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Abstract

Reward positivity (RewP) is an EEG component reflecting reward-prediction errors. Using multilevel 

models, we measured single-trial RewP amplitude from trial-to-trial, while reward and prediction varied 

during learning. Sixty participants completed a category-learning task in either engaging or sterile 

conditions with the RewP time-locked to feedback. Sequential analysis of single-trial RewP showed its 

relationship to current and previous accuracy, and the probability of changing one’s response to 

subsequent stimuli. Simulations show these effects can be explained in detail by the dynamics of 

participants’ expectations according to principles of reinforcement learning. The single-trial RewP 

findings were consistent with previous literature linking RewP to reward-prediction error under 

reinforcement-learning theory. In contrast, the aggregate RewP was unrelated to the engagement 

manipulation or to delayed retention performance. Thus the present results provide a detailed 

computational account how RewP relates to acute adaptation, but suggest RewP plays little role in long-

term learning.
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Introduction

Reinforcement learning theory posits that individuals adjust their behavior in order to obtain 

rewards and avoid punishments (Sutton & Barto, 1998; Thorndike, 1908). These behavioral adjustments 

are driven by reward-prediction errors—the degree to which an actual reward differs from the learner’s 

expectation (Schultz, 2017). Reward-prediction errors can result from rewards being better (positive) or 

worse (negative) than predicted, and both positive and negative prediction errors influence future 

behavior. Positive reward-prediction errors act as a signal within the brain to ‘stamp in’ a behavior, 

making the preceding action more likely to be selected in the future for a given state of the system 

(Holroyd & Krigolson, 2007; Palidis, Cashaback, & Gribble, 2018). Conversely, negative reward-prediction 

errors act as a signal within the brain to ‘stamp out’ a behavior, so that it can be avoided in the future. 

In many studies of human learning, researchers measure reward-prediction errors through the 

proxy measure of the reward positivity (RewP) component derived from event-related potential (ERP) 

waveforms in electro-encephalograms (EEGs; Proudfit, 2015; Sambrook & Goslin, 2015). (This 

component has gone by other names including the feedback negativity, feedback-related negativity, 

feedback error-related negativity, and feedback correct-related positivity, but it is operationally and 

conceptually the same component as the RewP [Sambrook & Goslin].) Operationally, the RewP is a 

positive deflection in the ERP waveform that occurs 250 to 350 ms following positive feedback relative 

to negative feedback. The RewP exhibits a fronto-central scalp distribution, likely generated by anterior 

cingulate cortex. Conceptually, the RewP is believed to reflect a reward-prediction error (Holroyd & 

Coles, 2002). The positive prediction errors are likely transmitted to anterior cingulate cortex by a phasic 

increase in dopamine from the midbrain (Krigolson, 2018). In current practice, most researchers 

operationalize the RewP as a difference wave, specifically by averaging together ERPs from all trials with 

positive feedback, all trials with negative feedback, and then subtracting the latter average from the 

former. Alternatively, some researchers have looked at the RewP on a trial-by-trial level, 
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operationalizing it as the voltage following feedback (Collins & Frank, 2018; Frömer, Stürmer, & 

Sommer, 2016). We refer to these two different measures as the aggregate RewP and single-trial RewP, 

respectively.

Converging evidence implicates both the aggregate and single-trial RewP as indices of reward-

prediction error (Sambrook & Goslin, 2015). The difference-wave approach reliably yields a deflection in 

the waveform, indicating a strong sensitivity to the valence of feedback. The aggregate RewP has also 

been shown to be greater in response to larger rewards (e.g., $0.5 vs. $5.0). Thus, RewP is affected by 

both the sign and the magnitude of reward. Aggregate RewP is also sensitive to the participant’s 

predictions (i.e., expectation of reward), being greater for unexpected outcomes than for expected 

outcomes (Holroyd & Krigolson, 2007; Sambrook & Goslin, 2015). The combination of positive 

dependence on reward and negative dependence on predictions implicates the single-trial RewP as a 

neural correlate of their difference, that is, reward-prediction error.

Currently, there is a limited understanding of how RewP relates to behavior over different 

timescales. Although a number of recent electrophysiological studies have investigated trial-by-trial 

dynamics of reward-prediction error (Chase, Swainson, Durham, Benham, & Cools, 2011; Collins & 

Frank, 2018; Fischer & Ullsperger, 2013; Frömer et al., 2016; Pedroni, Langer, Koenig, Allemand, & 

Jancke, 2011; Philiastides, Biele, Vavatzanidis, Kazzer, and Heekeren, 2010; Sambrook & Goslin, 2014, 

2016; Sambrook, Hardwick, Wills, & Goslin, 2018), most work has focused on block- or session-level 

manipulations (for representative examples, see Bellebaum & Daum, 2008; Reinhart & Woodman, 2014; 

van der Helden, Boksem, & Blom, 2009). Moreover, there has been little to no research on how RewP 

relates to delayed retention or transfer, as opposed to immediate performance. The fact that much of 

the extant literature does not consider trial-by-trial dynamics or delayed retention and transfer tests is 

problematic for at least two reasons. First, analysis of trial-level (i.e., sequential) effects can be highly 

informative regarding the details of reinforcement learning mechanisms (Jones, Curran, Mozer, & 
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Wilder, 2013; Jones, Love, & Maddox, 2006; Philiastides et al., 2010). Second, the relationship between 

the acute adaptation mechanisms (as postulated by reinforcement learning theory) and long-term 

learning is poorly understood. From the perspective of reinforcement learning theory, positive reward-

prediction errors during practice drive adaption toward better performance.  Reinforcement learning 

explains long-term learning as the accumulation of these adaptations (e.g., Sutton & Barto, 1998). These 

adaptations are also assumed to underlie generalization to novel stimuli, via overlap in stimulus 

representations (e.g., Jones et al., 2006). Thus, a straightforward prediction is that achieving a high level 

of performance during practice should be associated with better performance on subsequent retention 

and transfer tests. However, behavioral studies have shown that these two measures of performance 

are often uncorrelated or even negatively correlated (Kantak & Winstein, 2012; Pashler & Baylis, 1991).

The present experiment investigated the neurophysiological correlates of adaptation and 

learning in a perceptual categorization task. The primary aim was to evaluate the separate impacts of 

reward and prediction on the aggregate RewP and the single-trial RewP. We experimentally 

manipulated the value of reward between participants using a motivational game manipulation 

designed to enhance reward processing (Lohse, Boyd, & Hodges, 2016). To do this, we adapted a 

category learning task using complex visual stimuli called greebles (Gauthier & Tarr, 1997). In the 

“sterile” group, described in detail below, participants had to learn which of several responses 

corresponded to each family of greebles through trial-and-error categorization. In the “game” group, 

participants had to complete the same task, but rather than as a cognitive psychology experiment the 

task was framed as a game, “Goblin Quest”, in which participants had to learn which of several 

“weapons” (responses) corresponded to each “goblin” (family of greebles). Building on previous work 

indicating that motivation enhances learning (Wulf & Lewthwaite, 2016), we hypothesized that 

increased motivation from the game manipulation would magnify representations of reward, yielding 

stronger reward-prediction errors (and thus magnified RewP).  
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In addition to the empirical study, we present and test a detailed analysis of computational 

reinforcement-learning models for trial-level dynamics of reward-prediction errors. Previous research on 

RewP has primarily used random feedback or stairstep procedures to hold reward probability to 

predetermined values (e.g., Holroyd & Krigolson, 2007). However, it is important to recognize that the 

probability of reward is not constant in natural learning environments. As learners become more skillful 

and knowledgeable in a task, success is more likely, and the accuracy of their predictions also increases. 

