all finite nonnegative
real numbers. The analysis can be easily extended to include negative values for t (i.e.,
premature responses), but we need not do this as premature responses are rarely observed
in the choice RT paradigm.

With little loss of generality, we assume that Gs,c (r, t) is differentiable in t, which allows
us to define the (joint) R&T density function,

gs,c(r, t) =
dGs,c (r, t)

dt
. (2.4)

Under this assumption, we can also define the joint hazard function for R&T as the proba-
bility density of response r occurring at time t, conditioned on no response having occurred
before t (Marley & Colonius 1992; Townsend 1976):

hs,c (r, t) =


gs,c(r,t)

1−Gs,c(·,t) if t < ts,cmax

0 if t ≥ ts,cmax,

(2.5)

where ts,cmax is the maximal RT:

ts,cmax = min {t : Gs,c(·, t) = 1} , (2.6)

which is understood to be ∞ if Gs,c(·, t) < 1 for all t.
With reference to the example in the Introduction, the R&T distribution, R&T density

function, and joint hazard function are all equivalent representations of the same information.
It will be useful in what follows to switch freely among these alternate representations.
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2.1. The Grice Framework and Independent Race Models

Consider now the general class of race models, in which each response r is associated with
a process Rs,c

r (t), generally a random process, and a threshold θs,cr > Rs,c
r (0), generally a

random variable. As indicated by the superscripts, both the processes and the thresholds
may in general depend on the stimulus (s) and experimental condition (c). On each trial,
the processes race to their respective thresholds. The first process to reach its threshold
determines which response is emitted, and the time taken to reach that threshold equals the
RT.

For each response r, define the first-passage time, T s,c
r , as the time it would take Rs,c

r (t)

to cross θs,cr for the first time, ignoring the other process-threshold pairs:

T s,c
r = min

t
{t : Rs,c

r (t) ≥ θs,cr } . (2.7)

Then the response observed in a given trial, r, is given by

r = argmin
i

{T s,c
i : i = 1, . . . , n} , (2.8)

where argmin with index i indicates the value of i (here, one of the n responses) for which
the first-passage time T s,c

i is shortest. The corresponding RT is given by

RT = min {T s,c
i : i = 1, . . . , n} = T s,c

r . (2.9)

This representation is useful for modeling response choice and RT in a way that avoids
commitments to the nature of the underlying processes (e.g., Townsend & Altieri, 2012;
Townsend, Houpt, & Silbert, 2012).

Any vector of process-threshold pairs

M = ((Rs,c
1 (t), θs,c1 ) , . . . , (Rs,c

n (t), θs,cn ))

thus defines a race model. Equations 2.8 and 2.9 determine the R&T distribution predicted
by M for each stimulus and experimental condition. If this joint distribution is equal to Gs,c,
then we say that M is a race representation for Gs,c. If the crossing times T s,c

1 , . . . , T s,c
n are

mutually independent for each stimulus and condition, then we refer to M as an independent
race model, and we say that M is an independent race representation for Gs,c.

The Grice framework (Grice, 1968, 1972) is a class of race models in which the response
processes are all deterministic, and the distribution of thresholds is independent of stimu-
lus and condition. The thresholds θ1, . . . , θn are sampled from this fixed joint distribution
before each trial, and the stimulus (with onset at t = 0) evokes n deterministic processes
racing to their respective thresholds (see Figure 1A). This class of models is seemingly quite
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simple: given a distribution for the thresholds, the only flexibility is in the choice of the (de-
terministic) response process for each response and experimental condition. Nevertheless, it
is shown in Dzhafarov (1993) that the Grice framework is universal, meaning that a Grice
representation can be constructed for any family of R&T distributions Gs,c (r, t). Further-
more, the joint distribution defining the thresholds can be chosen arbitrarily (except for a
mild technical constraint given below). This result is formalized as follows (see Dzhafarov,
1993, for proof).

Theorem 1 (Universality of Grice framework; Dzhafarov, 1993). Let (θ1, . . . , θn) be a vector
of random thresholds, with any joint distribution possessing a nonzero density everywhere on
its domain (inf θ1, sup θ1)× . . .× (inf θn, sup θn).2 Then for any family of R&T distributions
Gs,c (r, t), there exist deterministic response processes Rs,c

r , such that

((Rs,c
1 (t), θ1) , . . . , (R

s,c
n (t), θn))

is a race representation for Gs,c (r, t).

In other words, if no restrictions are placed on the response processes (e.g., requiring them
to come from some parametric family), then the Grice framework is a universally applicable
modeling language rather than an empirically falsifiable model. Moreover, because the
threshold distribution is arbitrary, one can fix this distribution in advance and still have a
universal modeling language.

If the thresholds are chosen to be mutually independent (making the Grice model an inde-
pendent race model), then the Grice representation given by Theorem 1 can be analytically
derived, as shown in Theorem 2.

Theorem 2 (Grice framework with independent thresholds; Dzhafarov, 1993). Let θ1, . . . , θn
in Theorem 1 be mutually independent, and let hs,c(r, t) be the joint hazard function asso-
ciated with Gs,c (r, t). Then the response processes in the Grice representation of Gs,c (r, t)

are given by
Rs,c

r (t) = Θ−1
r (Pr [T s,c

r ≤ t]) , (2.10)

for all t < ts,cmax, where Θr is the (strictly increasing) cumulative distribution function for θr,
and T s,c

r is the model’s first-passage time, with distribution function satisfying

Pr [T s,c
r ≤ t] = 1− exp

(
−
ˆ t

0

hs,c (r, τ) dτ

)
(2.11)

2 This condition is unnecessarily strong, but sufficiently innocuous for present purposes. In Dzhafarov
(1993) the theorem is proved under weaker constraints. Given a random variable x (here, one of θi), inf x
and supx denote the lower and upper boundaries for the set of this variable’s values, these boundaries
not being necessarily included in this set.
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Figure 1: Illustrations of three modeling frameworks for two-alternative speeded choice. A: Grice

modeling framework. Before stimulus onset, the thresholds (θ1 and θ2) are probabilistically sampled

for each response. The threshold distributions can be arbitrarily chosen, and here they are taken

to be independently and identically distributed, according to the exponential density function p (θ)

shown at left. Stimulus onset (at time t = 0) triggers deterministic response processes R1(t)

and R2(t). The first process to reach its threshold (here, R1) determines the response and the

response time (RT). B: Linear ballistic accumulator (LBA). Response processes are linear, racing

to a common threshold (b). The growth rate and starting point of each process are sampled from

Gaussian and uniform distributions, respectively. Nondecision time (t0) is added to the time of the

winning process to determine RT. C: Diffusion model. A single stochastic process evolves until it

reaches either decision threshold (0 for response 1 or a for response 2). The growth rate and starting

point are sampled from Gaussian and uniform distributions, respectively. Nondecision time t0 is

sampled from a uniform distribution.
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for all t < ts,cmax.

Equation 2.11 is significant because it turns out to be a necessary and sufficient condition
for any independent race representation (not just independent-threshold Grice representa-
tions), as stated in Theorem 3.

Theorem 3 (Universality of independent race models). Let Gs,c (r, t) be a family of R&T
distributions, with associated joint hazard functions hs,c (r, t). Let

M = ((Rs,c
1 (t), θ1) , . . . , (R

s,c
n (t), θn))

be an independent race model, with first-passage times (T s,c
1 , . . . , T s,c

n ). Then M is an inde-
pendent race representation for Gs,c if and only if Equation 2.11 holds for t < ts,cmax.

If one disregards minor technical details and logical subtleties in formulation, this theorem
was proved by Marley & Colonius (1992) and, in a different context, by Townsend (1976).
For completeness (and due to the details and subtleties just mentioned), we provide a proof in
Appendix A. The proof hinges on the fact that in any independent race model representing
Gs,c, the joint hazard function hs,c (r, t) coincides with the individual hazard functions νs,c

r (t)

for the first-passage times T s,c
r :

hs,c (r, t) = νs,c
r (t) . (2.12)

Theorem 3 implies that the class of independent race models is not a falsifiable model
but a universal modeling language. As long as one can define for each response a process-
threshold pair with the right distribution of first-passage times, any R&T distribution can be
perfectly fit. Thus the requirement of independent first-passage times, taken alone, imparts
no restriction on model predictions. Although there are models of speeded choice in which
the first-passage times are nonindependent (because of interactions among the processes, as
in Usher & McClelland, 2001, or mutual interdependence of thresholds, as in Dzhafarov,
1993), the question can never be empirically decided, at least from RT and choice data
alone. Furthermore, any model class within the family of independent race models only has
predictive power insofar as the individual processes are restricted in their first-passage distri-
butions. This conclusion is used below to prove universality of the LBA when its growth-rate
distributions are unconstrained (see Section 2.3).

As stated in Marley and Colonius (1992), an important caveat to representing Gs,c (r, t)

through the competing random times T s,c
1 , . . . , T s,c

n is that Equation 2.11 may not define a
proper probability distribution for some values of r, because Pr [T s,c

r ≤ t] may be bounded
by some value less than 1 for all values of t. In other words, the first-passage times T s,c

r must
be viewed as distributed on the extended set of nonnegative reals, [0,∞], with infinity a pos-
sible value for T s,c

r , attainable with a nonzero probability. Such random variables are called
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incomplete (Dzhafarov, 1993), improper (Marley & Colonius, 1992), or defective (Feller,
1968). Although completeness of first-passage times has been taken as a defining require-
ment in some past analyses of race models (Townsend, 1976), we hold that incompleteness
of individual first-passage times is not problematic because it has a natural cause and inter-
pretation: a threshold can be set too high for a process ever to cross it (Dzhafarov, 1993).
As long as T s,c

r is complete for at least one r, the observed RT, equal to min {T s,c
1 , . . . , T s,c

n },
will be complete as well (i.e., a response will occur on every trial).

Allowing for some response processes to have incomplete first-passage distributions is
necessary for Theorem 3 to hold. This is because there exist R&T distributions that can-
not be represented by an independent race model if all processes are required eventually to
reach threshold with probability 1. This can be seen by constructing a model in which some
first-passage distributions are incomplete, and showing that the R&T distribution predicted
by this model has no other independent race representation in which the first-passage dis-
tributions are all complete. This result (proved in Appendix A) will be useful in the next
two subsections in determining conditions for certain model classes to be universal.

Theorem 4 (Incomplete termination times). For any subset {r1, . . . , rm} of the response
options {1, . . . , n}, where 0 ≤ m < n, there exists an R&T distribution G (r, t) such that
any independent race model generating G has first-passage distributions that are incomplete
for r1, . . . , rm and that are complete for the remaining responses.

Note that the choice of the subset {r1, . . . , rm} in this theorem can be different for different
conditions and stimuli. Some models (including Grice et al., 1982; McClelland, 1979; and
the LBA, as discussed below) allow for a global incompleteness of RT, a positive probability
that no response is given in a trial. Depending on ramifications, this property may be viewed
as a construction deficiency or as the reflection of a true empirical phenomenon. In the latter
case, we may allow for m = n in Theorem 4.

2.2. Universal Variants of the Grice Framework

Given a Grice model M = ((Rs,c
1 (t), θ1) , . . . , (R

s,c
n (t), θn)) (with deterministic response

processes and stochastic thresholds), one can define equivalent models in which the thresh-
olds are deterministic and all stochasticity resides in the response processes. The new models
are equivalent to M in the sense of accounting for (i.e., generating) precisely the same R&T
distributions.

In view of the discussion of the LBA and diffusion models below, it is especially interesting
to consider the immediately obvious equivalents of a Grice model in which the thresholds
are deterministic, and each response process has a fixed shape (for any given stimulus and
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condition), but the growth rates or starting points vary randomly across trials (see Figure 2).
For example, let γ be any strictly increasing nonnegative function, define a random growth
rate for each response process by

kr =
1

γ (θr)

(under our assumptions, Pr [kr < ∞] = 1), and define the (deterministic) shape of each
process by

R̃s,c
r (t) = γ (Rs,c

r (t)) .

Then the model defined by

M ′ =
((

k1R̃
s,c
1 (t), θ̃1 = 1

)
, . . . ,

(
knR̃

s,c
n (t), θ̃n = 1

))
(2.13)

is equivalent to the Grice model M . The equivalence follows from the fact that

krR̃
s,c
r (t) ≥ 1 if and only if Rs,c

r (t)≥θr.

Analogously, let zr be a random starting point (i.e., offset) for process r, defined by

zr = 1− γ (θr) .

Then the model defined by

M ′′ =
((

z1 + R̃s,c
1 (t), θ̃1 = 1

)
, . . . ,

(
zn + R̃s,c

n (t), θ̃n = 1
))

, (2.14)

is also equivalent to the Grice model M . The equivalence here follows from

zr + R̃s,c
r (t) ≥ 1 if and only if Rs,c

r (t)≥θr.

Because of the universality of the Grice framework, Equations 2.13 and 2.14 also define
universal modeling languages, provided the functions R̃s,c

r (t) are treated as free in fitting
R&T distributions. Moreover, the choice of the distribution for kr or zr is arbitrary (be-
cause the distribution of θr in the Grice representation is), except for the requirement of
nonvanishing density on an appropriately chosen open domain. We summarize these obser-
vations in the following two theorems.3

Theorem 5. Let k1, . . . , kn be stochastically independent nonnegative random variables, each
kr having a nonzero density on its domain (inf kr, sup kr). Then for any family of R&T

3 Theorems 5 and 6 respectively correspond to Lemmas 1.3.2 and 1.3.1 in Dzhafarov (1993). Unfortunately,
it is erroneously stated in those lemmas that kr and zr (using our present notation) can be defined as
random processes kr (t) and zr (t) rather than within-trial constants.
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distributions Gs,c (r, t), there exist deterministic, nondecreasing, and nonnegative functions
R̃s,c

r (t) such that ((
k1R̃

s,c
1 (t), 1

)
, . . . ,

(
knR̃

s,c
n (t), 1

))
is an independent race representation for Gs,c (r, t).

Theorem 6. Let z1, . . . , zn be stochastically independent random variables, each zr having
a nonzero density on its domain (inf zr, sup zr), with maxr sup zr ≤ 1. Then for any family
of R&T distributions Gs,c (r, t) there exist deterministic, nondecreasing, and nonnegative
functions R̃s,c

r (t), such that((
z1 + R̃s,c

1 (t), 1
)
, . . . ,

(
zn + R̃s,c

n (t), 1
))

is an independent race representation for Gs,c (r, t).