To the extent that RewP indexes prediction error, as opposed to just reward, it should be impacted by 

changes in learners’ expectancy of success. Indeed, studies that have investigated trial-by-trial dynamics 

when learners’ predictions are allowed to evolve freely over the course of learning reveal intriguing 

temporal dynamics of the single-trial RewP (Collins & Frank, 2018; Fischer & Ullsperger, 2013; Frömer et 

al., 2016; Philiastides et al., 2010; Sambrook & Goslin, 2016; Sambrook et al., 2018). For instance, 

Frömer and colleagues (2016) showed how the single-trial RewP displays characteristics of both a 

reward measure, being greater following accurate performances, and an expectancy measure, getting 

lesser as cumulative accuracy gets better. In the present study, we add to this research and extend it by 

(A) using mixed-effect regression analyses to show the relationship between the single-trial RewP and 

both preceding and subsequent behavior, (B) using simulations to show how the dynamics of the RewP 

can be explained in fine detail by a reinforcement learning model, and (C) including delayed retention 

and transfer tests to investigate whether observed short-term learning dynamics carry over to explain 

long-term learning.

Separating Dynamics of Prediction and Reward in RewP

Because reward-prediction error is a difference between actual and expected reward, both 

factors are relevant to the interplay between prediction errors and learning. To the extent that RewP is 

sensitive to variation on the reward side, the most straightforward prediction is that single-trial RewP is 

more positive on correct trials than on incorrect trials. The corresponding property of the aggregate 
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RewP, that the difference wave is positive, is well established and is the original basis for its 

interpretation as a correlate of reward-prediction error (Holroyd & Coles, 2002). However, reward-side 

effects on RewP also lead to several more detailed predictions. First, stronger subjective reward should 

produce larger reward-prediction errors, leading to greater behavioral adaptation. This is the 

assumption underlying the game manipulation: the gamified task would increase subjective reward, 

magnifying the RewP, and thus speeding learning. Similarly, to the extent that there are individual 

differences in strength of subjective reward, this assumption also predicts a positive correlation 

between aggregate RewP and training performance across participants (Grand et al., 2017; Holroyd & 

Krigolson, 2007). Moreover, if reinforcement learning mechanisms are important for long-term learning, 

and not just short-term adaptation, then the same correlation should be obtained for post-test 

performance. Finally, there is the parallel prediction at the within-participant level: If subjective reward 

varies across trials (separately for positive and negative feedback), there should be a positive correlation 

between the single-trial RewP on the current trial and the probability of repeating the current response 

the next time a stimulus from the same category is presented. This is because a greater RewP indicates 

the subjective value of that response given the stimulus will be more greatly increased (positive 

feedback) or more weakly diminished (negative feedback).

To the extent that RewP is sensitive to variation on the prediction side, three somewhat 

counterintuitive predictions derive directly from reinforcement learning theory. First, participants who 

have learned the task better will have greater expectation of reward when they choose a correct 

response and lesser expectation when they choose an incorrect response, leading to a smaller aggregate 

RewP. This leads to the prediction of a negative correlation between aggregate RewP and training 

performance across participants (directly opposing the prediction above from reward-side variation). 

Second, a similar mechanism applies at the within-participant level: Because predictions are more 

accurate when the learner has better knowledge of the current category, the difference in RewP 
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between correct and incorrect trials should decline as participants learn. Finally, controlling for the 

valence of the feedback, a greater prediction error indicates the participant had less confidence in the 

chosen response. In this way, single-trial RewP should correlate negatively with the probability of 

repeating the response the next time a stimulus from the same category is presented, separately for 

correct and for incorrect trials (again, in contrast to the prediction above from reward-side variation). 

Contrasting the empirical predictions that derive from the reward versus prediction sides of the 

reward-prediction error also bears on the causal role of the neural signal underlying RewP in learning. 

The predictions above from reward-side variation are primarily based on the assumption that this signal 

causally drives adaptation: Variation in reward representation should lead to variation in how responses 

are strengthened or weakened, leading to positive correlations of aggregate RewP with practice and 

retention performance at the between-subjects level, and of single-trial RewP with response repetition 

at the within-subject level. In contrast, the predictions from the prediction side are consistent with the 

RewP as more of an epiphenomenal correlate of the reward-prediction error, reflecting adaptations that 

have already taken place. That is, if participants have already updated their internal representations of 

the task, they should show a smaller aggregate RewP, leading to a negative correlation with 

performance. Likewise, greater single-trial RewP would be associated with changing responses because 

it indicates lower confidence in the chosen response.

To preview our results, we find a complex pattern of relationships between single-trial RewP 

and choice behavior at the trial level, and between aggregate RewP and performance averaged over the 

training session, that are remarkably well explained by a simple reinforcement-learning model. In 

particular, we find that RewP tracks prior experience as predicted, but it predicts future behavior only in 

a correlative (not causal) manner, as anticipated by the prediction-side dynamics of the model. We also 

find that the game manipulation reliably impacted both training and retention performance, but with 

the sterile group outperforming the game group (opposite what was predicted). However, RewP was 
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unaffected by the game manipulation and did not predict retention performance. We conclude that 

reinforcement-learning theory provides an excellent computational account of RewP at both aggregate 

and single-trial levels of analysis, but also that the local adaptation mechanisms do not account for long-

term retention and transfer of information.

Methods

Participants

Sixty right-handed young adults (41 females), aged between 18 and 25 years (Mage = 20.9 years, 

SD = 1.40 years), participated in the study after consenting to a protocol approved by the Auburn 

University Institutional Review Board (#17-009 EP 1702). Participants were recruited from university 

courses via an online recruitment system and were compensated with course credit. Sample size was 

determined by an a priori power calculation using GLIMMPSE 2.2.4 (Kreidler et al., 2013). A total sample 

size of N = 54 was determined necessary to achieve 80% power for a 20% difference in posttest accuracy 

(SD = 40%), assuming an alpha of .05, a 1:1 allocation ratio between groups, and a correlation of .8 

between repeated measures. To account for participant dropout and poor EEG recording, the decision 

was made to recruit N = 60 participants. Participants were randomly assigned to experimental groups, 

balanced separately within males and females.

Task and Procedure

Day 1 (Practice). After consenting to participate in the experiment, which was referred to as a 

“game” for the game group and a “task” for the sterile group, participants completed the Edinburgh 

Handedness Inventory to verify right-handedness while being prepared for EEG recording. Next, 

participants were seated 60 cm from the center of a computer monitor (38.5 cm screen). Participants 

adjusted the computer keyboard so that they could comfortably reach the 1, 2, 3, 4, and 5 keys in the 

number row near the top of the keyboard with their right index finger. Next, participants were given 

instructions designed to facilitate good EEG recording (e.g., “do not move your head”) and had 3 min of 
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resting EEG recorded. After the resting recording, participants were given game group or sterile group 

instructions via PowerPoint slides (see Supplementary Appendix i), which they advanced at their own 

pace. Both sets of instructions asked participants to learn to categorize complex visual stimuli (greebles; 

Gauthier & Tarr, 1997). Each greeble has a vertically oriented central component, the shape of which 

varies depending on to which one of five families the greeble belongs (see Figure 1). Each greeble also 

has four protrusions, which originate in a similar configuration along the central component of all 

greebles. If the protrusions point upward, the greeble is of one gender, and if the protrusions point 

downward, the greeble is of another gender. Participants were instructed to categorize greebles 

according only to their central component (family), not the protrusions (gender). 

The game instruction slides included background music and described a game titled “Goblin 

Quest”. In this game, participants were described a scenario in which they awoke in a dungeon and 

needed to fight goblins in order to escape. Participants were told they would encounter five types of 

goblins, and there would be sixteen of each type. Participants were told each type of goblin was 

sensitive to one of five weapons, so the participant needed to learn which weapon to use to “kill” a 

particular type of goblin. Participants selected a weapon by choosing its corresponding key on the 

keyboard: 1. Sword, 2. Nunchucks, 3. Throwing Star, 4. Axe, or 5. Slingshot. Participants were given two 

pieces of advice: (1) try to focus on the goblin’s body shape rather than the protrusions from the 

goblin’s body, and (2) initially try to use the same weapon until you figure out which goblin is sensitive 

to it. (We included this advice based on pilot data that suggested participants struggled to learn the 

categories otherwise.) 

The sterile instruction slides described a task titled “Stimulus Categorization”. In this task, 

participants were described a scenario in which they needed to categorize five types of complex stimuli 

with sixteen of each type. Participants were told different types of stimuli go in different categories, so 

the participant needed to learn in which category to place each stimulus. Participants selected a 
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category by choosing its corresponding key (1, 2, 3, 4, or 5 on the keyboard). Participants were given the 

same two pieces of advice: (1) try to focus on the body shape of the stimulus, and (2) initially try 

choosing the same category until you figure out which stimulus belongs in that category.

After the participant viewed the instruction slides, the experimenter asked the participant 

whether he or she had any questions and answered the questions. To ensure that participants 

understood the instructions, participants completed two trials of the game/task before proceeding to 

the practice trials. These warm-up trials followed the same procedure as those used during actual 

practice; the goblins/stimuli used for warm-up were not repeated during practice. The game/task, which 

is depicted in Figure 2, presented participants with a fixation cross for 2000 ms, followed by the 

goblin/stimulus. For the game group, the “goblin” was accompanied by the sound of breathing and 

below each response number was a weapon icon. The goblin/stimulus remained until the participant 

made a response by pressing the 1, 2, 3, 4, or 5 key with their right index finger. Next, a fixation square 

was presented for 2000 ms, followed by a checkmark indicating the participant had killed the goblin or 

correctly categorized the stimulus, or an X indicating the goblin survived or the stimulus was incorrectly 

categorized. The feedback was followed by a blank screen for 500 ms, and then the next trial began. 

Participants completed 80 trials (16 goblins/stimuli for each family—the goblins/stimuli were randomly 

ordered, and the same random order was used for all participants) while having their EEG recorded. 

Thus, every stimulus appeared exactly once, with no repetitions. Finally, at the end of practice, 

participants completed a language-adapted version of the User Engagement Scale (O’Brien & Toms, 

2010).

Day 2 (1-week Post-tests). One week after Day 1, participants returned to the laboratory and 

provided verbal consent to continue in the experiment. Participants completed game and sterile post-

tests in counterbalanced order. Prior to each post-test, participants were given game or sterile post-test 

instructions via PowerPoint slides. These instructions were similar to the instructions given before the 
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practice phase with only minor differences (also shown in Supplementary Appendix i). First, the 

instructions asked participants to try to remember what weapon/category goes with the goblin/stimulus 

“…based on what [they] learned the prior week”. Second, the instructions did not indicate that 

participants would receive any feedback (since participants did not receive feedback during post-tests). 

Third, the instructions did not provide hints about focusing on body shape rather than protrusions or 

sticking with a single response until correct feedback was received (again, because no feedback was 

given during post-tests). 

After the participant viewed the instruction slides, the experimenter asked the participant 

whether he or she had any questions and provided clarifications as necessary. Participants then 

completed the post-tests, which were similar to the practice game/task. Specifically, a fixation cross was 

presented for 2000 ms, followed by a goblin/stimulus. (As in the practice phase, in the game test the 

goblin was accompanied by sound representing heavy goblin breathing.) The stimulus remained until 

the participant made a response by pressing the 1, 2, 3, 4, or 5 key with their right index finger. Next, a 

blank screen appeared for 500 ms, and then the next trial began. Participants completed 30 trials (6 

goblins/stimuli for each family) in each post-test. Half of the goblins/stimuli in each family were rotated 

by 15 degrees about the vertical axis in three dimensions. The game post-test was the same for every 

participant in terms of the goblins that were presented and the order in which they were presented. 

Likewise, the sterile post-test was the same for every participant in terms of the stimuli that were 

presented and the order in which they were presented. The game and sterile post-tests contained 

different greebles, but all greebles had been presented during practice. 

EEG Recording and Processing

EEG Recording. Scalp EEG was collected from 31 channels of an EEG cap housing a 64-channel 

BrainVision actiCAP system (Brain Products GmbH, Munich, Germany) labeled in accord with an 

extended international 10-20 system (Oostenveld & Praamstra, 2001). EEG data were online-referenced 
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to the left earlobe, and a common ground was employed at the FPz electrode site. Electrode 

impedances were maintained below 25 kΩ throughout data collection and a high-pass filter was set at 

0.016 Hz with a sampling rate of 250 Hz. The EEG signal was amplified and digitized with a BrainAmp DC 

amplifier (Brain Products GmbH) linked to BrainVision Recorder software (Brain Products GmbH).

EEG Processing. EEG data processing was conducted with BrainVision Analyzer 2.1 software 

(Brain Products GmhB). Data were re-referenced to an average ears montage and then filtered between 

0.1 and 30 Hz with 4th-order roll-offs as well as a 60-Hz notch filter. Next, the data were inspected and 

prominent artifacts were marked in order to facilitate the subsequent independent component analysis 

(ICA)-based ocular correction (Brain Products, 2013). This function searches for an ocular artifact 

template in a designated channel (FP2) and then finds ICA-derived components that account for a user-

specified amount (70%) of variance in the template-matched portion of the signal in the designated 

channel. The components are then removed from the EEG signal, which is reconstructed for further 

processing. 

Reward Positivity. The reward positivity (RewP) was obtained by segmenting the EEG data into 

epochs beginning 100 ms before and ending 1000 ms after the onset of feedback (correct [�] or 

incorrect [X]). These epochs were then baseline corrected from -100 to 0 ms. Next, epochs were 

automatically rejected if they contained a >50 µV/ms change, a >100 µV change in a moving 200-ms 

window, or a <0.5 µV change in a moving 200-ms window at electrodes of interest (Fz, Cz, and Pz). On 

average, 99.1% (SD = 3.38% across participants) of epochs were retained, and each participant had at 

least 60 epochs retained. The remaining epochs (M = 31.2, SD = 16.4, minimum = 11) for correct 

feedback were averaged, and the remaining epochs (M = 48.0, SD  = 16.2, minimum = 9) for incorrect 

feedback were averaged separately. Next, a difference wave was formed by subtracting the incorrect 

average from the correct average. The positive peak in the difference wave showed considerable latency 

variability between participants, so an adaptive mean amplitude window technique was employed 
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(Clayson, Baldwin, & Larson, 2013). Specifically, each participant was associated with a 40-ms time 

window centered around the time of maximum amplitude between 245 and 345 ms at electrode Fz in 

that participant’s difference wave. The choices of range of possible time windows (245 – 345 ms) and 

electrode (Fz) were based on the positive peak in the difference wave grand average across all 

participants in both groups. Single-trial RewP was quantified by taking the mean amplitude on each trial 

in the subject’s 40-ms time window, and aggregate RewP was quantified for each subject by taking the 

mean of that subject’s difference wave over the same time window. Consequently, each subject’s 

aggregate RewP is equal to the mean single-trial RewP on correct trials minus the mean on error trials. 

(Additional EEG components, the encoding stimulus preceding negativity and feedback stimulus 

preceding negativity, were extracted for exploratory analyses. Details of these analyses are presented in 

Supplemental Appendix II.)