These straightforward results show that the essence of the Grice framework is not in the
assumption of deterministic processes and random thresholds. Rather, its essence is in how
the difference between thresholds and processes, θr −Rs,c

r (t), is separated into deterministic
and random components. In the Grice representation and in the equivalent representations of
Theorems 5 and 6, the deterministic components (i.e., the shapes of the response processes)
are stimulus- and condition-dependent and free to vary in fitting data, whereas the random
parts of the models (thresholds, growth rates, or starting points, respectively) have fixed (and
essentially arbitrary) distributions. In contrast, in the LBA modeling language considered
next, the randomly varying growth rates are stimulus-dependent and free to vary, whereas
the shape of the processes is fixed (chosen to be linear).

2.3. Universality of the Linear Ballistic Accumulator

The LBA is a stochastic race model that has been recently proposed as a model of
human choice RT (Brown & Heathcote, 2008; Donkin, Averell, Brown, & Heathcote, 2009;
Donkin, Brown, Heathcote, & Wagenmakers, 2011). One advantage that has been claimed
for the LBA is its simplicity, relative to other models of choice RT (e.g., Ratcliff, 1978;
Usher & McClelland, 2001). Nevertheless, we demonstrate that, aside from a selective
influence assumption and two distributional assumptions that have received little attention
or justification, the LBA is universal, in that it can reproduce any possible R&T distribution.
Therefore the predictive constraints in the LBA derive entirely from these assumptions.

Each response process Rs,c
r (t) in the LBA, once initiated at the start of a trial, determin-

istically follows a simple linear function,

Rs,c
r (t) = zcr + ks

rt, (2.15)



14 Jones and Dzhafarov
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Figure 2: Illustration of Grice-equivalent frameworks of Theorems 5 and 6, based on the Grice

model diagrammed in Figure 1A. In both models, the thresholds and the shapes of the response

processes are fixed. Random variability resides in the growth rates (A) or starting points (B).

and the processes race to a common deterministic threshold, θs,cr = bc. Stochasticity in the
LBA comes from two sources: variability in the starting points of the processes (zcr) and
variability in their growth rates (ks

r). Both of these variables are sampled independently
on each trial for each response process. Thus, the LBA is a subclass of independent race
models.

The starting points are sampled from a uniform distribution ranging from 0 to Ac, where
Ac is a free parameter constrained to be less than the common threshold bc:

zcr ∼ U(0, Ac), (2.16)

where ∼ stands for “is distributed as.” Note that this start-point variability is equivalent
to independent variability in the threshold for each response (i.e., setting θcr = bc − zcr and
constraining the starting points to zero).

The growth rates are sampled from Gaussian distributions, with a common fixed variance
and means that vary across responses and stimuli:

ks
r ∼ N

(
vsr , η

2
)
. (2.17)

The choice of Gaussian distribution implies there is a nonzero probability of a negative
growth rate, in which case the process will never terminate. The first-passage distributions
are thus incomplete random variables for all responses. This also implies global incom-
pleteness (i.e., a nonzero probability that no response will be given), although Brown and
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Table 1: LBA model parameters

Parameter Meaning Associated Distribution

bc Common threshold for all response processes

Ac Upper limit on range of starting points Uniform for starting point zcr

vsr Mean growth rate of response process r } Gaussian for growth rate ksr
η Standard deviation of growth rate for all response processes

t0 Nondecision time

Heathcote (2008) report that, in fits to empirical data, the probability of all growth rates
being negative is typically less than 0.5%.

Finally, the LBA assumes a nondecision time, t0, which is constant across trials and
conditions and is added to the first-passage time of the winning process to determine total
RT on each trial. Table 1 summarizes the parameters of the LBA model. As indicated by the
superscripts, the threshold and start-point variability are assumed to depend on condition
(e.g., a higher threshold for accuracy vs. speed instructions), and the mean growth rate is
assumed to depend on the stimulus (e.g., a higher mean for the correct response for easier
stimuli).

Random variability in starting points and in growth rates is critical to the LBA’s ability to
match empirical data (Brown & Heathcote, 2008). Start-point variability allows the model
to predict rapid incorrect responses, whereas growth-rate variability allows it to predict slow
incorrect responses. The first mechanism is more important in tasks with short RTs (e.g.,
under high discriminability or speed instructions), where the starting points can be close to
the threshold, whereas the second is more important in tasks with long RTs (e.g., under low
discriminability or accuracy instructions). Thus, these mechanisms can together produce
error RTs that are shorter (on average) than correct RTs in easy tasks but that are longer
on difficult tasks, an empirical pattern that has proven especially challenging for models of
speeded choice (Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999).

Despite the centrality of these two sources of variability to the LBA model’s predictions,
the specific assumptions regarding the shapes of the distributions—uniform for starting
points, Gaussian for growth rates—has received little discussion or theoretical justification.
Indeed, Brown and Heathcote (2008, p. 160) state that they “chose the normal distribution
for practical reasons, because it is both tractable and conventional.” The normal distribution
facilitates analytic derivations of the LBA’s predictions, and it has been commonly adopted
for the distribution of growth rates in other models as well (e.g., Ratcliff, 1978). The same
considerations apply to the uniform distribution for starting points.

If these distributional assumptions are only a matter of convenience and tradition, then
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they should not be considered a critical part of the psychological theory. Therefore, we define
the general LBA (gLBA) as the LBA model without these distributional constraints. We
also set aside the selective influence constraint on the growth rate, allowing it to depend on
block-level manipulations in addition to the stimulus (see Section 3 for further discussion).
Hence we denote the gLBA’s growth rates ks,c

r .
The gLBA is a significantly broader model class than the LBA, because it replaces the

LBA’s Ac, vsr , and η parameters with complete (nonparametric) flexibility in the start-
point and growth-rate distributions. Nevertheless, the gLBA maintains all of the structural
commitments of the LBA: linear response processes, a common fixed threshold, and inde-
pendent random variability in starting values and growth rates for all processes. Building
on the results of Section 2.1, it is easy to show that the gLBA can match any family of
R&T distributions. In fact, start-point variability is unnecessary for this result; random
variability in growth rates alone is sufficient.

Theorem 7 (Universality of general LBA). Let Gs,c(r, t) be any family of R&T distributions.
Then one can fix starting points zcr at zero and threshold bc at an arbitrary positive value b for
all c, and find a set of random growth rates ks,c

r under which the gLBA perfectly reproduces
Gs,c. Furthermore, this can be done for any choice of t0 less than the minimal possible RT
(i.e., with Gs,c(·, t0) = 0 for all s and c).

The proof of this result (given in Appendix A) is based on the fact that the first-passage
time of each response process is a function of its growth rate:

T s,c
r =

 b
ks,cr

+ t0 if ks,c
r > 0

∞ if ks,c
r ≤ 0.

(2.18)

It is thus straightforward to define a distribution on ks,c
r so that T s,c

r takes on any desired
distribution (bounded below by t0). In particular, the growth-rate distributions can be
chosen so that the first-passage distributions satisfy Equation 2.11, which by Theorem 3
implies the model will reproduce Gs,c. In other words, flexibility of growth-rate distributions
gives the gLBA complete flexibility in its first-passage distributions, and from Theorem 3
this is sufficient to make the model universal.

This universality property can easily be extended to cover variants of the ballistic accu-
mulator framework in which the linear form of the LBA’s response processes is replaced by
other forms (e.g., Brown & Heathcote, 2005). Specifically, let Lr (t) be any family of strictly
increasing, continuous, deterministic functions with Lr (0) = 0, and define a model in which
response processes evolve according to

Rs,c
r (t) = ks,c

r Lr (t) ,
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governed by random growth rates ks,c
r and racing to a common threshold b. Then the

growth-rate distribution for each response can again be chosen to generate any desired
first-passage distribution. Therefore any model of this form is universal, for any a priori
choices of Lr and b. We state this result formally as follows (see Appendix A for proof).

Theorem 8 (Universal ballistic models with random growth rates). Let b be any positive
number, and L1 (t) , . . . , Ln(t) be strictly increasing continuous functions with Lr (0) = 0.
Then for any family of R&T distributions Gs,c (r, t), there exist random variables ks,c

1 , . . . , ks,c
n

such that
((ks,c

1 L1 (t) , b) , . . . , (k
s,c
n Ln (t) , b))

is an independent race representation for Gs,c (r, t).

The universality of the gLBA can be seen as a special case of this result, by taking
Lr(t) = max {0, t− t0}.

Finally, instead of assuming random variability in the growth rates (with fixed starting
points), one can assume random variability in the starting points (with fixed growth rates).
This framework is also universal, subject to the caveat below regarding the shapes of the
response processes.

Theorem 9 (Universal ballistic models with random starting points). Let b be any positive
number, and let L1 (t) , . . . , Ln (t) be strictly increasing continuous functions with Lr (0) = 0

and limt→∞ Lr (t) ≤ b. Then for any family of R&T distributions Gs,c (r, t), there exist
random variables zs,c1 , . . . , zs,cn with 0 ≤ zs,cr < b such that

((L1 (t) + zs,c1 , b) , . . . , (Ln (t) + zs,cn , b))

is an independent race representation for Gs,c (r, t).

The proof of Theorem 9 (given in Appendix A), relies on the same principle as Theorems 7
and 8: each response process can be made to take on any desired first-passage distribution, in
this case through appropriate choice of the start-point distribution. Note that the condition
limt→∞ Lr (t) ≤ b is critical for this construction. If this constraint does not hold — that
is, Lr(t) > b for some r and t — then the response process Lr (t) + zs,cr will cross b at some
finite time regardless of the starting point zs,cr . Consequently, the first-passage time T s,c

r

will be a complete random variable, no matter how zs,cr is distributed.4 Thus by Theorem
4, the representation will not be universally applicable. For example, the LBA (with linear

4 If one were to allow negative starting points, the condition in question would change to Lr(t) being
bounded from above (not necessarily by b). Other straightforward modifications of this theorem and of
the previous one are mentioned in Appendix A.
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response processes) cannot be made universal solely through start-point variability, because
in that model limt→∞ Lr (t) = ∞ for all responses. However, other ballistic accumulator
models can be made universal through start-point variability alone, provided their response
processes have finite limits (e.g., Lr(t) = 1− e−t).5

As the proofs of the preceding theorems show, universality of the gLBA and its variants is
a straightforward mathematical fact. However, its implications for the standard LBA seem
to have been overlooked. Specifically, this result implies that the predictive power of the
standard LBA lies in its assumptions regarding growth-rate and start-point distributions
(which have heretofore been treated as implementation details), together with the selective
influence assumptions regarding how model parameters can vary across stimuli and experi-
mental conditions. We return to the implications of these latter assumptions in Sections 3
and 4.

2.4. Universality of Diffusion Models

We now consider a different class of RT models, in which response processes exhibit
within-trial stochasticity, derived from Brownian motion, in addition to between-trial
stochasticity in starting points and growth rates. Two such models are considered here:
the Wiener diffusion model (Ratcliff, 1978) and the OU model (Busemeyer & Townsend,
1993), which we collectively refer to as diffusion models. In addition to the presence of
diffusion, the diffusion models considered here (for binary choice tasks) can be contrasted
with the LBA model in that they assume a single response process that can evolve in posi-
tive or negative directions until it reaches either an upper or a lower threshold. The model
can be equivalently formulated with a separate process for each response, but under that
representation the stopping rule is based on their difference rather than on the value of each
process taken separately (as in the LBA).

Specifications for the diffusion model are taken from Ratcliff and Smith (2004), who
treat the OU model as a generalization of the Wiener model. The response process in any

5 The nonlinear ballistic accumulator model proposed by Brown and Heathcote (2005) has response pro-
cesses with finite limits, but it cannot be made universal through start-point variability because starting
points there do not act additively and do not affect the processes’ asymptotes. However, universality
through random starting points would hold under a minor modification to the model’s decay term, re-
placing −βRs,c

r (t) with −β (Rs,c
r (t)− zs,cr ) so that decay is toward the starting point instead of zero (see

Brown & Heathcote’s Equation 1). We consider this change an implementational detail with no substan-
tive bearing on the model’s theoretical content. Moreover, Ratcliff and Smith (2004) advocate exactly
this modification to the decay term in the OU model (which we adopt here; see Equation 2.19), because
it enables the effects of start-point variability to persist rather than be lost to decay.
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experimental condition, Rs,c(t), is a stochastic process defined by a random starting point,
zc, a random growth rate, ks (also referred to as drift rate), and a diffusion rate, σ2. The
OU model includes a decay term with parameter β, which is set to 0 for the Wiener model.
The dynamics on each trial can be defined by the following stochastic differential equation:

dRs,c(t) = (ks − β (Rs,c(t)− zc)) dt+ σdB(t) (2.19)

Here, B(t) represents a Brownian motion process. The diffusion parameter, σ, is generally
treated as fixed, because changing its value can always be nullified by rescaling other model
parameters.6 On each trial, an accumulation process starts, at the time of stimulus onset,
at Rs,c(0) = zc. The process terminates when it crosses either a lower threshold set at 0,
or an upper threshold, ac, respectively corresponding to responses r = 1 and r = 2. Which
threshold is crossed first and the time of the first passage respectively determine the response
and RT.

Additional model parameters determine random variability across trials, following the
same assumptions as adopted in the LBA model (Brown & Heathcote, 2008). The starting
point of the diffusion process, zc, is drawn from a uniform distribution with mean z̄c, which
is a free parameter when modeling response bias and is otherwise fixed at ac/2. The range
of this distribution, which we denote δz, is constrained to be less than min {2z̄c, 2 (ac − z̄c)},
so that zc always lies between 0 and ac. The growth rate, ks, is drawn from a normal
distribution with mean vs and variance η2. In addition, the nondecision time, t0, is drawn
from a uniform distribution with mean Ter and range δt (where δt ≤ 2Ter). The nondecision
time on each trial is added to the first-passage time of the diffusion process to predict total
RT. Table 2 summarizes the parameters of the diffusion model. As the notation indicates,
the diffusion model incorporates the selective influence assumptions that trial-level variation
in stimuli affects only vs, whereas block-level manipulations affect only ac and z̄c (and δz in
some implementations; e.g., Ratcliff & Rouder, 1998).

The diffusion model, and discrete-time (random walk) variants, were originally motivated
by the sequential likelihood-ratio test, which performs optimal Bayesian inference over a
stream of noisy data (Stone, 1960). Under this interpretation, the input stream represents

6 However, fixing this parameter while fitting multiple experimental conditions, with constraints linking
other parameters across conditions, imposes unintended limitations on the model (Donkin, Brown, &
Heathcote, 2009). With the diffusion model, this constraint leads to an additional conceptual problem.
Although it is often assumed that the only parameter that can vary as a function of stimulus within a
block of trials is the mean growth rate, the standard process interpretation of the model as sequential
sampling implies that the diffusion rate should also depend on the stimulus. Indeed, there are variants of
the diffusion model that predict such a dependence (Busemeyer & Townsend, 1993). Fixing the diffusion
rate across stimuli thus removes flexibility that theoretically should be present.
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Table 2: Diffusion model parameters

Parameter Meaning Associated Distribution

β Decay rate; set to 0 for Wiener model

ac Threshold separation

σ Diffusion rate

vs Mean growth rate } Gaussian for growth rate ks
η Standard deviation of growth-rate distribution

z̄c Mean starting point } Uniform for starting point zc
δz Range of start-point distribution

Ter Mean nondecision time } Uniform for nondecision time t0
δt Range of nondecision distribution

the momentary likelihood ratio of sensory evidence, assumed to be white noise with a non-
zero mean. The goal is to infer whether the mean is positive or negative, corresponding to
one or the other correct response. The diffusion process is the integral of the input stream
over time (or sum, in the discrete-time case), and responding once this process reaches a
threshold is equivalent to waiting until the Bayesian posterior for one response reaches some
predetermined threshold probability. This pure normative model is a special case (with no
decay and no variability in growth rates or starting points) of the full diffusion model defined
here. However, it makes empirically incorrect predictions, such as equality of mean RTs for
correct and error responses (Laming, 1968; Ratcliff, 1978). Including random variation in
starting points and growth rates has been found to solve these problems and enables the
diffusion model to provide excellent fits to data (Ratcliff et al., 1999; Ratcliff & Rouder,
1998; Ratcliff & Smith, 2004). However, an important question is whether these fits are at
least to some extent due to the model’s architecture, or they are solely consequences of the
flexibility afforded by the inclusion of this random variability.

It turns out the answer is the latter: the only predictive constraints of the diffusion
model — with random variability in growth-rate, start-point, and nondecision time included
— come from the technical assumptions about the shapes of these distributions, together
with the selective influence assumption that growth rate does not depend on conditions fixed
within each block of trials. As with the LBA results presented in the previous section, if these
assumptions are removed, the diffusion model becomes universally applicable. Once again,
the model is universal from growth-rate variability alone; the other sources of variability are
unnecessary.

We refer to the diffusion model without restrictions on the growth-rate distribution as the
general diffusion model (gDM). As with the gLBA, we allow the growth-rate distribution to
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depend on block-level manipulations in addition to stimuli (see Section 3 for more discussion
of this assumption). All other model parameters are independent of the stimulus.

To see that the gDM is universal, consider the special case with no diffusion (σ = 0), no
decay (β = 0), no start-point variability (δz = 0), no non-decision variability (δt = 0), fixed
ac = a, and no response bias (z̄ = a/2). Under these assumptions, the accumulation process
always follows a linear path starting at a/2. The only variability in the model comes from
variation across trials in the growth rate, ks,c. Under this simplified model, the response
and RT are determined according to

r =

1 if ks,c < 0

2 if ks,c > 0
(2.20)

and
RT = T er +

a

2 |ks,c|
. (2.21)

It is easy to see that appropriate specification of the growth-rate distribution can generate
any desired R&T distribution. Equations 2.20 and 2.21 show there is a one-to-one mapping
between ks,c and the pair (r,RT). Therefore, any joint distribution on r and RT can be
directly translated to a distribution on ks,c.7 This correspondence leads to a universality
result for the general Wiener diffusion model (see Appendix A for proof).

Theorem 10 (Universality of general Wiener diffusion model). The gDM can reproduce
any family of R&T distributions over two responses. Moreover, this is possible without
diffusion, decay, random variability in starting points or nondecision time, or response bias
(σ = β = δz = δt = 0, z̄ = a/2), for any fixed ac = a, and for any Ter with Gs,c(·, Ter) = 0

for all s and c.

Similar to the result of Theorem 8 above, linearity of the response process is not essential
for universality of the diffusion model. The same conclusion holds when the response process
takes the form ks,cL(t) + zc, where L (t) is any continuous, strictly increasing function with
L (0) = 0. In particular, the OU model follows this form (again, in the limiting case of no
diffusion), for any value of the decay rate, β. Therefore, the OU model is universal for any
predetermined value of β (see Appendix A for proof).

Theorem 11 (Universality of general Ornstein-Uhlenbeck model). The gDM can reproduce
any family of R&T distributions over two responses, for any predetermined choice of β.

7 The case ks,c = 0 corresponds to t = ∞, so if global incompleteness is excluded (i.e., a response is given
on every trial), then ks,c = 0 will be assigned zero probability.
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Moreover, this is possible without diffusion, random variability in starting points or nonde-
cision time, or response bias (σ = δz = δt = 0, z̄ = a/2), for any fixed ac = a, and for any
Ter with Gs,c(·, Ter) = 0 for all s and c.

Although these universality results are based on simplified versions of the diffusion model,
reintroducing the model’s other free parameters (σ, δz, δt, ac, and z̄) only confers the model
additional flexibility — or would, if it were not already universal. One might ask instead
how the universality property fares if some of the parameters set to zero in Theorems 10 and
11 are fixed at other values. In particular, if diffusion is taken as a theoretical commitment
of the model, then one could require the diffusion rate to be strictly positive (σ > 0).
Such an assumption might be expected to constrain the model’s predictions, because of the
smoothing effect diffusion has on the predicted RT distributions. In fact, Ratcliff (2013)
suggests that stochasticity in the diffusion process “washes out” any effects of growth-rate
and starting-point distributions during the course of the trial, so that the choice of these
distributions has little effect on model predictions. If this suggestion were correct, it would
limit the practical significance of the present universality arguments, in that flexibility in
growth-rate distribution might add little flexibility to the model’s predictions when σ > 0.

One response to Ratcliff’s (2013) claim is that a model with a fixed positive diffusion
rate can be brought arbitrarily close to one without diffusion by rescaling other variables.
Specifically, the arbitrary internal scale of the response process can be freely changed, by
multiplying σ, ks, zc, and ac by any number x > 0 (substitute x ·Rs,c(t) for Rs,c(t) in Equa-
tion 2.19, and the equation holds under these rescaled parameters). Consider an arbitrary
R&T distribution G (r, t) and a gDM model with σ = 0 reproducing that distribution, as
provided by Theorem 10 or 11. By a continuity argument, G (r, t) can also be approximated
arbitrarily well by taking σ to be positive but sufficiently close to zero. We can then scale
up the parameters of the model so that σ is equal to any desired value. Therefore, absent
any constraints on these other variables, the diffusion model can approximate any R&T dis-
tribution to arbitrary precision, for any a priori choice of σ. This conclusion is summarized
in the following theorem (see Appendix A for proof).

Theorem 12 (Universality with strictly positive diffusion). Let G(r, t) be any R&T distri-
bution admitting a well-defined density g(r, t). Choose any values of σ > 0 and β, and let ε
be any positive constant. Then there exists a gDM model with those values of σ and β for
which the predicted R&T distribution G̃ (r, t) satisfies

max
r,t

∣∣∣G (r, t)− G̃ (r, t)
∣∣∣ < ε

for all r and t.
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One might argue that Theorem 12 allows the model’s parameter values to be “unreason-
ably large.” However, there is no a priori basis for what parameter values are or are not
reasonable. There are values that have typically been found in fits of the Gaussian-drift
model, but if the model had found dramatically different values, then those would be the
values considered typical and reasonable. Moreover, the fact that the values found have been
somewhat consistent across applications is not evidence that those values are correct. If the
model is misspecified, then its parameters will be systematically and consistently biased.

Considerations of parameter values depend on assumptions about both the scale of the
model’s internal evidence dimension and the scaling of time. This dependence can be made
explicit by defining a time constant θ = a2/σ2 (the time it takes for the standard deviation
σ
√
t of the diffusion process to equal the threshold separation a) and then reparameterizing

the model with a new response process R̆ = R/a and time scale τ = t/θ. Under this
reparameterization, the starting point, growth rate, and decay rate become z̆ = z/a, k̆ =

θk/a, and β̆ = θβ. These transformations remove the scaling of the internal evidence
dimension and the scaling of time. The model’s dynamics are now defined by

dR̆ (τ) =
(
k̆ − β̆

(
R̆ (τ)− z̆

))
dτ + dB(τ) (2.22)

with
t = θτ. (2.23)

Equation 2.22 matches the original dynamics of Equation 2.19 except that the diffusion rate
and threshold separation are no longer free parameters (both are fixed at unity), and the
variables R̆, z̆, k̆, β̆, and τ are all dimensionless. The model’s only free parameters are the
starting point and growth rate (both random variables) and the time constant θ that scales
the model’s predictions onto physical time.

The utility of this reparameterization is that it shows more directly how diffusion con-
strains the model’s predictions. Specifically, diffusion is appreciably constraining only for
larger values of τ , whereas for smaller values the model is arbitrarily flexible. The situation
is illustrated in Figure 3. Figure 3A shows the possible predictions of the model in the case
of z̆ = 1/2 and β̆ = 0 (no response bias, start-point variability, or decay). The two families
of curves represent possible RT distributions for the two responses, each curve correspond-
ing to a single value of the growth rate k̆. Growth rates closer to zero produce the broader
curves to the right, and they also produce significant rates of the less likely response (shown
as dashed curves, with each dashed curve corresponding to a solid curve for the opposite
response). Larger growth rates—positive or negative—produce the narrower curves to the
left, which are more separated and have negligible rates of the alternate response.

Under a free growth-rate distribution, the predictions of the full model are an arbitrary
mixture of the curves for individual values of k̆. For larger values of τ , the form of this mix-
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ture is constrained, both across times (i.e., smoothness in the RT distribution) and between
responses. For values of τ approaching zero, the mixture becomes arbitrarily flexible. When
confronted with empirical data, such as the distributions shown in Figure 3B (typical data,
from Jones, Curran, Mozer, & Wilder, in press), one cannot know to what values of τ they
correspond without knowing the time constant θ. If the data correspond to larger τ values
(smaller θ), then diffusion appreciably limits the model’s flexibility, but if the data corre-
spond to smaller τ values (larger θ) it does not. The time constant θ depends on both the
diffusion rate and the threshold separation, neither of which can be objectively determined
based on behavioral data. It may be possible to use neural or other process-level data to
measure these quantities, but as we caution in Section 5, any such endeavor depends on
strong assumptions about how the cognitive model maps onto physical processes.

2.5. An Example

To illustrate the universality results, this section gives an example of the gLBA mimicking
the diffusion model. Universality of the gLBA implies it can perfectly match the R&T
distribution predicted by the diffusion model (for any values of that model’s parameters),
under appropriate specification of the gLBA’s growth-rate distributions.

Figure 4A shows the predictions of the standard diffusion model for a single stimulus and
condition, using typical values of its parameters (β = 0, a = .1, σ = .1, v = .15, η = .15,
z̄ = .05, δz = .03, δt = 0; Ter arbitrary because it can be matched by t0 in the gLBA).8

Each track indicates a sample trajectory of the diffusion process for one hypothetical trial.
The curves paralleling the two thresholds indicate the model’s predicted R&T distribution.
Each curve shows the conditional RT distribution for correct (upper) or incorrect (lower)
responses, with total area under the curve indicating response probability. These curves
were calculated analytically using methods described in Appendix B.

The diffusion model’s predicted R&T distribution was converted to a joint hazard function
and then translated into first-passage distributions for an independent race model using
Equation 2.11. According to Theorem 3, any independent race model generating these
first-passage distributions will perfectly match the diffusion model’s predictions. Figure 4B
shows an instance of the gLBA derived to satisfy this condition. The curve paralleling the
threshold for each response is the first-passage distribution obtained from Equation 2.11.
The gLBA can trivially reproduce these (or any other) first-passage distributions through
flexibility of its growth-rate distributions. Figure 4C shows the growth-rate distributions

8 We use seconds as the unit of time whenever referencing numerical values of model parameters. The
internal scale of the response process is in arbitrary units.
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Figure 3: Illustration of the flexibility from temporal scaling of the general diffusion model (gDM)

when the model is expressed in dimensionless parameters (Equation 2.22). A: The possible predic-

tions of the model in terms of the dimensionless time parameter τ . For simplicity, the dimensionless

starting point z̆ is constant at 1/2, and the decay rate is zero. Each curve represents a theoreti-

cal RT distribution predicted under a particular value of the dimensionless growth rate k̆. Upper

curves represent RTs for one response, and lower curves for the other response. Values of k̆ used

were 0, ±1, ±2, ±4, ±8, ±16, ±32, ±64, ±128, ±256, ±512. Dashed curves represent the less

likely response for each growth rate (lower response for k̆ > 0 and upper response for k̆ < 0) and

are only visible for k̆ = ±1, ±2, and ±4. The pair of curves for each value of k̆ is normalized by

its maximum for ease of viewing. Predictions of the full model (with random growth rate) for each

stimulus and condition are an arbitrary linear combination of curves like the ones shown (subject

to the constraint that total probability across responses and times equals unity). This graph shows



how the model is constrained in its predictions for larger values of τ , in terms of links across
different times and across the two responses, but that these constraints become vanishingly
weak as τ approaches zero. B: Example RT data, taken from Jones et al. (in press, Ex-
periment 2, low coherence condition). The upper and lower pairs of curves correspond to
the two responses, with black and grey corresponding to two different stimuli. The data
are defined in real time (seconds), and there is flexibility in how this time scale maps onto
the abstract scale of the model. The two τ scales below the graph represent two possible
mappings, corresponding to values for the timescale parameter, θ, of 10 s (upper τ scale)
or 100 s (lower τ scale). Each mapping implies a different placement of the empirical data
within the space of possible model predictions shown in Figure 3A. The gDM may or may
not provide a good fit with a small value of θ, but it is guaranteed to provide a good fit with
a larger value.
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used in Figure 4B. In summary, by adopting these growth-rate distributions, the gLBA
perfectly mimics the diffusion model. Moreover, it achieves this without the start-point
variability assumed by the standard LBA.