Data Analysis

Prior to statistical analyses, we visually inspected density plots for the single-trial RewP (and 

encoding/feedback preceding negativity). For the single-trial RewP, 99% of the data fell between -30 µV 

and 41 µV, but the full set of values ranged from -558 to 421 µV. To reduce the influence of these 

outlying scores, we excluded trials with single-trial RewP < -50 µV or > +50 µV. These criteria led to 1.5% 

of trials being excluded from subsequent analyses of the single-trial RewP. Analyses were conducted in R 

(R Core Team, 2017) using a combination of linear and logistic mixed-effects regressions, depending on 

the nature of the dependent variable (Bates, Maechler, Bolker, & Walker, 2015; Kuznetsova, Brockhoff, 

& Christensen, 2017). In all mixed-effects regressions, we first contrast-coded all categorical variables 

(such that the intercept corresponds to the mean) and mean-centered all continuous variables. Trial was 

coded as a linear contrast in all analyses. All processed data and code for statistical analyses are 

available online (https://github.com/keithlohse/cat_learn/). Analyses for the assessment of learning 

were pre-registered prior to data collection (https://aspredicted.org/xt2zp.pdf). Analyses for the 

https://github.com/keithlohse/cat_learn/
https://aspredicted.org/xt2zp.pdf
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sequential effects of RewP during practice, although theoretically driven, were developed after data 

were collected. 

Improvement during Practice. To measure changes in response accuracy during practice, we 

used a logistic mixed-effects regression with fixed effects of Group (game/sterile), Trial number, and 

their interaction. These models included random effects of Participant, Participant × Trial, Stimulus 

Category, and Participant × Stimulus Category. The dependent variable was the whether or not the 

current response was correct.  

Additionally, to measure the aggregate RewP, we used a one-sample t-test to test whether the 

grand-average RewP was different from zero and an independent-samples t-test to test whether the 

aggregate RewP differed between the groups. Finally, to assess the relationship between the aggregate 

RewP and practice performance we used two different linear models. First, we regressed overall 

accuracy onto the aggregate RewP (from the difference wave), controlling for group. Second, we 

regressed overall accuracy onto the average correct trial amplitude and average incorrect trial 

amplitude (as separate variables), controlling for group. 

Sequential Effects during Practice. Reward-prediction errors, indexed by RewP, should be 

affected by accuracy on preceding trials and may affect accuracy on subsequent trials. To assess how the 

single-trial RewP was affected by the prior experience, we used a linear mixed-effects regression with 

fixed effects of Group (game/sterile), Trial number, Current Accuracy (response accuracy on the current 

trial, correct or incorrect), Previous Accuracy (defined as response accuracy for the most recent stimulus 

from the same category) and their interactions. The model included random effects of Participant, 

Participant × Trial, Stimulus Category, and Participant × Stimulus Category. The dependent variable was 

the single-trial RewP on the current trial. The first instance of each category was excluded from this 

model, because Previous Accuracy is undefined for those trials. 
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To measure how the RewP predicts future behavior, we used logistic mixed-effects regression 

with fixed effects of Group (game/sterile), Current Accuracy, the current single-trial RewP, Trial number, 

and their interactions. The model included random effects of Participant, Participant × Trial, Stimulus 

Category, and Participant × Stimulus Category. The dependent variable was whether or not participants 

switched their response the next time they saw a stimulus from the same category. The last instance of 

each category was excluded from this model, because the dependent variable of response switching is 

undefined for those trials. 

Assessment of Long-Term Learning. First, to measure long-term learning and the effect of the 

game manipulation, our analysis focused on delayed post-test performance with a 2 (Group: 

Game/Sterile) 2 (Post-test Condition: Retention/Transfer)  2 (Stimulus Orientation: Old/Rotated) ×  ×

fixed-effects design. Given the positive skew in the number of correct responses on the post-test, we 

square-root transformed the dependent variable for analysis. Second, using the same 2  2  2 × ×

design, we also analyzed median response time for correctly classified stimuli on the post-test. Third, to 

test whether the RewP explained performance on the delayed retention and transfer tests, we fit linear 

models regressing average performance on the two post-tests (retention and transfer) onto the 

aggregate RewP, both alone and controlling for practice performance and group. 

Results

Practice Performance

Results of the analysis of improvement during practice are presented in Table 1. As explained in 

the Data Analysis section, this analysis predicted trial-by-trial classification accuracy during training as a 

function of group, trial number, and their interaction. There were main effects of trial number (p < .001) 

and group (p = .045), and a Group x Trial interaction (p = .002) as shown in Figure 3. Although the 

probability of making a correct response increased across trials in both groups, this increase was much 

more substantial in the Sterile group.  
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Analysis of aggregate RewP showed that it was significantly positive and did not reliably differ 

between groups. Specifically, statistical analysis of the difference wave (Figures 4A & 4B) showed that 

the average amplitude difference for the period between 245 and 345 ms after feedback onset at 

electrode Fz was significantly different from zero (M = 4.55 μV, t(56) = 7.16, p < .001). Furthermore, the 

RewP had a fronto-central scalp topography consistent with previous work (Proudfit, 2015), as seen in 

Figure 4C. The average RewP tended to be larger for the game group (M = 5.25 μV) than for the sterile 

group (M = 3.86 μV), but this difference was not statistically significant, t(56) = 1.09, p = .279. Similarly, 

there was not a significant difference in self-reported engagement between the game group (M = 3.63) 

and the sterile group (M = 3.57), t(56) = 0.37, p = .709.

Regression analyses of overall performance across the practice session (Table 2, top) showed a 

negative relationship between the aggregate RewP and accuracy, p = .012. Controlling for the RewP, 

there remained a statistically significant advantage for the Sterile group, p = .042. To assess the separate 

contributions of positive and negative prediction errors to this relationship, an additional analysis was 

run that separated each participant’s RewP into mean amplitude on correct trials and mean amplitude 

on incorrect trials (Table 2, bottom). This analysis revealed a negative relationship between correct-trial 

amplitude and accuracy, p = .012. Incorrect-trial amplitude was positively, but not significantly, related 

to accuracy, p = .295. As the simulations reported below demonstrate, the directions of these 

associations are consistent with effects of prior learning on RewP via the prediction side of the reward-

prediction error (i.e., better category knowledge leads to accurate performance and smaller prediction 

errors, both positive and negative) and not with effects of RewP on subsequent learning via the reward 

side (i.e., stronger reward representations yield faster learning; this would predict the opposite 

correlations).
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Sequential Effects on the Single-Trial RewP 

To analyze the effects of past experience on the RewP, we modeled single-trial RewP as a 

function of group, trial number, accuracy on the current trial, and previous accuracy (for the most recent 

stimulus from the same category). This analysis, summarized in Table 3, revealed a significant main 

effect of the accuracy of the current trial (p < .001), with greater mean amplitude following correct 

feedback than incorrect feedback (see Figure 5A). However, this effect was complicated by significant 

two-way interactions of Trial with both Current Accuracy (p = .009) and Previous Accuracy (p = .020), and 

a three-way interaction of Trial x Current Accuracy x Previous Accuracy (p = .035). As shown in Figure 5B, 

when the response to the last trial of a stimulus from the same category was incorrect, the difference in 

amplitude between correct and incorrect responses remained relatively constant throughout the course 

of learning. However, when the response to the last trial of a stimulus from the same category was 

correct, the difference in single-trial RewP between correct and incorrect responses diminished over 

time. As the simulations reported below demonstrate, this complex pattern is well predicted by 

principles of reinforcement learning (see explanation in the Simulation section).

Retaining or Changing Responses

The analysis of RewP’s impact on subsequent behavior used group, single-trial RewP, current 

accuracy, and trial number to predict whether the subject repeated or changed responses the next time 

a stimulus from the same category was presented. The results of this analysis are summarized in Table 4. 

As shown in Figure 6A, participants partially learned the appropriate categories over the course of the 

practice phase, with the rate of changing one’s response reducing over time, controlling for the other 

factors in the model (main effect of trial, p < .001). Additionally, the analysis showed that there was a 

negative relationship between identifying the stimulus correctly on the current trial and the log-odds of 

changing one’s response for the next stimulus of the same category (main effect of current accuracy, p < 

.001). Importantly, there was also a positive effect of single-trial RewP on the current trial (p = .010), 
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controlling for the other factors in the model. Thus, greater single-trial RewP on the current trial was 

associated with a higher probability of changing one’s answer for the next stimulus of the same 

category. The simulations below show all three of these effects follow from principles of reinforcement 

learning. In particular, lesser RewP indicates stronger category knowledge (i.e., greater expectation of 

reward), which predicts a greater chance of selecting the same response in the future.  