The growth-rate distributions in Figure 4C do not conform to the Gaussian shape assumed
by the standard LBA. However, there is no evident reason that these distributions should be
considered any less psychologically plausible than Gaussian ones. Therefore, the theoretical
principles underlying the LBA are empirically indistinguishable from the diffusion model,
despite the significant structural differences between the two modeling frameworks. Any
differences in predictive success between the two models are informative only in the context
of the technical assumption of Gaussian growth-rate distributions.

2.6. Summary of Universality Results

The preceding sections demonstrate that several important psychological models of choice
RT become unfalsifiable when certain parametric and selective influence assumptions are
removed. The parametric assumptions include the shapes of response processes and the
probability distributions of their growth rates and starting points. We refer to the models
without these assumptions as universal, because they can match any joint distributions of
response and RT.

Three families of models were analyzed: the Grice framework (Grice, 1968), ballistic accu-
mulators (Brown & Heathcote, 2005, 2008), and diffusion models (Busemeyer & Townsend,
1993; Ratcliff, 1978). A principal difference among these families concerns which compo-
nent of the model is free to vary when fitting data for different stimuli and experimental
conditions. In the Grice family, the free part of the model is deterministic, and the stochas-
tic component of the model follows a predetermined distribution. In the original Grice
framework, the (deterministic) response processes are free and condition-dependent, and
the thresholds follow a predetermined (though arbitrary) probability distribution (Theo-
rems 1 and 2). In the two equivalent variants considered in Section 2.2, the stochastic
component is moved to the growth rates of the response processes (Theorem 5) or to their
starting points (Theorem 6). In all three cases, allowing full (nonparametric) flexibility in
the models’ deterministic components makes them universal.

In the results for the generalized LBA and diffusion models, universality comes from free-
dom in stochastic components of the models (i.e., freedom in their probability distributions).
Allowing full flexibility in the distribution of growth rates across trials was shown to make
the LBA (Theorems 7 and 8), Wiener diffusion (Theorem 10), and OU models (Theorem 11)
all universal. In addition, ballistic accumulators that assume bounded nonlinear response
processes can be made universal through flexibility in their distributions of starting points
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Figure 4: Example of the general linear ballistic accumulator (gLBA) mimicking the diffusion model.

A: Diffusion model predictions under typical parameter values (given in main text). Response pro-

cesses on sample trials are shown in random greyscale (to facilitate discrimination). Growth-rate

distribution is shown in inset, and start-point distribution is shown at left edge. Curves paralleling

thresholds show the theoretical distribution of response times (RT) for each response, scaled by

response probability. B: Illustration of gLBA. Curves paralleling thresholds are first-passage dis-

tributions, derived from Equation 2.11, under which any independent race model will reproduce

the diffusion model’s predictions. The gLBA matches these first-passage distributions through

flexibility in its growth-rate distributions. Grey lines show response processes on sample trials.

Start-point variability is set to zero. C: Growth-rate distributions used in B. Under these distri-

butions, the gLBA perfectly matches the diffusion model’s predictions. Solid: correct response;

dashed: incorrect response.



28 Jones and Dzhafarov

(Theorem 9).
The universality results for ballistic accumulator models can be viewed as stemming from

the universality of the first-passage distributions of their individual response processes. Al-
lowing full flexibility in growth-rate distributions or (in some cases) start-point distributions
enables the first-passage distributions to take on any desired form. From Theorem 3, this
flexibility of first-passage distributions allows the model to match any desired R&T distri-
butions. The same reasoning applies to the Grice framework when the thresholds are chosen
to be mutually independent—freedom in the shapes of the response processes again provides
full flexibility in the first-passage distributions. Theorem 3 does not apply when the thresh-
olds are stochastically dependent, but the proof for this case follows a similar argument
(see Dzhafarov, 1993). In the diffusion model, the relationship between the process and the
outcome (i.e., response and RT) is simpler, because there is only one process.9 In the limit
case with no diffusion, the relationship is one-to-one, and it is straightforward to translate
any R&T distribution directly into a distribution of growth rates under which the model
reproduces that R&T distribution.

An advantage frequently cited for stochastic-accumulation models of speeded choice is
that they jointly capture the overall response probabilities and the RT distribution associated
with each response. The implied suggestion is that there is some coupling among these
measures inherent in the models, so that fitting all of them simultaneously is a more stringent
test. The universality results imply there is no such coupling, other than that arising from the
parametric and selective influence assumptions. Complete freedom in the joint distribution
of response choice and RT is equivalent to freedom in the marginal response probabilities
and in the conditional distribution of RT under each separate response. In other words, a
universal model can fit all of these measures simultaneously and independently.

The gLBA and gDM models defined here have not been a focus of previous research,
and it might be argued that their unfalsifiability is, taken alone, not directly relevant to
the extant literature. The primary theoretical import of the universality results lies in their
implications for the standard, parameteric versions of the models that have been central to
research on speeded choice. Although the standard models are falsifiable, we have shown
that their predictive constraints derive entirely from parametric and selective influence as-
sumptions, and it is thus these assumptions that constitute the models’ explanatory content.

9 Diffusion processes have also been proposed within the framework of race models, with one diffusion process
per response (Bogacz & Gurney, 2007; Jones, Mozer, & Kinoshita, 2009; see also Usher & McClelland,
2001). Universality of such a model (with free growth-rate distributions) can be shown by the same
strategy used here with the LBA model: in the limit of no diffusion, the model becomes a ballistic
accumulator, and Theorem 8 applies.
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Therefore, it is critical to understand the impact of these assumptions on the models’ predic-
tions, if we are to understand how the models explain empirical phenomena. The parametric
assumptions have received little attention in the previous literature, being “merely” imple-
mentation details and not part of the underlying theory. The justification for and impact
of the selective influence assumptions, when separated from the parametric assumptions,
remain undetermined too. We focus on these issues in the remainder of this article.

3. SELECTIVE INFLUENCE

An important consideration in the context of the universality results presented in the
preceding sections is the concept of selective influence. In general, selective influence refers
to the notion that changes in certain aspects of the stimulus, observation conditions, or
instructions to a subject might be limited in which parameters of a model they can affect.
In the domain of speeded choice, interest in selective influence has focused primarily on two
factors: stimulus information that is not available to the subject before the start of each trial
(e.g., stimulus intensity), and the speed-accuracy bias of the subject as often manipulated
by instructions to emphasize one or the other (other factors not considered here include
stimulus probability; e.g., Thomas, 2006). In the context of stochastic accumulation models,
it is often assumed that stimulus information can only affect the mean growth rates of the
response processes, and not their starting points or the decision thresholds. It is also often
assumed that speed-accuracy bias can affect only the decision thresholds (and in some cases
the variability of the starting point), but not the response processes. We refer to these as
the first and second selective influence assumptions, respectively.

It is easy to see from the statements of the universality theorems that the first selective
influence assumption does not in itself impart predictive constraints. That is, the gDM and
gLBA frameworks remain unfalsifiable with this assumption included. This follows from
the fact that Theorems 7, 10, and 11 all hold with the thresholds assumed to be constant
across all stimuli s and conditions c (in fact, their conclusions also hold if the thresholds vary
arbitrarily across stimuli and conditions). Therefore, the first selective influence assumption
has no impact on the universality results or on their relevance to extant models.

The second selective influence assumption does impart predictive contraints, and the
universality theorems do not hold if this assumption is taken as an essential part of a
model’s architecture rather than an implementational assumption. This fact is evident in
the statements of the theorems and in their proofs, in that the growth rate must be specified
as a random variable depending on stimulus and on observation conditions (ks,c), rather than
depending only on the stimulus (ks). Moreover, it is not possible to extend the proofs to cover
the models with the second selective influence assumption maintained. As a simple example,
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consider adding the second selective influence assumption to the gLBA without start-point
variability. Under this model, the only allowable change across observation conditions is in
the threshold, which acts to change the first-passage distributions of the response processes
by a scalar factor. Thus, the first-passage distribution for any response can vary across
conditions only by multiplicative scaling (i.e., it cannot change shape). Because of the
essentially one-to-one relationship, implied by Theorem 3, between the R&T distribution
and the set of first-passage distributions for all responses, this constraint implies the model
is falsifiable. That is, it is straightforward to construct a family of R&T distributions that,
via Equation 2.11, yields first-passage distributions violating the constraint of multiplicative
scaling across conditions, and by Theorem 3 such a family cannot be represented by the
model in question.

Of course in more complex models, for example with start-point variability or diffusion
included, the predictive constraints from the second selective influence assumption will be
subtler and weaker than in this example. One important goal for future research might be to
determine mathematically what those constraints are for different architectures (e.g., the full
gLBA or gDM). Results of this type might be useful in empirically testing selective influence
without the confound of the models’ parametric distributional assumptions (e.g., Gaussian
growth-rate distributions). Furthermore, they might be valuable in assessing the relative
contribution of selective influence vis-à-vis parametric assumptions in the past empirical
successes of the models. Even though the second selective influence assumption makes the
models in principle falsifiable, it is possible that in practice they are not, and that the
parametric assumptions have done most of the explanatory work in fitting data.

In general, the value of selective influence assumptions is that they link a model’s pre-
dictions across different conditions or stimuli, thus offering more demanding empirical tests
than fitting one condition at a time. Nevertheless, for such an approach to be viable, there
must be strong justification for the invariance. In the case of speeded choice, the traditional
justification for the first selective influence assumption is strong: The stimulus or stimulus
category is unknown to the subject in advance of each trial, so this information cannot affect
any “preparatory” processes such as starting points or threshold settings. The standard jus-
tification for the second selective influence assumption is that information available before
the start of a trial (such as the weighting of speed vs. accuracy) can influence preparatory
processes but should not affect evidence accumulation (e.g., Ratcliff & Smith, 2004). We
consider the argument for this latter assumption to be significantly weaker. Nothing seems
to exclude a priori the dependence of evidence accumulation not only on stimulus values
but also on instructions and other factors that act before stimulus onset. Because these
factors have already been determined at the start of any trial, they could very well affect
the subject’s cognitive state in a way that alters stimulus processing.
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Indeed, models that attempt to explain the mechanisms underlying stochastic evidence
accumulation predict that the accumulation process should be affected by cognitive vari-
ables. Consider the exemplar-based random walk model of Nosofsky and Palmeri (1997),
which explains choice RT in perceptual categorization. A critical variable in this model is
the subject’s attentional weighting of the dimensions of stimulus variation. This weighting
affects similarity of the current stimulus to stored exemplars, which affects exemplar retrieval
probabilities, which in turn determine the statistics of the random walk. Thus the model
predicts different accumulation processes (e.g., different mean growth rates) for different
attentional states. Attention switches among stimulus dimensions also influence the diffu-
sion processes in multiattribute decision field theory (MDFT; Diederich, 1997; Roe et al.,
2001). Although MDFT does not address the determinants of attention, attention should
be expected to depend on cognitive variables relevant to the decision task. In particular,
it seems reasonable that in many decision tasks there exist different stimulus dimensions
with different speed-accuracy profiles, in that some are processed more rapidly but others
yield greater asymptotic performance. As a simple model of this sort of tradeoff, we could
assume two attentional states, α1 and α2 (each a possible attended stimulus dimension or a
continuous-valued weighting of dimensions), with vs,α1 > vs,α2 for all s, and ηα1 > ηα2 . For
the right values of v and η, we might expect the subject to strategically choose α1 under
speed instructions and α2 under accuracy instructions. Starns, Ratcliff, and McKoon (2012)
make a similar suggestion in the context of recognition memory, based on the proposal that
subjects use poorer quality memory probes under speed instructions (because better probes
take longer to develop; Diller, Nobel, & Shiffrin, 2001; Malmberg, 2008). They found that a
model obeying selective influence gave a poor fit to the data, and a model allowing growth
rates to depend on speed-accuracy instructions yielded estimates of faster mean growth rates
in the accuracy condition.

Another way of arguing that the second selective influence assumption is not a priori
compelling is to observe that in all the models considered the change of a threshold (or
threshold separation) is mathematically equivalent to changes in other model components
(growth rate, starting point, and diffusion rate) with thresholds left unchanged. Thus, to
consider a simple case, if all processes in the gLBA are assumed to start at zero, then a
change of a threshold by a factor x is equivalent to changes of the growth-rate distributions
by a factor of 1/x. If stated in this form, the second selective influence assumption does not
seem to be structural. For instance, if a model with this assumption does not fit data, one
would not consider it a dramatic change to replace multiplicative scaling of the growth rates
with some other monotone transformation.

In summary, of the two selective influence assumptions made by the standard diffusion
and LBA models, the first has no impact on universality, and the second is logically suspect
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and perhaps even psychologically unlikely. Therefore, to support the claim that the models
are theoretically informative in light of our results, one would need (1) to offer some sort
of argument or empirical evidence for the second selective influence assumption, and (2) to
demonstrate that it constrains the models enough to make useful psychological conclusions
in the absence of parametric distributional assumptions.

There is also a completely different question about selective influence assumptions, related
to translating falsifiable models between universal modeling languages. Let L and L′ be two
universal (hence interchangeable) modeling languages, and let some falsifiable model M be
formulated in language L. By universality of L′, one can always translate model M from
language L to language L′ to obtain a model M ′, equivalent to M . The question is: could
M ′ lose some of the selective influence assumptions made in the original model? If the
answer to this question were affirmative, one might have a basis to prefer M to M ′ even
though they are equivalent. But the answer in fact is that model M ′ will necessarily retain
all the selective influence assumptions of model M . The parameters of M will carry over to
parameters in M ′, and the latter will automatically obey the same selective influence rules
as do the former. That is, if a parameter θ in M is invariant with respect to changes in some
experimental factor f , then M ′ will include a corresponding parameter θ′ that is invariant
with respect to f as well.