However, these main effects were complicated by Group × Trial × Current Accuracy (p = .008) 

and Group × Single-Trial RewP × Current Accuracy interactions (p = .005), shown in Figures 6B and 6C. 

We do not have explanations for the group differences, but the Simulation section below shows that a 

simple reinforcement-learning model explains the Trial × Current Accuracy and Single-Trial RewP × 

Current Accuracy interactions obtained by marginalizing over Group. Specifically, the effect of current 

accuracy is greater on later trials, because a correct response becomes more likely to indicate the 

participant has learned this category (as opposed to a lucky guess). Similarly, the effect of single-trial 

RewP is greater on correct trials than on incorrect trials, because single-trial RewP is more indicative of 

the strength of a participant’s category knowledge in the former case. 

Assessment of Long-term Learning

The first analysis of learning from training to testing predicted post-test performance as a 

function of training condition, post-test condition, and stimulus orientation. As shown in Figure 7A, 

performance on the post-test was low overall, but the sterile group performed better on average (M = 

10.54 correct out of 30 trials per post-test) than the game group (M = 6.46 out of 30). This difference 

was confirmed by a main effect of Group, p = .021 (see Table 5). There was also a significant Group by 

Test-Type interaction, p = .002, such that participants in the game group tended to perform better in the 

condition in which they trained, whereas the sterile group showed more comparable levels of 

performance on retention and transfer tests. None of the other effects were statistically significant (ps > 

.130).  
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The corresponding analysis of correct response time is summarized in Figure 7B. There was 

considerable variability in the median response time for correct responses within groups and conditions, 

with the average median response time M = 2.52 s. The only statistically significant effect, however, was 

a main effect of group (p = .041), such that participants who practiced in the sterile group were faster 

with their correct responses (M = 2.16 s) than were participants in the game group (M = 2.88 s). There 

was no significant main effect of Test-Type (p = .656), Orientation (p = .337), nor any statistically 

significant interactions (ps > .312). 

To assess the dependence of post-test performance on RewP and the game manipulation, we 

regressed the post-test accuracy onto practice accuracy, group, and the aggregate RewP. Controlling for 

the other factors, there was not a reliable effect of group, t(54) = 1.33, p = .190, nor a reliable effect of 

RewP, t(54) = 0.70, p = .487. However, there was a statistically significant positive relationship between 

practice accuracy and post-test accuracy, t(54) = 5.48, p < .001. Importantly, we also regressed post-test 

accuracy onto aggregate RewP alone, finding no significant relationship, t(56) = -0.86, p = .395. Thus, 

group had a relationship to post-test accuracy (as shown by the analysis above, in Table 5) that was 

mediated by performance during practice, whereas the RewP was not significantly related to post-test 

accuracy. These results indicate RewP did not impact retention and did not play a role in the observed 

group difference in retention, and that the group difference in retention performance is explained by 

the group difference in training performance. 

Summary of Results

In summary, the present experiment demonstrates a robust RewP that is closely tied to 

behavioral adaptation during practice. At the session level, aggregate RewP was negatively related to 

subjects’ overall training performance. At the trial level, there are complex relationships both between 

subjects’ past experience and performance and their current trial-level RewP, and between trial-level 
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RewP and subsequent adaptation of behavior. Despite these strong findings from the training session, 

we saw no relationship between RewP and retention performance. 

We see two main implications for these results. First, the detailed relationships between RewP 

and behavior during training (at both trial and session levels) provide valuable targets for modeling 

within the reinforcement learning framework. We take up this challenge in the next section. Second, the 

decoupling of RewP from retention performance suggests important limitations to the contribution of 

adaptation through reward prediction errors to long-term learning. We consider this latter implication in 

the Discussion section.

Simulation of Trial-Level Dynamics

We simulated a simple Reinforcement Learning model to test whether it can explain the pattern 

of results found above. The model assumes that the participant learns associations between the 

features defining the categories and the response options. Recall the participants were explicitly 

instructed on which feature of the stimuli to use for categorization (the shape of the central 

component), so they had only to learn to associate these feature values to the categories. For each 

feature value  and response , the participant learns a value  representing the expected reward 𝑓 𝑟 𝑄(𝑓,𝑟)

for choosing  when the stimulus has value  (Watkins & Dayan, 1992). Thus the optimal values, for a 𝑟 𝑓

participant who has learned perfectly, would be  for  and  for .𝑄(𝑖,𝑖) = 1 1≤ 𝑖 ≤ 5 𝑄(𝑖,𝑗) = 0 𝑖 ≠ 𝑗

The model assumes responses are chosen probabilistically by a softmax rule:

(1)Pr [𝑟|𝑓] ∝ 𝑒𝑄(𝑓,𝑟)/𝑇

where  is a choice temperature parameter.𝑇

Learning is driven by prediction error,

(2)𝛿= 𝑅 ‒ 𝑄(𝑓,𝑟),

where  is the participant’s chosen response, and  is the feedback received, coded as  for correct and 𝑟 𝑅 1

 for incorrect. The value for the chosen response is updated according to‒ 1
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(3)𝛥𝑄(𝑓,𝑟) = 𝛼𝛿,

where  is a learning rate parameter.𝛼

Finally, we assume that the observed single-trial RewP on each trial is a noisy measure of the 

prediction error,

(4)𝑅𝑒𝑤𝑃 ∼𝒩(𝛿,𝜎 2
EEG),

where  is a parameter determining the error variance of this neural measure.𝜎 2
EEG

The model was simulated 10,000 times, each time with the same number of trials that 

participants experienced during practice, with parameters , , and . These 𝛼= 0.1 𝑇= 0.1 𝜎 2
EEG = 0.5

values correspond to relatively slow learning and deterministic responding, in line with the general 

trends in the data. The goal was to demonstrate how the qualitative patterns in the data follow from RL 

theory, and thus no effort was made for quantitative parameter tuning. The simulated data from the 

10,000 virtual participants were analyzed identically to the real data from the experiment with the 

exception of the game manipulation, which was omitted. Results are shown in Figure 8. 

Relationship between RewP and Performance

Across simulated subjects, the model predicts a negative association between aggregate RewP 

and number of correct responses, as shown in Figure 8a. This prediction arises for the reason given 

earlier: On runs when the model learns more accurate reward values, , it generates more correct 𝑄(𝑓,𝑟)

responses as well as smaller prediction errors. Smaller prediction errors entail single-trial RewP is lower 

on correct trials and higher on incorrect trials, resulting in a smaller aggregate RewP. This predicted 

association also decomposes in the manner found in the human data. That is, accuracy correlates 

negatively with mean single-trial RewP on correct trials (via the accuracy of values learned for correct 

responses, ), and it correlates positively with mean single-trial RewP on incorrect trials (via the 𝑄(𝑖,𝑖)

accuracy of values learned for incorrect responses, , ). 𝑄(𝑖,𝑗) 𝑖 ≠ 𝑗
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Sequential Effects on the Single-Trial RewP 

In the analysis of sequential effects on the single-trial RewP, the model correctly reproduces all 

aspects of the interactions among accuracy on the current trial, accuracy on the previous instance of the 

same category, and trial number, as shown in Figure 8b (compare to empirical results in Figure 5b).

First, there is a main effect of current accuracy (compare black curves to red curves), which the 

model explains as a direct effect of reward: The difference in reward on correct trials ( ) and on 𝑅= 1

incorrect trials ( ) translates directly to a difference in prediction error ( ) and thence to the 𝑅=‒ 1 𝛿

single-trial RewP. 