As an example, consider translating from the gLBA to the Grice framework, with some
pre-specified threshold distribution for the latter. Universality of the Grice framework im-
plies there is a canonical translation by which any model expressed in the gLBA framework
can be re-expressed as an equivalent Grice model. In particular, such a Grice model exists for
the standard LBA, with its parametric and selective influence assumptions included. Under
this translation, the LBA’s Ac and vs parameters become parameters determining the Grice
response processes: Rs,c (t) = R (t;Ac, vs, . . .), where “ . . .” designates other parameters of the
LBA model. Because Ac, vs, . . . uniquely determine the RT distributions in the LBA model,
the process Rs,c (t) may be described in terms of these and only these parameters. All selec-
tive influence assumptions are automatically retained, only Ac and vs are now interpreted
as aspects of the process Rs,c (t) rather than of starting-point and growth-rate distributions.
The particular form of selective influence has arguably changed, but only if one assumes a
naive correspondence between modeling languages: response processes mapping to response
processes and thresholds mapping to thresholds.

In the Grice language, the thresholds have fixed distributions and only the response
processes are allowed to vary. Nevertheless, the Grice model retains selective influence unless
one seriously maintains that there is a difference between separate mathematical “entities”
and properties of a single mathematical “entity.” As a simple example to show that such
a position would be untenable, let Rs,c (t) be Taylor-expanded as R (0) + vst + 1

2
wct2 +
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u(t), where vs and wc are two selectively influenced parameters. These parameters can be
interpreted as properties of the process Rs,c (t), namely its initial velocity and acceleration,
so that Rs,c (t) depends on both s and c. However, they can also be represented as aspects
of separate processes R1 (t) = vst and R2 (t) = 1

2
wct2, additively combined with R3(t) =

R (0) + u(t). Clearly, one’s interpretation of the selectiveness of influences in this model
cannot depend on which of these (or many other) ways of thinking about the two parameters
one adopts.

Therefore, selective influence can only aid in deciding among modeling languages if one
has a basis to claim that the form of selective influence manifesting in one language is more
psychologically plausible in one language than the form manifesting in another. With regard
to the modeling languages considered in the present article, the next section translates the
LBA and diffusion models into the Grice framework and shows that the model parameters
and their selective influences remain just as natural and interpretable as in the original
models.

4. TRANSLATING THE LBA AND DIFFUSION MODELS INTO THE GRICE

FRAMEWORK

The core message of this article is that, when a modeling framework is universal, the
predictive content of any model expressed in that framework lies in whatever falsifiable
assumptions that model makes. For the standard LBA and diffusion models, these assump-
tions are the forms of the probability distributions for growth rate (Gaussian), starting
points (uniform), and nondecision time (uniform, for the diffusion model), together with the
selective influence assumptions. A useful way to evaluate these assumptions is to translate
them across different modeling languages. That is, for any falsifiable model expressed in
one modeling framework, an equivalent model can be derived in a different framework. This
translation can offer new insight into the implications of a particular model’s assumptions,
and it can enable comparison of the explanatory utility of different modeling languages.

In this section, we translate the standard LBA and diffusion models into the Grice frame-
work. Universality of the Grice framework implies that it can exactly mimic any other model.
Because this universality holds under essentially any threshold distribution (Theorem 1), we
choose the thresholds to be mutually independent, each following a unit-exponential distri-
bution: Pr [θr ≤ x] = 1 − e−x. With this choice, the response processes acquire a simple
form (see Equations 2.10 and 2.11):

Rs,c
r (t) =

ˆ t

0

hs,c(r, τ)dτ, (4.1)
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where hs,c(r, τ) is the joint hazard function of the model being translated into the Grice
framework. We refer to the resulting Grice model as a Grice representation of the original
model.

The Grice representation of a model can be viewed as an alternative way of representing
the predictions of that model, equivalent to deriving its predicted R&T distribution (or
joint hazard function, or R&T density) directly. Thus, the Grice representations of the
LBA and diffusion models can offer new insights into the implications of those models’
assumptions. Specifically, we systematically vary the parameters of these models, and by
observing the effects on their Grice representations evaluate what types of flexibility the
models’ parameters do and do not provide. In addition, we derive Grice representations of
the LBA and diffusion models with their parameters fit to empirical data, and compare the
results to the Grice representation of the dataset itself (i.e., the Grice model that perfectly
fits the data), to assess the different models’ fits to data in one and the same theoretical
language (the Grice framework).

4.1. Grice Representation for the LBA

Because the LBA and Grice frameworks both comprise independent race models, they
will predict the same R&T distribution if they agree on the first-passage distribution for
each response. Therefore, any LBA model can be translated to a Grice model by deriving
the LBA’s first-passage distribution for each response and then deriving response processes
for the Grice model that reproduce those distributions. The calculations are carried out in
Appendix C, with Equations C.4 and C.5 defining a Grice model that matches the LBA’s
predictions for any parameter settings.

To assess the effects of the LBA’s parameters in a two-choice task, b, A, v2, and η were
systematically varied to produce a series of Grice representations for each.10 Nondecision
time, t0, was held to zero in this analysis because its effect is only to shift the Grice processes
later in time. Following Brown and Heathcote (2008), the mean growth rates for the two
responses were constrained to sum to 1, by setting v1 = 1 − v2 (where 1 and 2 represent
the nominally incorrect and correct responses, respectively).11 The parameter values used,
shown in Table 3, were chosen to be similar to values from fits to empirical data (see Brown

10 As the sources of systematic variation in the parameter values are immaterial in the present analysis, we
suppress superscripts for stimuli and conditions in this and the following section.

11 Brown & Heathcote’s motivation for this constraint is that it eliminates the degenerate degree of freedom
in the model’s parameters that arises from the arbitrary scaling of the response processes and threshold.
As noted above for the diffusion model, this strategy mistakenly limits the generality of the LBA when
parameters are yoked across multiple experimental conditions (Donkin et al., 2009).
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Table 3: Values of LBA model parameters used in investigation of individual parameter effects on

Grice representation

Parameter Values

b .4 .6 .8 1.0 1.2

A 0 .2 .4 .6 .8

v2 .6 .7 .8 .9 1.0

η .1 .2 .3 .4 .5

Note: For each parameter, model predictions were derived for all five values, while holding the

other three parameters to the values shown in boldface (e.g., each of the five values of b was

combined with A = .4, v2 = .8, and η = .3). Mean growth rates were constrained by v1 + v2 = 1.

Nondecision time was held to zero throughout.

& Heathcote, 2008), with ranges selected to illustrate the type of variability introduced by
each parameter. For each parameter, five Grice representations were derived, corresponding
to the five chosen values of that parameter, while the other parameters were held to their
central values (i.e., to the third entry in each line of Table 3, shown in boldface).

Figure 5 displays the resulting Grice representations. Each panel shows the results of
varying a different parameter, with curves colored light grey through black corresponding
to the first through fifth entries in each row of Table 3. Solid curves are for the nominally
correct response (r = 2), and dashed curves are for the incorrect response (r = 1). The
third-darkest curves in all plots are the same, corresponding to the third value for all four
parameters.

These results reveal a great deal of flexibility in the LBA model, even with its parametric
assumptions retained (see Table 5 for summary). Variation in mean growth rates produces
opposite effects on the two Grice response processes, speeding one while slowing the other
(Figure 5C). Variation in b or A has the effect of speeding or slowing both Grice processes
together (Figures 5A & 5B). Thus, variation in v2 together with variation in b or A provides
the degrees of freedom to independently manipulate the growth rates of both Grice processes
(essentially by manipulating their difference and their mean).

Moreover, b and A have different effects on the shapes of the Grice processes. The effect
of A is approximately temporally uniform, shifting the Grice processes earlier in time but
preserving their shape. The effect of b is temporally nonuniform, being greater at larger
values of t. Combining variation in b and A thus allows selective control of only the early or
late portions of the Grice processes, as shown in Figures 6A and 6B, respectively. Table 4
shows the parameter values used in generating Figure 6. In both panels, b and A were jointly
varied through the five pairs of values in Table 4, while v2 and η were fixed at their third



36 Jones and Dzhafarov

A B 

C D 

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

t

R
b

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

t

R

A

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

t

R

vcorrect

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

t

R
s

Varying b Varying A 

Varying v Varying η	


Figure 5: Grice representations of LBA model under variation of individual parameters. Light

through dark curves correspond to first through fifth entries of each row of Table 3. Each curve

shows a Grice response process (R) as a function of time (t). Solid: correct or modal response

(r = 2); dashed: incorrect or nonmodal response (r = 1).

(boldface) values in Table 3.
Variation in η produces somewhat more complex effects in the Grice response processes

(Figure 5D). Smaller values of η delay their initial rise from zero but make them steeper
thereafter. This result is sensible, because decreased variance in slopes of the LBA’s response
processes narrows the resultant RT distribution, reducing the proportions of both fast and
slow responses.
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Table 4: Values of LBA model parameters used in joint variation of threshold and start-point

variability

Parameter Values

Figure 6A

b .48 .56 .64 .72 .8

A 0 .2 .4 .6 .8

Figure 6B

b .4 .6 .8 1.0 1.2

A .4 .6 .8 1.0 1.2
Note: Both parameters were varied simultaneously through the five pairs of values (i.e., columns)

shown for each figure. Other model parameters were fixed at their boldface values in Table 3.
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Figure 6: Grice representations of LBA model obtained from two different forms of simultaneous

variation of b and A. Light through dark curves correspond to first through fifth columns of Table 4.

Solid: correct or modal response (r = 2); dashed: incorrect or nonmodal response (r = 1).

In conclusion, variation of the LBA’s parameters reveals the constraints on its Grice rep-
resentation. These constraints arise from its distributional assumptions regarding growth
rates and starting points (without which it would have no constraints). Specifically, the
response processes of the standard LBA’s Grice representation (using independent unit-
exponentially distributed thresholds) are always sigmoid in shape, consisting of an initial
period of negligible growth, an effective onset point where they rise from zero, and a final
phase of concavity (deceleration). The LBA’s parameters all have straightforward qualita-
tive interpretations within this framework, allowing near-complete flexibility of the sigmoid
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Table 5: Interpretations of LBA and diffusion model parameters within Grice framework

LBA Parameter Diffusion Parameter Grice Interpretation

b a Growth rate of both processes

A Growth rate of both processes

δz Curvature of response processes

v2 v Differential growth rate between processes

η η Curvature of response processes

t0 Ter Onset time of response processes

δt Abruptness of onset

β Growth rate of both processes

σ Growth rate of both processes

pattern. The effective time of onset and initial growth rate are controlled by A and b, the
differential growth rate between the two responses is controlled by v, and the change in
growth rate over time (concavity) is controlled by η.

4.2. Grice Representation for the Diffusion Model

To obtain Grice representations for the diffusion model, its predicted R&T distribution
and joint hazard function were computed using numerical integration (see Appendix B)
and then translated to Grice response processes using Equation 4.1. As with the LBA,
each of the diffusion model’s parameters was systematically varied to obtain a series of
Grice representations. Although the diffusion rate is traditionally held fixed as a scaling
parameter, it was included in this analysis to understand its unique contribution (equivalent
to simultaneously varying a, z̄, δz, v, and η). Table 6 shows the parameter values used. Each
parameter was varied through three values, with the other parameters fixed at their middle
values. The results are shown in Figure 7.

As with the LBA, the effects of the diffusion model’s parameters on its Grice represen-
tation reveal a great deal of flexibility, even with its parametric assumptions retained (see
Table 5). The mean growth rate (v) provides flexibility in the difference in slopes of the
two Grice response processes, whereas the boundary separation (a) enables the slopes of
both processes to change together. Therefore, as with the LBA, joint variation in v and
a enables independent variation of the slopes of both Grice processes. Furthermore, the
diffusion model can effect these changes in multiple ways. The standard deviation of growth
rates (η) has primarily the same effect as does v, although at longer timescales η can be
seen to affect the processes’ curvature as it does in the LBA. The decay parameter of the
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Figure 7: Grice representations of diffusion model under variation of individual parameters. Light

through dark curves correspond to the first through third entries in Table 5. Solid curves: correct

or modal response; dashed curves: incorrect or nonmodal response.
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Table 6: Values of diffusion model parameters used in investigation of individual parameter effects

on Grice representation

Parameter Values

β 0 4 8

a .05 .1 .15

σ .01 .1 .2

v 0 .15 .3

η 0 .1 .2

δz 0 .03 .09

δt 0 .2 .6
Note: For each parameter, model predictions were derived for all three values, while holding the

other six parameters to the values shown in boldface. In all cases, the mean starting point, z̄, was

held to a/2, and mean nondecision time, Ter, was set to .3 s.

OU model (β) and the diffusion rate (σ) both have primarily the same effect as does a.
The variability in nondecision time (δt) primarily affects only the initial part of the Grice

processes, enabling them to depart from zero suddenly or more gradually. This finding is
consistent with previous conclusions that nondecision variability can be necessary for fitting
the leading edge of empirical distributions (Ratcliff, Gomez, McKoon, 2004) but that it
has little effect on later portions of those distributions (Ratcliff & Tuerlinckx, 2002). The
variability in starting points of the diffusion process (δz) has little effect in the range of values
found in fitting empirical data (compare Table 6 with Table 7 below), but at higher values
it affects the curvature of the Grice processes, in opposite directions for the two responses.

In conclusion, the diffusion model’s parameters all have relatively simple interpretations
within the Grice framework. Furthermore, the parameters appear to provide near-complete
flexibility in determining the slope of each Grice process, their (common) time of departure
from zero, the smoothness of that transition, and their differential curvature.