Second, when the previous response to the same category was correct (solid curves), the effect 

of current accuracy decreases with trial number. The model’s explanation is based in its expected 

reward, . Put simply, as the model learns the correct Q-values, prediction errors go away, and 𝑄(𝑓,𝑟)

thus the initial difference in the single-trial RewP on correct versus incorrect trials closes over time. A 

more detailed explanation is as follows. Early in learning, the Q-values are approximately the same for 

all responses (correct and incorrect). Thus, the difference in  between correct and incorrect trials is 𝛿

nearly the same as the corresponding difference in rewards (  vs. ). As learning progresses, the Q-1 ‒ 1

value for the correct response to each category increases toward , and thus the prediction error 1

declines toward  (solid black line). Likewise, the Q-values for incorrect responses decline toward , 0 ‒ 1

and thus the negative prediction error that arises when the model happens to pick an incorrect 

response increases toward  (solid red line). (Note that, because the model assumes stochastic, 0

exploratory responding, it will occasionally select an incorrect response even after it has learned that 

response to be inferior.) The first of these effects is stronger than the second, because the model learns 

more about the correct response for each category than it does about any particular incorrect response. 

Third, the interaction just described between trial number and current accuracy is mostly absent 

when the previous response to the same category was incorrect (dashed curves). This is because an 
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incorrect previous response indicates the model has likely not yet learned the correct Q-values for this 

category. This in turn implies the model’s expectation is roughly the same for the correct and incorrect 

responses, which in turn implies that the large gap in prediction error between correct and incorrect 

trials is maintained.

In summary, the model predicts a large effect of current feedback on prediction error, except 

when it has already learned what rewards to expect for the correct and incorrect responses. These 

expectations are developed primarily later during practice and when recent responses to the same 

category have been correct. Thus, our reinforcement learning model explains all the details of the 3-way 

interaction observed in the data of current accuracy, previous accuracy, and trial number on single-trial 

RewP.

Retaining or Changing Responses

In the analysis of response switching, the model correctly reproduces the interaction between 

current accuracy and trial number, as shown in Figure 8c (compare to empirical results in Figure 6b). The 

immediate result of learning from current feedback leads a correct response to be more likely in the 

future and an incorrect response to be less likely. Additionally, correct responses tend to be high-

probability, non-exploratory choices under the softmax choice rule (and hence are likely to be 

repeated), whereas incorrect responses tend to be low-probability choices that are unlikely to be 

repeated. These two facts explain the main effect of current accuracy (more switching following an 

incorrect response). Moreover, because of accumulated learning across trials, a correct response later in 

learning is more likely to reflect a high learned Q-value for that response, and hence foretells an even 

lower switching probability than it does early in learning (negative slope of black curve). Likewise, an 

incorrect response later in learning is more likely to reflect random exploration of a response that has 

low learned value and thus is even less likely to be repeated (positive slope of red curve). As above, the 
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second effect is weaker than the first because there is more learning about the correct response than 

about any one incorrect response.

The model also correctly reproduces the positive relationship between current single-trial RewP 

and switching probability, as shown in Figure 8d (compare to empirical results in Figure 6c). As above, 

the explanation of this effect is based on learning the correct Q-values across trials. First, consider trials 

on which the current response is correct. The reward is the same on all of these trials, so a larger 

prediction error indicates a lower expectation of reward. That is, the correct response is not yet well-

learned and has a relatively low Q-value. Thus, it is less likely to be repeated (higher switching 

probability). Conversely, a smaller prediction error on a correct trial indicates a greater reward 

expectation, meaning a well-learned response with a larger Q-value. In this case the response is more 

likely to be repeated (lower switching probability). Thus, prediction error, and hence single-trial RewP, is 

positively correlated with switching probability following correct responses (positive slope of black 

curve). The same argument applies following incorrect responses, although once again the effect is 

weaker: A higher single-trial RewP indicates a lower expectation of reward, meaning an incorrect 

response that has already been learned to be wrong (and was selected only because of the randomness 

in the decision process), which is especially unlikely to be repeated. 

Variability in Reward Processing

Finally, we implemented a variant of the model in which the magnitude of reward varied from 

trial to trial:

(5)𝑅 ∼ { 𝒩(1,𝜎 2
Rew) correct response

𝒩( ‒ 1,𝜎 2
Rew) incorrect response

Here  is a parameter determining the amount of random variability in reward representation. One 𝜎 2
Rew

could also introduce variability at the participant level, but trial-level variability turns out to generate 

enough participant-level variability (via sampling error) to illustrate the effects of both. The purpose of 
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this model variant was to illustrate how effects involving aggregate and single-trial RewP would be 

impacted by variation in the reward side of the prediction-error equation (Eq. 2) as opposed to variation 

in the prediction side.

As shown in Figure 9, with , the primary impact of this reward variability is to reverse 𝜎 2
Rew = 2

the correlations between aggregate RewP and performance (Figure 9a) and between single-trial RewP 

and switch probability (Figure 9d). The correlation at the participant level arises because a larger 

aggregate RewP now tends to indicate a stronger average reward signal (  more positive for correct 𝑅

feedback and more negative for incorrect feedback), which would speed learning. Similarly, the 

correlation at the trial level arises because a higher single-trial RewP now tends to indicate a greater 

subjective reward value on that trial, which will result in the chosen response being reinforced more (if 

correct) or punished less (if incorrect). Thus, the chosen response is more likely to be repeated when 

single-trial RewP is higher, if we assume more trial-level variability in rewards. Additionally, the negative 

correlation between single-trial RewP and switch probability is stronger for incorrect responses (red 

curve), because in that case the countervailing effect from variation in expectations is weak, as 

explained above in the discussion of Figure 8d.

The contrasting predictions of the RL model with and without random variation in reward 

strength illustrate the complementary contributions of reward and prediction to reward-prediction 

errors. To the extent that variation in the prediction error (as indexed by aggregate RewP across 

participants or single-trial RewP across trials) reflects variation in the reward signal, aggregate RewP will 

correlate positively with performance and single-trial RewP will correlate positively with response 

repetition. To the extent that variation in prediction error reflects variation in the participant’s 

expectation of reward, these correlations will be reversed. The fact that the data support the latter 

prediction suggests that participant-level and trial-level variation in the strength of reward processing or 
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of subjective reward are negligible in this task. This conclusion is congruent with the finding that the 

game manipulation had no impact on RewP. 

Discussion

The present results provide several conclusions regarding the relationship between 

reinforcement learning, electrophysiology, motivation, and long-term learning. Specifically, our findings 

strengthen the connection of RewP to reward-prediction error, and they also show limitations to the 

functional role of this signal. Our formal modeling approach affords a separation of hypothesized effects 

involving reward-prediction error into (a) reward-side effects rooted in variation in reward 

representation after feedback and (b) prediction-side effects rooted in participants’ expectation of 

reward based on the stimulus and chosen response on each trial. Testing of these predictions was aided 

by our approach of analyzing trial-by-trial variation and sequential effects in the single-trial RewP. 

Additionally, the manipulation of task framing (game vs. sterile) and the inclusion of a one-week 

retention test enabled assessment of reward-prediction error’s dependence on motivational factors and 

dissociation of its role in short-term versus long-term learning.

The simulation work reported here demonstrates that reinforcement learning theory makes a 

number of counterintuitive predictions when participants’ reward predictions are allowed to evolve 

freely over the course of learning, as in naturalistic settings. The human data supported all the 

predictions of this model, including its complex interactions and sequential effects due to dynamics of 

learned expectations and the simple reward-side effect of greater prediction error following correct 

versus incorrect feedback. However, there was no evidence for more complex reward-side effects that 

arise from augmenting the basic model with variation in subjective reward. These findings also accord 

with the non-significant results of the game manipulation on the RewP. Although the direction was 

opposite that predicted (Lohse et al., 2016), the game manipulation had a reliable impact on learning. 