4.3. Fits to Empirical Data

The Grice representation for an empirical dataset can be derived similarly as for model
predictions, to obtain a family of response processes under which the Grice model perfectly
reproduces the R&T distribution of the data. The derivation involves a minor modification
to account for the discreteness of the RT distribution from a finite set of trials, as explained in
Appendix D. The Grice representation of the data can be compared to Grice representations
of models used to fit those data, to yield insight into what aspects of the data the models
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Table 7: Diffusion model parameters estimated from Experiment 2 of Ratcliff et al. (2001)

Model aspeed aacc v1 v2 v3 v4 η δz Ter δt

Wiener .0821 .1440 .0391 .1320 .1944 .3208 .1485 .0324 .3109 .10

OU (β = 4) .0700 .1128 .0399 .1349 .1983 .3312 .1417 .0111 .3302 .15

OU (β = 8) .0687 .0975 .0342 .1150 .1702 .2772 .0845 .0100 .3185 .10
Notes: Fits taken from Ratcliff and Smith (2004). Stimulus discriminability levels range from 1

(difficult) to 4 (easy). Superscripts “speed” and “acc” refer to speed instructions and accuracy

instructions, respectively.

capture, and how.
This approach is applied to Experiment 2 of Ratcliff et al. (2001), in which subjects

viewed a pair of dots on each trial and classified their distance as “small” or “large” by one
of two keypresses. Dot separation took on 32 different values. Feedback was probabilistic,
such that larger separations were more likely to be followed by reinforcement of the “large”
response. Following Ratcliff et al., data were collapsed among stimulus levels with similar
response proportions and mean RTs, as well as over the symmetry between responses (e.g.,
“large” responses to the largest dot separations were pooled with “small” responses to the
smallest separations), yielding four stimulus difficulty levels for modeling. Although feed-
back was probabilistic, we refer to the modal and nonmodal responses for each stimulus
level as correct and incorrect, respectively. Finally, there were two instruction conditions,
emphasizing speed and accuracy, which alternated between blocks.

Ratcliff and Smith (2004) fit three diffusion models to the data: the Wiener model (β =

0) and two OU models defined by β = 4 and β = 8. The models were fit to the data
pooled across subjects, using the following procedure. For each condition and stimulus
level, the response probabilities and the .1, .3, .5., 7., and .9 quantiles of the conditional
RT distribution for each response were calculated for each subject and then averaged across
subjects. The mean quantiles were used as cutoffs to divide the range of possible RTs into 6
bins per response, for a total of 12 possible outcomes on each trial. The model’s predicted
probabilities for these 12 outcomes were compared to the empirical frequencies to define a
modified chi-square statistic reflecting goodness of fit, which was minimized in parameter
estimation. Table 7 presents the best-fitting parameters for all three diffusion models, as
obtained by Ratcliff and Smith. We applied the same fitting procedure to the LBA model,
with best-fitting parameters shown in Table 8.

To derive Grice representations for the data, data were pooled across subjects by av-
eraging individual subjects’ response probabilities and conditional RT quantiles, as was
done in fitting the models. Because derivation of Grice representations requires full (quasi-
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Table 8: LBA model parameters estimated from Experiment 2 of Ratcliff et al. (2001)

bspeed Aspeed bacc Aacc v12 v22 v32 v42 η t0

.341 .228 .561 .395 .560 .645 .748 .895 .347 .121
Notes: vs2 indicates mean growth rate for correct response, with vs1 = 1− vs2. Stimulus

discriminability levels range from s = 1 (difficult) to s = 4 (easy). Superscripts “speed” and “acc”

refer to speed instructions and accuracy instructions, respectively.

continuous) RT distributions, we used a richer set of quantile probabilities, ranging from
.0001 to 1 in steps of .0001. Each of the corresponding 10000 quantiles was computed sep-
arately for each subject and response, and then averaged across subjects. The resulting
mean quantiles were then converted back to a pooled conditional RT distribution for each
response. The conditional distribution for each response was scaled by the corresponding
response rate (averaged across subjects) to produce a pooled joint R&T distribution. This
joint R&T distribution has the properties that (1) the marginal probability of each response
equals the average response rate across subjects, and (2) every quantile of the conditional RT
distribution for each response equals the average quantile across subjects. This procedure
was performed separately for each combination of instruction condition and stimulus level.

Figure 8 shows the Grice representations of the data and all four models, in the speed
condition. Figure 9 shows the corresponding results from the accuracy condition. The spar-
sity in the tails of the empirical RT distributions makes the response processes exceedingly
noisy beyond 1 s (speed condition) or 2 s (accuracy condition). Therefore, all graphs are
terminated at these times. The models differ in their predictions at longer RTs, for ex-
ample with the OU model exhibiting an eventual crossover between correct and incorrect
response processes (not shown), but these differences are not considered further because the
data are insufficient to distinguish among them. Note that due to the universality of Grice
representations the curves shown in Figures 8A and 9A should be viewed as data rather
than as theoretical fits to data, on a par with representing the data in the form of empirical
distribution functions, quantile functions, hazard functions, etc.

In the speed condition, the Grice response processes for the diffusion models are all
nearly linear in the range of the data, starting from the time they depart from zero. The
only aspects of the Grice-represented data the diffusion models capture are the departure
points and the slopes. The mean-nondecision parameter (Ter) allows the model to match
any departure point, provided it is the same for all responses in all stimulus conditions
(a constraint the data satisfy). As observed in the previous section, the diffusion model’s
parameters allow it to produce Grice processes of any slopes. The first selective influence
assumption, that only the mean growth rate can vary across stimulus levels, implies that
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Figure 8: Grice representations derived from data and model fits for speed condition of Experiment

2 of Ratcliff et al. (2001). A: Empirical data. B: LBA model. C: Wiener model (β = 0). D: OU

model, β = 4. E: OU model, β = 8. Light through dark curves indicate hardest through easiest

stimulus levels. Solid curves: modal response; dashed curves: nonmodal response.
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Figure 9: Grice representations derived from data and model fits for accuracy condition of Exper-

iment 2 of Ratcliff et al. (2001). A: Empirical data. B: LBA model. C: Wiener model (β = 0).

D: OU model, β = 4. E: OU model, β = 8. Light through dark curves indicate hardest through

easiest stimulus levels. Solid curves: modal response; dashed curves: nonmodal response. Note the

difference in the timescale when comparing to Figure 8.
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the sets of Grice processes for the two responses must be approximately symmetric about
some intermediate trajectory for each condition. This prediction is supported by the data.
Therefore, the symmetric-trajectory and common-departure properties seem to be the only
aspects of the data that substantively support the diffusion model.

The fits of the LBA model to the speed condition show less-linear Grice processes, with
an overall negative acceleration. This prediction only partially holds in the data, where the
Grice processes are concave for the correct response but somewhat convex (positively acceler-
ated) for the incorrect response. The excessive concavity of the LBA’s predictions results in
its significantly overestimating the .9 RT quantiles for both responses (not shown). The uni-
versality property implies the LBA could perfectly match the data if allowed non-Gaussian
growth-rate distributions, but these results show how the Gaussian assumption constrains
the model’s predictions. Other than this constraint, the LBA matches the data in the same
manner as does the diffusion model. The Grice processes’ departure point, overall average
slope, and difference across stimulus values in relative slopes for the two responses are all
trivially reproduced. The only necessary predictions of the LBA model that are supported
by the data seem to be the symmetric-trajectory and common-departure properties.

In the accuracy condition, the empirical Grice processes are more nonlinear, concave for
the correct response and somewhat convex for the incorrect response. The diffusion model
reproduces this curvature, especially with lower values of β, as does the LBA. In all other
respects, the same analysis holds as for the speed condition.

Finally, the second selective influence assumption of the diffusion and LBA models, that
only the threshold and (in the LBA) start-point variability can vary across instruction condi-
tions, manifests as a constraint linking their Grice representations across conditions. Specif-
ically, the overall average growth rates of the Grice processes differ between conditions, but
the differences in growth rates between responses and across stimulus levels do not. This
prediction is consistent with the data (note that the timescales differ between Figures 8 &
9).

In conclusion, the Grice representations offer a new perspective on the predictive con-
straints in the diffusion and LBA models arising from their parametric and selective influence
assumptions. They show that the flexibility identified in the previous two subsections en-
ables the diffusion and LBA models to match most aspects of the data in a post hoc manner.
That is, had these features taken on different values, the models could have matched them as
well. There are four aspects of the data, when expressed as Grice representations, that are
necessary predictions of the models: (1) The shapes of the Grice response processes are char-
acterized by initially negligible growth, an effective onset point, and a final phase of roughly
constant concavity or convexity. (2) The effective onset points are constant across responses
and stimulus levels. (3) Variation in stimulus difficulty has opposite and approximately



46 Jones and Dzhafarov

equal effects on the growth rates of the Grice processes for the two responses. (4) Manipu-
lation of subjects’ speed-accuracy emphasis affects the growth rates of the Grice processes
approximately uniformly across responses and stimulus levels. The first of these predictions
is the only one that appears related to the models’ parametric distributional assumptions.
The second prediction is primarily due to the assumption that the non-decision component
of the models is independent of the response and of stimulus and instruction manipulations.
The last two predictions arise from the selective influence assumptions. Critically, none of
these predictions is closely tied to the fundamental architectures of the models. They are
just as naturally interpretable when expressed as assumptions in the Grice framework as
when expressed in the LBA and diffusion frameworks.

5. DISCUSSION

Whenever a cognitive model provides a good account of empirical data, it is critical to
understand which of its assumptions are responsible for its predictive success. Such under-
standing is important for theoretical progress and for generalizing to other paradigms or
domains. Moreover, the assumptions of most formal models can be roughly divided into
ones corresponding to theoretical principles the model is meant to embody, and technical
details that are necessary to generate quantitative predictions but are chosen without theo-
retical consideration and can be modified or dispensed with as need arises. Issues of model
flexibility and mimicry are a challenge in any domain, and often the most powerful solution
is a nonparametric approach that can be applied to whole model families, to determine the
implications of their theoretical assumptions taken alone (e.g., Townsend & Wenger, 2004).
For an empirical test of a model to constitute a test of its theoretical principles, it is impor-
tant to know that those principles provide the main constraint on the model’s predictions,
and that the choices of technical assumptions are largely inconsequential.

The present work shows that for currently influential models of choice RT, the situation
is reversed, in that the predictions are driven entirely by technical assumptions and (to an
as yet unknown extent) by the second selective influence assumption. Aside from the sec-
ond selective influence assumption (which we have argued is ill-motivated), the theoretical
principles of both the diffusion and ballistic accumulation frameworks are unfalsifiable, be-
cause the inclusion of random growth-rate variability allows any conceivable pattern of RT
distributions to be matched. This result is similar to Dzhafarov’s (1993) result for the Grice
modeling framework (Grice, 1968), that the theoretical assumption of deterministic pro-
cesses racing to stochastic thresholds is unfalsifiable, and that predictive constraints come
only from technical assumptions about the forms of the response processes under specific
choices of threshold distributions.
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The universality results thus impose a significant limitation on what can be inferred from
existing research about psychological processes of speeded decisions. Although the diffusion
and LBA models have been highly successful in fitting data from a variety of task domains
(e.g., Brown & Heathcote, 2008; Ratcliff & Smith, 2004), this success does not imply any
support for the theoretical or structural assumptions of these models. For example, the
fact that the universality results hold without diffusion, decay, start-point variability, or
nondecision variability implies that these components are superfluous if the growth-rate
distributions are unconstrained. All of these mechanisms have been postulated as necessary
theoretical principles, yet mathematically none of them is needed to fit data. Any version
of the model with these other components included is equivalent to a model without them,
with appropriately altered growth-rate distributions.

Setting aside the techical assumption of Gaussian growth-rate distributions, the sole link
remaining between theory and prediction is the second selective influence assumption. With
this assumption, the models are falsifiable, and without it they are not. This assumption has
certainly been posed in the literature as a theoretical principle, not an arbitrary technical
detail, and thus one might claim that our results are irrelevant to models that hold this
principle. There are several problems with such a position. First, as we argued in Section 3,
the second selective influence assumption is not as compelling as the first selective influence
assumption (which does not impart predictive constraints). There is no a priori reason that
stimulus processing cannot vary across cognitive states, and indeed there are prominent
models that assume it does (Nosofsky & Palmeri, 1997; Roe et al., 2001). Second, selective
influence has not heretofore been attributed anything close to the lynchpin role our results
imply would be needed to save the models. It should be useful to researchers relying on
these models to learn that their explanatory value hinges fully on this one assumption.

Third, although selective influence imparts predictive constraints, the strength and nature
of those constraints are open questions. It seems likely that the models’ choices of parametric
distributions (i.e., the Gaussian and uniform assumptions) are responsible for much if not the
bulk of the explanatory work in past fits to empirical data. To truly defend selective influence
as a standalone theory of choice RT, one would have to derive the logical consequences of
the second selective influence assumption in the absence of any parametric assumptions
(consequences that presumably would differ across architectures, such as the gDM, gLBA,
or Grice framework). Unfortunately, most modern mathematical modeling does not take
this type of analytic approach. Instead, models are constructed as conjunctions of many
assumptions, making it difficult to separate their logical consequences. This practice puts
the field in a position where we do not always know why a model does or does not succeed
empirically, and consequently we often have little guidance on what psychological conclusions
can be drawn from comparisons of models to data.
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A related argument against the present results might be that the diffusion and LBA
models both assume that growth-rate distributions are of the same parametric form across
stimuli, responses, and conditions. Mathematically, this statement is meaningless. Any finite
set of distribution functions can be characterized as instances of some parametric family,
that is, made to be of the same “parametric form.” In fact, any finite set of parametric
families of functions can be united into a single parametric family. Normal distributions
and Poisson distributions can be viewed as two parametric classes, but they can also be
viewed as belonging to the exponential family of distributions. Linear and cubic functions
are members of the polynomial family. To take an unconventional example, the families
of functions A sin ax and Bxβ are subsets of the family Cxβ (sin ax)δ, provided β = 0 and
δ = 0 are not excluded. Therefore the relevant question is not why a single parametric form
is possible, but why the particular parametric family that has dominated past work (viz.,
the Gaussian) has been so empirically successful.

Empirical success by a falsifiable model implies that it is capturing some regularity in
the data, and hence in cognitive processing, but it is not clear in the current case what that
regularity is. One possibility is that the Gaussian distribution is psychologically correct,
but this is doubtful for three reasons. First, there is no clear reason to expect a Gaussian.
Whereas the Gaussian distribution of within-trial variability emerging from a diffusion pro-
cess can be explained by the summation of many independent neural events (via the central
limit theorem), there is no obvious candidate for a between-trial analog—that is, a large
number of independent and identically distributed between-trial variables that sum to de-
termine the drift rate. Second, Ratcliff (2013) and Donkin and Little (2013) have recently
shown through simulation that the diffusion and LBA models yield similar predictions if the
Gaussian drift distribution is replaced by a uniform or beta distribution, suggesting that
any of a range of distributions might be adequate. Further work along these lines might be
informative in determining what aspects of a growth distribution are needed for good fits to
data (e.g., symmetry or thin tails). However, a third caveat is that the empirical success of
a distribution will generally depend on the model architecture. For example, the standard
LBA can be translated to an equivalent gLBA model without start-point variability, and this
new model will have quite different growth distributions. In initial derivations not reported
here, we have found these distributions to be positively skewed with heavier tails. Heathcote
and Love (2012) have recently explored a similar model and found that a lognormal growth
distribution gives good fits to data. Therefore one needs to consider both distributional and
structural assumptions jointly.