The aggregate RewP did not explain this group difference, nor did the RewP explain participant-level 
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variation in retention performance, whether controlling for acquisition performance or not. In 

conclusion, reinforcement learning theory and the identification of single-trial RewP with reward-

prediction error provide a remarkably accurate account of learning or adaptation in the short term (trial 

and session levels), but they appear to be less relevant to explaining broader phenomena such as task 

framing effects and long-term learning.  

 Trial-Level Dynamics during Training 

The single-trial RewP exhibited a complex relationship with the valence of the current feedback 

(correct vs. incorrect), as well as previous responses, future responses, and trial number. This detailed 

pattern is remarkably well-fit by a simple reinforcement learning model. This agreement provides 

evidence for the popular hypothesis that RewP reflects neural signals of reward-prediction error 

(Proudfit, 2015; Sambrook & Goslin, 2015). Further, this agreement illustrates the utility of the trial-level 

approach adopted here, which decomposes the aggregate (difference wave) RewP into an EEG 

amplitude reflecting reward-prediction error on each individual trial. 

In the analysis of sequential effects on the single-trial RewP, we found that not only were 

amplitudes in the 245 – 345 ms post-feedback window higher for correct versus incorrect feedback, but 

the magnitude of this deviation also depended on the accuracy of the previous response to the same 

category and on the current trial number (Figure 5b). When the previous response to the current 

category was incorrect (suggesting this category was not yet learned) the average difference in single-

trial RewP between correct and incorrect responses remained relatively constant across trials. However, 

when the previous response was correct, this difference reduced over time. Our explanation of these 

results, in terms of the learning dynamics of reward expectation or response confidence, also explains 

similar results obtained by previous researchers. For example, in their virtual throwing study, Frömer et 

al. (2016) observed larger single-trial RewPs when participants hit the target less frequently, suggesting 

that the single-trial RewP changed as participants acquired the correct movement pattern because they 
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originally had lower expectations of success. Moreover, this effect was more pronounced following trials 

where participants hit the target rather than missed it, suggesting that high-performing subjects were 

better at discriminating successful from unsuccessful throws prior to feedback delivery. 

The dynamic sequential effect on the single-trial RewP in the present study is also explained by 

the simple reinforcement learning model (Figure 8b), in terms of changes in participants’ confidence in 

correct and incorrect responses over time.  More formally, reward-prediction error is assumed to equal 

, where the reward  depends on the valence of the feedback (correct or incorrect) and the 𝑅 ‒ 𝑃 𝑅

prediction  is equal to , the participant’s subjective expected value for the chosen response ( ) 𝑃 𝑄(𝑟,𝑓) 𝑟

given the current category-defining feature ( ). The main effect of current feedback operates via the 𝑓

reward side of this expression in a straightforward manner. The effects of trial number and previous 

response operate via the prediction side, in a more nuanced way, arising from the differential dynamics 

of  for correct versus error responses over the course of learning. 𝑄(𝑟,𝑓)

The relationship between the single-trial RewP and response confidence was also shown in the 

analysis relating single-trial RewP to future response choices. Controlling for response accuracy, higher 

amplitude was associated with a greater tendency for participants to change their response the next 

time they saw a stimulus from the same category. This result is consistent with Philiastides et al. (2010), 

who observed that a larger RewP-like ERP component was associated with an increased likelihood of a 

participant changing their response after positive feedback. Under the conceptualization of the single-

trial RewP as prediction error, , this result implies that most of the variation in this signal lies 𝑅 ‒ 𝑄(𝑟,𝑓)

in the prediction side (again controlling for response accuracy). Conversely, lower single-trial RewPs 

reflect well-learned responses that the participant was confident would be correct (i.e.,  close to 𝑄(𝑟,𝑓)

1) and that hence were more likely to be repeated. A similar explanation applies to incorrect responses.  

The model explains this effect, including the fact that the relationship is stronger for correct responses 

than for incorrect responses. Moreover, additional simulations showed that the relationship reverses if 
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the strength of reward representations is assumed to vary across trials (i.e., if variation in the single-trial 

RewP comes from the  side of the difference computation). This bolsters the conclusion that variation 𝑅

in reward-prediction errors is driven by objective feedback and by variation in subjective expectations 

(e.g., response confidence). The finding that reward processing (i.e., the mapping from objective 

feedback to subjective reward) is relatively stable is also consonant with the finding that the game 

manipulation had no impact on RewP.

Long-Term Learning Outcomes and Aggregate Analyses

Counter to our predictions and prior results (Lohse et al., 2016), analysis of the post-test showed 

that training in the sterile condition was better for long-term retention and transfer than training in the 

game condition. Participants in the sterile group were also faster, on average, in making correct 

responses than participants who trained in the game condition. Interestingly, there was no significant 

difference in self-reported engagement between the game group and the sterile group. Thus, our goal to 

manipulate intrinsic motivation was not successful and we failed to induce greater engagement in the 

game group. Instead, the additional features (more complicated graphics, sound, and narrative) might 

have distracted participants from relevant information in the task and created extraneous cognitive load 

(Sweller, 2010), leading to better learning for the less distracted “sterile” group.  

Overall, there was a reliable RewP evident in the correct minus incorrect difference wave, and 

this RewP exhibited a fronto-central scalp distribution. Although the amplitude of the difference wave 

RewP was higher in the game group than in the sterile group, this contrast was not statistically 

significant. 

Finally, regression analyses did not show any statistically significant relationships between 

engagement or RewP and post-test performance, controlling for group and performance during 

practice. Thus, although the sterile group learned the stimulus categories much better than the game 

group, none of the instrumental variables we collected explained the learning benefit. Overall, 



31

aggregate analyses showed that participants exhibited neural activity reflecting reward-prediction errors 

(RewP). However, this neural activity was not modulated by group assignment nor did individual 

differences in aggregate neural measures explain individual differences in learning. 

This lack of a relationship between the RewP and long-term retention and transfer of the 

knowledge acquired during practice is an important and interesting finding. Although this null result 

must be treated with caution, it is worthwhile to note that there were strong differences in learning 

between the two groups (the sterile group showed superior retention and transfer), but no statistical 

difference in the RewP between groups, nor were individual differences in post-test performance 

explained by individual differences in the RewP observed during practice. Thus, there was no evidence 

for a direct relationship between the RewP and long-term retention or transfer in the present study, 

even though the single-trial RewP was highly related to trial-by-trial adaptations in behavior, consistent 

with reinforcement learning principles. This dissociation is also an important consideration for EEG 

studies that look for mechanistic accounts of learning in a single session of practice (Bellebaum & Daum, 

2008; Reinhart & Woodman, 2014; van der Holden et al., 2009). Models need to account for additional 

mechanisms to explain long-term retention and transfer of information beyond short-term adjustments 

in behavior (Kantak & Winstein, 2012).

Conclusions

Consistent with past research, our experiment provided strong evidence that the ERP signal 

underlying the RewP, quantified here as single-trial RewP, is sensitive to reward-prediction errors. In the 

current experiment, we used mixed-effect regressions that allowed us to explore the trial-by-trial 

relationship between the single-trial RewP and behavioral adaptations, and to compare these with the 

predictions of reinforcement learning theory. These data showed a complex pattern of dependencies 

between single-trial RewP and prior choice behavior, current feedback, and future choice behavior, 

extending previous studies that adopted a trial-level approach. These patterns were matched in 
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remarkable detail by the reinforcement learning model. These trial-level empirical and modeling results 

go beyond previous aggregate approaches in demonstrating the intricate and dynamic role of single-trial 

RewP in learning from feedback. 