When a modeling framework is universal, it is best thought of as a language for expressing
models. Empirical tests of a model are tests of falsifiable assumptions stated in that language,
not of the framework itself. Nevertheless, a modeling language can be regarded as more useful
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or less useful depending on the interpretability of the assumptions needed to give good fits of
data. Constraining assumptions will take different forms when translated between different
languages, some perhaps more transparent or suggestive than others. Thus, a relevant
question is which framework admits models that can explain the data in a way that is
both mathematically convenient (e.g., using few free parameters and allowing for analytic
solutions) and also easily interpretable (e.g., in terms of which parameter controls which
theoretical construct and reflects which observable property of RT distributions).

Although the aim of this article is not to advocate for the Grice framework as a lan-
guage for modeling speeded choice, the results of Section 4 suggest it fares well on both
of the above criteria. First, the Grice representation of the empirical data from Ratcliff
et al. (2001) suggests that human behavior can be well matched using fairly simple Grice
response processes. In terms of free parameters, the formal translation between modeling
languages implies the Grice processes require no more than the number of free parameters in
the model (i.e., diffusion or LBA) from which the translation was derived. However, consid-
eration of the qualitative form of the Grice representations derived here suggests a simpler
parameterization might be possible: One might need only to specify an onset (i.e., time of
departure from zero), slope for each response, and possibly quadratic terms for curvature.
These assumptions are mathematically simpler than the conjunction of the assumptions of
a Gaussian distribution, two uniform distributions, Brownian motion, and decay. Moreover,
one might argue that deterministic processes paired with random thresholds are inherently
simpler than stochastic processes, because a stochastic process always involves some dynam-
ics in time and one or more random variables at each time point, but in addition one has to
specify (under certain regularity assumptions) a joint distribution of these random variables
across every finite set of time points. Second, the unique effects of stimulus level and of
speed-accuracy manipulations have natural interpretations in the Grice framework. Increas-
ing stimulus intensity can be assumed to increase the growth rate of the correct response
process and to decrease the growth rate of the incorrect process. Shifting the subject’s em-
phasis toward speed can be assumed to increase the growth rates of all processes. Both of
these assumptions seem no less theoretically motivated than assumptions regarding growth
rates and decision thresholds in the other frameworks.

Finally, it is important to note that the present results apply to models that make pre-
dictions only for choice and RT. The postulated mechanisms within these models (viz.,
response processes and decision thresholds) are treated only as mathematical entities that
determine predictions for these observable variables. Other measures have been used to
investigate speeded decision-making, such as confidence ratings (Ratcliff & Starns, 2009),
motor trajectories (Spivey, Grosjean, & Knoblich, 2005), eye movements (Krajbich, Armel,
& Rangel, 2010), and neural recordings (Roitman & Shadlen, 2002), and the identifiability
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problems raised here might be reduced by requiring a model to predict these variables in
addition to choice and RT. Such an extension would require additional assumptions about
how the internal mathematical constructs of the model map onto physical observations. For
example, a large body of research on monkeys’ saccade responses to visual motion has led to
the proposal that eye movements are triggered by threshold-crossing of activity in the lateral
intraparietal area, which follows a diffusion process by temporally integrating upstream ac-
tivity in the middle temporal visual area (Mazurek, Roitman, Ditterich, & Shadlen, 2003).
Although there have been empirical challenges to this theory (e.g., Filimon, Philiastides,
Nelson, Kloosterman, & Heekeren, 2013), it exemplifies how, by committing to physical
interpretations of otherwise abstract model constructs, one can potentially leverage neural
and behavioral data to make better progress than is possible from either alone.

However, in taking an implementational stance on otherwise algorithmic-level models (see
Marr, 1982), one should be cautioned against automatically adopting naturalistic analogies
prompted by terminological conventions such as calling some theoretical constructs “pro-
cesses” and others “thresholds.” For example, the finding that RT correlates better with the
growth rate of neural activity than with its final level (Hanes & Schall, 1996) might suggest
that neural interpretations are more compatible with variability residing in accumulation
processes than in thresholds, but Grice response processes need not be directly identified
with physical activations of neurons. Because the Grice framework is situated at an algo-
rithmic level of description, it can be mapped onto neural processing in many alternative
ways, some of which might be found to provide a natural correspondence. Recall, as a
simple example, the Grice-equivalent frameworks of Theorems 5 and 6. The “deterministic
response processes” and “random thresholds” in the Grice model both correspond to aspects
of the response processes in these alternative models. Therefore, if the response processes
in either alternative model are identified with neural activation, then the Grice framework
can be seen as compatible with stochastic neural activity developing toward a fixed neural
threshold.

5.1. Conclusions

A long history of experimental research in speeded choice has produced a rich body of
empirical regularities regarding choice probability, RT distributions, and their dependence
on various factors. Mathematical modeling has produced models that often yield impressive
fits to these data with relatively few free parameters. Nevertheless, the theoretical impli-
cations of these modeling results are far less certain than they have been made out to be.
As we have shown here, the models’ predictions derive not from their structural assump-
tions but from technical aspects that have been considered irrelevant details. Understanding
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the predictive constraints and theoretical implications of these technical assumptions, to-
gether with those of the second selective influence assumption, is thus an important goal.
The methods introduced here for translating falsifiable models between universal modeling
languages may be useful toward that end.
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Appendix A: Proofs of Theorems

Recall the definition of joint hazard function in Equation 2.5. Analogously, given a
random variable T with density function f (t) and (cumulative) distribution function F (t),
the hazard function is defined as

h (t) =


f(t)

1−F (t)
if F (t) < 1

0 if F (t) = 1.

(A.1)

Theorem 3 (Universality of independent race models)

We begin by observing that the marginal hazard function for RT is related to the joint
hazard function by

hs,c (·, t) = gs,c (·, t)
1−Gs,c (·, t)

=

∑
r g

s,c (r, t)

1−Gs,c (·, t)
=
∑
r

hs,c (r, t) (A.2)

with hs,c (·, t) = hs,c(r, t) = 0 if t > ts,cmax. It follows that, for all t,

Gs,c (·, t) = 1− exp

(
−
ˆ t

0

hs,c (·, τ) dτ
)

= 1−
∏
r

exp

(
−
ˆ t

0

hs,c (r, τ) dτ
)
, (A.3)

and

gs,c(r, t) = hs,c (r, t) (1−Gs,c (·, t)) = hs,c (r, t)
∏
i

exp

(
−
ˆ t

0

hs,c (i, τ) dτ
)
. (A.4)

Let F s,c
r (t) be the (cumulative) distribution functions for T s,c

r according to the model M ,
and let f s,c

r (t) and νs,c
r (t) be the corresponding probability density and hazard functions,

respectively. The probability density of process r winning the race at moment t is given by

γs,c(r, t) = f s,c
r (t)

∏
i 6=r

(1− F s,c
i (t)) = νs,c

r (t)
∏
i

(1− F s,c
i (t)) . (A.5)

We have to prove that γs,c (t) = gs,c (t) if and only if

F s,c
r (t) = 1− exp

(
−
ˆ t

0

hs,c (r, τ) dτ

)
(A.6)

for t < ts,cmax.
First, assume Equation A.6 holds for t < ts,cmax. From Equation A.4, if

´ t
0
hs,c (i, τ) dτ = ∞

for any i and t, then gs,c(r, t′) = 0 for all r and all t′ > t. Therefore
´ t

0
hs,c (i, τ) dτ must be

finite for all t < ts,cmax. Equation A.6 then implies that for t < ts,cmax, F s,c
r (t) < 1 and
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νs,c
r (t) =

dF s,c
r (t) /dt

1− F s,c
r (t)

= hs,c (r, t) . (A.7)

Using Equation A.6 in Equation A.5 and substituting hs,c (r, t) for νs,c
r (t),

γs,c(r, t) = hs,c (r, t)
∏
i

exp

(
−
ˆ t

0

hs,c (i, τ) dτ
)
. (A.8)

By Equation A.4, this means
γs,c(r, t) = gs,c(r, t). (A.9)

To prove the converse, assume γs,c (r, t) = gs,c (r, t), and substitute gs,c for γs,c in Equation
A.5 to obtain

gs,c(r, t) = νs,c
r (t)

∏
i

(1− F s,c
i (t)) . (A.10)

Since by assumption the model M is an independent race representation for Gs,c, F s,c
i (t) < 1

for t < ts,cmax and ∏
i

(1− F s,c
i (t)) = 1−Gs,c (·, t) . (A.11)

Therefore for t < ts,cmax,

νs,c
r (t) =

gs,c(r, t)

1−Gs,c(·, t)
= hs,c (r, t) , (A.12)

and Equation A.6 follows.

Theorem 4 (Incomplete termination times)

In this theorem s and c are fixed, so they are omitted from the notation. We begin by
constructing an independent race model

M = ((R1(t), θ1) , . . . , (Rn(t), θn))

whose first-passage times Tr are incomplete for r ∈ {i1, . . . , im} and complete otherwise
(0 ≤ m < n). Let all θr be independent and uniformly distributed between 0 and 1, and let

Rr(t) = pr ·
(
1− e−t

)
, (A.13)

where pr < 1 if r ∈ {i1, . . . , im} and pr = 1 otherwise. The model’s first-passage distributions
are then given by

Pr [Tr ≤ t] = Rr(t). (A.14)

For r ∈ {i1, . . . , im}, Pr [Tr ≤ t] increases to limt→∞Rr(t) = pr < 1; that is, the first-
passage times are incomplete. For r /∈ {i1, . . . , im}, Pr [Tr ≤ t] increases to 1, reaching it
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asymptotically at t = ∞. This completes the construction of M . Denote by G(r, t) the
R&T distribution generated by M , and by h(r, t) the associated hazard function. Clearly,
tmax = ∞ here.

Assume M ′ is any other independent race model generating G(r, t), and let T ′
r be the

random variables for its first-passage times. From Theorem 3, we have for all r and t

Pr [T ′
r ≤ t] = 1− exp

(
−
ˆ t

0

h(r, τ)dτ

)
= Pr [Tr ≤ t] . (A.15)

Therefore the first-passage times for M ′ are incomplete for r ∈ {i1, . . . , im} and complete
for r /∈ {i1, . . . , im}, as claimed.

Theorem 7 (Universality of general LBA)

Let F s,c
r (t) be the (cumulative) distribution functions for first-passage times defined by

Equation 2.11. From Theorem 3, the gLBA will reproduce Gs,c(r, t) if it has first-passage
distributions equal to F s,c

r (t). Under the assumptions of Theorem 7, the first-passage times
for the gLBA are given by Equation 2.18. Define the gLBA’s growth-rate distribution
functions as

Pr [ks,c
r ≤ k] =

{
1− F s,c

r

(⌊
b
k
+ t0

⌋)
if k > 0

1− limt→∞ F s,c
r (t) if k = 0,

(A.16)

extending them below k = 0 arbitrarily. (The b·c notation indicates the left limit: F (btc) =
supτ<t F (τ).) Then the first-passage distributions for any t > t0 are equal to

Pr [T s,c
r ≤ t] = Pr

[
b

ks,c
r

+ t0≤t and ks,c
r > 0

]
= Pr

[
ks,c
r ≥ b

t− t0

]
= F s,c

r (t). (A.17)

Theorem 8 (Universal ballistic models with random growth rates)

As with Theorem 7, we need only to show that the model can generate any given set of
first-passage distributions, F s,c

r (t). The first-passage time for response r here is equal to the
value of t for which ks,c

r Lr (t) = b. Therefore

T s,c
r =

L−1
r

(
b

ks,cr

)
if ks,c

r > b
er

∞ if ks,c
r ≤ b

er

, (A.18)
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where er = limt→∞ Lr(t). If Lr(t) is unbounded we put er = ∞ and b/er = 0. Let the
distribution functions for growth rates ks,c

r be

Pr [ks,c
r ≤ k] =

{
1− F s,c

r

(⌊
L−1
r

(
b
k

)⌋)
if k > b

er

1− limt→∞ F s,c
r (t) if k = b

er

, (A.19)

arbitrarily extended below k ≤ b
er

. The first-passage distributions are then given by

Pr [T s,c
r ≤ t] = Pr

[
L−1
r

(
b

ks,c
r

)
≤ t and ks,c

r >
b

er

]
= Pr

[
ks,c
r ≥ b

Lr(t)

]
= F s,c

r (t) . (A.20)

Theorem 9 (Universal ballistic models with random starting points)

As with the previous two proofs, we need only to show that the model can generate any
given set of first-passage distributions, F s,c

r (t). The first-passage time here is

T s,c
r =

L−1
r (b− zs,cr ) if zs,cr > b− er

∞ if zs,cr ≤ b− er
, (A.21)

where er = limt→∞ Lr(t). If Lr(t) is unbounded, b − er is replaced with −∞. Let the
start-point distribution functions be

Pr [zs,cr ≤ z] =

{
1− F s,c

r (bL−1
r (b− z)c) if z > b− er

1− limt→∞ F s,c
r (t) if z = b− er

, (A.22)

extended below z = br − er arbitrarily. Then the first-passage time distributions are given
by

Pr [T s,c
r ≤ t] = Pr

[
L−1
r (b− zs,cr ) ≤ t and zs,cr > b− er

]
= Pr [zs,cr ≥ b− Lr(t)] = F s,c

r (t) . (A.23)

Remark. Theorems 8 and 9 can be easily generalized in several respects: The continuity
and nonnegativity constraints on Lr(t) can be relaxed. One can allow the thresholds to
have different values for different responses. All quantities being fixed at arbitrarily chosen
values, by the very arbitrariness of their choice, can be made arbitrarily dependent on c. For
instance, b1, . . . , bn in Theorem 9 can be made bc1, . . . , bcn with the stipulation limt→∞ Lr (t) ≤
supc b

c
r.



60 Jones and Dzhafarov

Theorem 10 (Universality of general Wiener diffusion model)

Given any family of R&T distributions, Gs,c(r, t) for r = 1, 2, define the growth-rate
distribution for each condition by

Pr [ks,c ≤ k] =


Gs,c

(
1, Ter − a

2k

)
if k < 0

limt→∞Gs,c (1, t) if k = 0

1−Gs,c
(
2,
⌊
Ter +

a
2k

⌋)
if k > 0

. (A.24)

Using Equations 2.20 and 2.21, we have for any t > Ter:

Pr [r = 1 and RT ≤ t] = Pr
[
ks,c < 0 and Ter −

a

2ks,c
≤ t
]

= Pr

[
ks,c ≤ − a

2 (t− Ter)

]
= Gs,c(1, t), (A.25)

and

Pr [r = 2 and RT ≤ t] = Pr
[
ks,c > 0 and Ter +

a

2ks,c
≤ t
]

= Pr

[
ks,c ≥ a

2 (t− Ter)

]
= Gs,c(2, t). (A.26)

Remark. The theorem is proved under the assumption that Gs,c is globally complete
(i.e., a response is given on every trial with probability 1). Then Pr [ks,c = 0] = 1 −
limt→∞ Gs,c (·, t) = 0. If global incompleteness is allowed, then the expression for Pr [ks,c ≤ 0]

in Equation A.24 should be changed to 1− limt→∞Gs,c (2, t), with no further consequences.

Theorem 11 (Universality of general Ornstein-Uhlenbeck model)

Under the simplifying assumptions of the theorem, the response process for the OU model
is given by

Rs,c(t) =
a

2
+

ks,c

β

(
1− e−β(t−Ter)

)
. (A.27)

The response and RT are given by

r =


1 if ks,c < −βa

2

2 if ks,c > βa
2

undefined if − βa
2
≤ ks,c ≤ βa

2

(A.28)

and

RT =

T er − 1
β
log
(
1− βa

2|ks,c|

)
if |ks,c| > βa

2

∞ if |ks,c| ≤ βa
2
.

(A.29)
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Given any family of R&T distributions Gs,c(r, t), define the distribution functions for
growth rates as

Pr [ks,c ≤ k] =

 Gs,c
(
1, Ter − 1

β
log
(
1 + βa

2k

))
if k < −βa

2

1−Gs,c
(
2,
⌊
Ter − 1

β
log
(
1− βa

2k

)⌋)
if k > βa

2
,

(A.30)

arbitrarily interpolated on the interval |k| ≤ βac

2
. (Under the global completeness assump-

tion, the interpolated portion is a constant equal to 1− limt→∞ Gs,c(·, t).) Then the general
OU model (with σ = δz = δt = 0) can be verified to reproduce Gs,c(r, t). For any t > Ter:

Pr [r = 1 and RT < t] = Pr

[
ks,c < −βa

2
and T er −

1

β
log

(
1 +

βa

2ks,c

)
≤ t

]
= Pr

[
ks,c ≤ − βa

2 (1− e−β(t−T er))

]
= Gs,c(1, t), (A.31)

and

Pr [r = 2 and RT < t] = Pr

[
ks,c >

βa

2
and T er −

1

β
log

(
1− βa

2ks,c

)
≤ t

]
= Pr

[
ks,c ≥ βa

2 (1− e−β(t−T er))

]
= Gs,c(2, t). (A.32)

Remark. Note that this result holds for β < 0 (positive feedback) as well as for β > 0

(decay), even though the OU model is generally taken as restricted to the latter case.

Theorem 12 (Universality with nonzero diffusion)

Let G (r, t) be any R&T distribution that is continuous in time, and let β be any real
number. By Theorem 11, there exists a gDM model M0 with σ = 0, a = 1, z = 1

2
, and decay

rate β such that M0 generates G (r, t). Let k be the random growth rate assumed by M0,
and let R0(t) =

1
2
+ kt be the associated stochastic response process.

We put r = 1, with r = 2 being considered analogously. By the definition of M0, the
following relation holds:

G (1, t) = Pr
[
responseM0

= 1 and RTM0 ≤ t
]
= Pr [min {x : R0 (x) ≤ 0} ≤ min (t,min {x : R0 (x) ≥ a})] .

(A.33)
Let W (t) be an OU process with zero drift, diffusion rate equal to 1, and decay rate β.

Choose a sequence of OU processes σnW (t) with σn → 0, and note these processes all have
decay rate β. Consider

Gn (1, t) = Pr [min {x : Rn (x) ≤ 0} ≤ min (t,min {x : Rn (x) ≥ a})] , (A.34)
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where
Rn (t) = R0 (t) + σnW (t) . (A.35)

It can easily be shown that
Gn (1, t) → G (1, t) (A.36)

for any t ≥ 0, and that
Gn (1,∞) → G (1,∞) . (A.37)

By an extension of Pólya’s theorem on pointwise convergence of distribution functions
(Pólya, 1920), the convergence is uniform; that is,

sup
t≥0

|Gn (1, t)−G (1, t)| → 0. (A.38)

Combining now over both responses, the uniform convergence implies that for any ε > 0 one
can find a σn such that

sup
r,t≥0

|Gn (r, t)−G (r, t)| < ε. (A.39)

Now define a gDM model Mn with σ = 1, a = 1/σn, z = a/2, decay rate β, and random
growth rate k/σn. The stochastic response process in this model is equal to Rn(t)/σn =

aRn(t), and thus Mn produces the R&T distribution Gn(r, t). The model Mn therefore
satisfies the theorem.

Appendix B: Predictions and Grice Representation of Diffusion Model

The predicted R&T distribution and density of the diffusion model were calculated fol-
lowing the method of Smith (2000). To simplify notation, the response process on each trial
is redefined by R̃(t) = R(t)−z, so that the starting point is R̃(0) = 0 and the new thresholds
are b1 = −z and b2 = a − z. We also suppress superscripts s and c in this section. With
this notation, the unconstrained transition function of the response process (i.e., ignoring
whether it has or has not crossed either decision threshold) can be shown to equal

f (x, t|y, τ) =
d

dx
Pr
[
R̃(t) ≤ x|R̃(τ) = y

]
=

√
β

πσ2 (1− e−2β(t−τ))
· exp

−β
[
x− ye−β(t−τ) − k

β

(
1− e−β(t−τ)

)]2
σ2 (1− e−2β(t−τ))

(B.1)

or, when β = 0,

f (x, t|y, τ) =

√
1

2πσ2 (t− τ)
· exp

(
− (x− y − k (t− τ))2

2σ2 (t− τ)

)
. (B.2)
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The next step is to relate the predicted R&T density, g(r, t), to the transition function
using a renewal equation (Durbin, 1971; Fortet, 1943). This equation expresses the total
probability of transitioning from (0, 0) to (br, t), for r = 1 or 2, in terms of the first-passage
distribution multiplied by the transition probability from the first-passage point to (br, t):

f (br, t|0, 0) =
ˆ t

0

g(1, τ)f (br, t|b1, τ) dτ +

ˆ t

0

g(2, τ)f (br, t|b2, τ) dτ. (B.3)

Because of instabilities that arise in numerically solving Equation B.3, it is transformed into
the following expression (Buonocore, Nobile, & Ricciardi, 1987):

g (1, t) = −2Ψ (b1, t|0, 0) + 2

ˆ t

0

g (1, τ)Ψ (b1, t|b1, τ) dτ + 2

ˆ t

0

g (2, τ)Ψ (b1, t|b2, τ) dτ

g (2, t) = 2Ψ (b2, t|0, 0)− 2

ˆ t

0

g (1, τ)Ψ (b2, t|b1, τ) dτ − 2

ˆ t

0

g (2, τ)Ψ (b2, t|b2, τ) dτ(B.4)

with the new integration kernel, Ψ, given by

Ψ(x, t|y, τ) = 1

2
f (x, t|y, τ)

[
βx− k − 2e−β(t−τ)

1− e−2β(t−τ)

(
eβ(t−τ) (βx− k)− βy + k

)]
, (B.5)

or, when β = 0,

Ψ(x, t|y, τ) = −f (x, t|y, τ) (x− y)

2(t− τ)
. (B.6)

Following Ratcliff and Smith (2004), Equation B.4 was integrated numerically using a step
size of dτ = .01 (i.e., 10 ms). The resulting R&T density was then integrated over the
distributions of z, k, and t0 to obtain the predicted R&T density of the full model.

The Grice representation for the diffusion model was obtained using Equation 4.1, with
the diffusion model’s joint hazard function h(r, t) obtained from g(r, t) by numerical intega-
tion. Because of the nested integration in Equations 4.1 and B.4, accumulation of rounding
errors produced artificial cusps and nonmonotonicities in Rr(t) for extreme values of t. These
minor numerical errors are negligible in standard analyses of diffusion models, which focus
directly on RT distributions and quantiles, but they cause problems in the present analysis.
Therefore, to eliminate rounding error, the tail of g(r, t) for each response r within each
stimulus and condition (or parameter setting) was replaced by an exact exponential func-
tion. Plots of log (g(r, t)) showed extended regions of near-perfect linearity in the tails of
the RT distributions, indicating the predicted RT distributions have asymptotically expo-
nential tails. This property can be proven analytically when k, z, and t0 are constant and
there is only one threshold (Ricciardi & Sato, 1988), and this graphical technique showed
exponentiality to be an excellent approximation for the full model. For all of the analyses
reported, the linearity of log (g(r, t)) only broke down for extreme values of t, at the point
where rounding error from limits on machine precision came into play. To eliminate these
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Figure 10: Illustration of correction to tail of reaction time (RT) distributions derived from diffusion

models. Solid curve indicates log-transformed joint R&T density for correct response, g(2, t), as

approximated by numerical integration. After 1.74 s, the approximated density becomes negative

due to rounding error. Vertical black lines indicate a conservative region within which log (g(2, t))

is very nearly linear (R2 = .99998). Dashed line indicates extrapolation of this linear range, which

was used to replace the tail of g(2, t) with an exact exponential function, in defining the corrected

distribution. Model parameters for this example are taken from Ratcliff and Smith’s (2004) fit of

the Wiener model to Ratcliff et al.’s (2001) Experiment 2, speed condition, stimulus level 3.

effects of rounding error, the linear portion of log (g(r, t)) was extrapolated to cover the
remaining tail of the RT distribution (Figure 10).

Appendix C: Deriving Grice Representation of LBA Model

Brown & Heathcote (2008) derive the cumulative first-passage distribution of each re-
sponse process in the standard LBA by integrating over the growth rate (ks

r) and the starting
point (zcr):

Pr [T s,c
r ≤ t+ t0] = 1− bc − tvsr

Ac
Φ

(
bc − tvsr

tη

)
+

bc − Ac − tvsr
Ac

Φ

(
bc − Ac − tvsr

tη

)
− tη

Ac
φ

(
bc − tvsr

tη

)
+

tη

Ac
φ

(
bc − Ac − tvsr

tη

)
.(C.1)

When Ac = 0, the distribution reduces to

Pr [T s,c
r ≤ t+ t0] = 1− Φ

(
bc − tvsr

tη

)
. (C.2)

In a Grice model with independent unit-exponential threshold distributions, the first-
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passage distributions are given by

Pr [T s,c
r ≤ t] = 1− e−Rs,c

r (t). (C.3)

This expression assumes the response processes are nondecreasing, which can always be
made true by substituting maxτ≤t {Rs,c

r (τ)} for Rs,c
r (t) (Dzhafarov, 1993). Combining Equa-

tions C.2 and C.3 yields the response processes with which the Grice model (with indepen-
dent unit-exponentially distributed thresholds) mimics the LBA. For Ac > 0,

Rs,c
r (t+ t0) = − log

[
bc−tvsr
Ac Φ

(
bc−tvsr

tη

)
− bc−Ac−tvsr

A
Φ
(

bc−Ac−tvsr
tη

)
+ tη

AcΦ
(

bc−tvsr
tη

)
− tη

AcΦ
(

bc−Ac−tvsr
tη

)]
,

(C.4)

and for Ac = 0,

Rs,c
r (t+ t0) = − log

[
Φ

(
bc − tvsr

tη

)]
(C.5)

with Rr(t) = 0 for t ≤ t0.

Appendix D: Grice Representation of Discrete Data

Assume we are given a finite number of response-RT pairs, with all RTs distinct. Let
tr1 < . . . < trnr be the ordered sample of RTs paired with response r. We add to this
sequence a dummy element 0 = tr0 < tr1.

Let Tr be the first-passage times for the Grice representation of the data. It is clear that
Tr is discretely distributed, with nonzero probability at each tri (i > 0) and zero probability
elsewhere (except perhaps for t > tmax). The probability that no response has occurred
before time t is given by

Pr [RT ≥ t] =
∏
r

Pr [Tr ≥ t] (D.1)

and the probability of response r occurring at time t is given by

Pr [response = r and RT = t] = Pr [Tr = t] ·
∏
r′ 6=r

Pr [Tr′ > t] = Pr [Tr = t] ·
∏
r′ 6=r

Pr [Tr′ ≥ t]

(D.2)
(since all response times are distinct, if Pr [Tr = t] > 0 then Pr [Tr′ = t] = 0 for all r′ 6=
r). Combining Equations D.1 and D.2 yields a relationship between the empirical hazard
functions for the first-passage distributions and what we refer to as the empirical joint hazard
function for R&T, ĥ (r, t). For all t ≤ tmax:

Pr [Tr = t]

Pr [Tr ≥ t]
=

Pr [response = r and RT = t]

Pr [RT ≥ t]
= ĥ (r, t) . (D.3)
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Let Fr(t) be the (cumulative) distribution function for Tr, a staircase function with jumps
at tri for i ≥ 1. With a unit-exponential threshold distribution, the response process gener-
ating Fr(t) is

Rr (t) = − log (1− Fr (t))

= −
∑
tri≤t

log
1− Fr (tri)

1− Fr

(
tr(i−1)

)
= −

∑
tri≤t

log

(
1− Pr [Tr = tri]

Pr [Tr ≥ tri]

)
= −

∑
tri≤t

log
(
1− ĥ (r, tri)

)
. (D.4)

This last formula is what we used in computing the Grice representation of the empirical
data, separately for each stimulus and instruction condition.