Although single-trial RewP was linked with behavioral dynamics during practice, aggregate RewP 

amplitude averaged across trials did not explain long-term changes in behavior, as measured by delayed 

retention and transfer tests. Indeed, few EEG studies examining the relationship between RewP and 

behavior have assessed it during delayed post-tests (i.e., long-term learning). Those that have find RewP 

amplitude predicts behavior only during practice (Grand et al., 2017) as we did in the current study. 

These findings are also consistent with behavioral data showing that short-term performance is often 

uncorrelated (or even negatively correlated) with long-term learning (Kantak & Winstein, 2012; Pashler 

& Baylis, 1991). We believe these findings speak to the complexity of human learning: Long-term 

retention and transfer no doubt rely on local adaptation mechanisms of reinforcement learning, but 

they also rely on higher-level processes such as memory consolidation, feature selection (Goldstone & 

Steyvers, 2001), attention (Kruschke, 2001), and other strategic or control processes (Reiskamp & Otto, 

2006). Computational models of learning should strive to incorporate the psychological mechanisms 

that operate at both time-scales of learning: changes from trial to trial related to reward-prediction 

errors and changes over weeks or months.
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Table 1. Fixed and Random Effects for the model of performance during practice.
Random Effects
Group Effect Variance SD Corr
Stimulus Category:Participant Intercept 0.637 0.790
Participant Intercept 1.184 1.088

Trial 0.063 0.251 0.97
Stimulus Category Intercept 0.135 0.367

Fixed Effects
Effect β χ2 df p-value
Intercept -0.470 4.300 1 0.038
Group 0.312 4.018 1 0.045
Trial 0.183 23.693 1 <0.001
Group × Trial 0.115 9.407 1 0.002

Note: All continuous variables were mean-centered and all categorical variables were contrast-coded 
prior to analysis. Group was coded as sterile = 1; game = -1.
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Table 2. Models of Practice Performance.
Using RewP Difference Measure
Effect β t df p-value
Intercept 5.868 24.83 55 <0.001
Group 0.359 2.079 55 0.042
RewP -0.093 -2.591 55 0.012

Separating Correct and Incorrect Trials
Effect β t df p-value
Intercept 5.940 23.979 54 <0.001
Group 0.387 2.212 54 0.031
Correct-Trial Amplitude -0.094 -2.614 54 0.012
Incorrect-Trial Amplitude 0.056 1.057 54 0.295

Note that the dependent variable of number of correct responses was square-root transformed for this 
analysis to create a more normal distribution of residuals. Further, for the group variable, sterile = 1 and 
game = -1, so a positive beta indicates better performance for the sterile practice group. 
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Table 3. Fixed and Random Effects for the analysis of sequential effects on the single-trial RewP.
Random Effects
Group Effect Variance SD Corr
Stimulus Category x Participant Intercept 0.477 0.690
Participant Intercept 15.418 3.927

Trial 0.094 0.307 0.03
Stimulus Category Intercept 0.128 0.358

Fixed Effects
Effects β χ2 df p-value
Intercept 3.745 43.040 1 < 0.001
Group 0.779 2.020 1 0.155
Trial -0.102 1.237 1 0.266
Current Accuracy (CA) 2.152 129.114 1 < 0.001
Previous Accuracy (PA) 0.145 0.607 1 0.436
Trial x Group -0.114 1.575 1 0.209
Group x CA -0.006 0.001 1 0.977
Trial x CA -0.215 6.841 1 0.009
Group x PA -0.148 0.637 1 0.425
Trial x PA -0.190 5.404 1 0.020
CA x PA -0.158 0.732 1 0.392
Group x Trial x CA -0.091 1.228 1 0.268
Group x Trial x PA -0.003 0.001 1 0.971
Group x CA x PA -0.021 0.013 1 0.909
Trial x CA x PA -0.173 4.448 1 0.035
Group x Trial x PA x CA 0.080 0.945 1 0.331

Note: All continuous variables were mean-centered and categorical variables were contrast coded prior 
to analysis. Group as coded as sterile = 1; game = -1. Current Accuracy was coded as correct = 1; 
incorrect = -1. Previous Accuracy refers to the most recent stimulus from the same category and was 
coded as correct = 1; incorrect = -1. Stim = Stimulus Category.
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Table 4. Fixed and Random Effects for the analysis of participants’ switching behavior.
Random Effects
Group Effect Variance SD Corr
Stimulus Category x Participant Intercept 0.207 0.455
Participant Intercept 0.774 0.880

Trial 0.025 0.158 0.85
Stimulus Category Intercept 0.006 0.078

Fixed Effects
Effects β χ2 df p-value
Intercept 0.336 6.516 1 0.011
Group -0.189 2.216 1 0.137
Trial -0.147 23.749 1 < 0.001
Single-trial RewP 0.011 6.618 1 0.010
Current Accuracy (CA) -0.642 191.168 1 < 0.001
Group x Trial -0.020 0.439 1 0.508
Group x Single-Trial RewP -0.003 0.665 1 0.415
Trial x Single-Trial RewP -0.001 0.488 1 0.485
Group x CA -0.222 22.988 1 < 0.001
Trial x CA -0.057 6.461 1 0.011
Single-Trial RewP x CA 0.001 0.059 1 0.808
Group x Trial x Single-Trial RewP -0.004 3.645 1 0.056
Group x Trial x CA -0.058 6.939 1 0.008
Group x Single-Trial RewP x CA 0.011 7.784 1 0.005
Trial x Single-Trial RewP x CA 0.002 1.054 1 0.305
Group x Trial x Single-Trial RewP x CA -0.002 0.802 1 0.371

Note: All continuous variables were mean-centered and categorical variables were contrast coded prior 
to analysis. Group was coded as sterile = 1; game = -1. Current Accuracy was coded as correct = 1; 
incorrect = -1. Stim = Stimulus Category.
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Table 5. Fixed and Random Effects for the Model of Post-test Performance.
Random Effects
Group Effect Variance SD
Orientation x Participant Intercept <0.001 <0.001
Test-Type x Participant Intercept 0.080 0.282
Participant Intercept 0.131 0.363

Fixed Effects
Effects β χ2 df p-value
Intercept 2.047 360.882 1 <.001
Group 0.248 5.322 1 .021
Test-Type 0.053 2.290 1 .130
Orientation -0.024 1.060 1 .303
Group x Test-Type -0.106 9.198 1 .002
Group x Orientation -0.027 1.347 1 .246
Test-Type x Orientation -0.004 0.026 1 .872
Group x Test-Type x Orientation 0.013 0.305 1 .581

Note: The dependent variable of number of correct responses was square-root transformed for this 
analysis to create a more normal distribution of residuals. Group was coded as sterile = 1; game = -1. 
Orientation was coded as rotated = 1; original = -1. Test-type was coded as retention = 1; transfer = -1.  
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Figure Captions

Figure 1. Example greebles/goblins for each category. Note participants made their categorization based 
on the family of the greebles and ignored the “gender” of the greebles.

Figure 2. Example stimulus displays from the “sterile” condition (top) and the “game” condition 
(bottom) showing the time-course of the stimuli and correct feedback in both conditions. 

Figure 3. The proportion of correct responses during practice (averaging across participants) as a 
function of group, stimulus category, and trial number. For ease of interpretation, these graphs plot fits 
of a linear model of response probability, rather than log-odds as in the statistical analyses reported in 
the text.

Figure 4. (A) Average waveforms for correct (solid lines) and incorrect responses (dashed lines) during 
practice. Time = 0 indicates the onset of feedback. (B) The difference wave (Correct – Incorrect) showing 
the grand-average aggregate RewP during practice. (C) The scalp distribution for the aggregate RewP 
was maximal fronto-centrally, consistent with previous work. 

Figure 5. (A) Single-trial RewP as a function of accuracy on the current trial and the accuracy of the 
previous response to a stimulus of the same category. (B) Single-trial RewP as a function of accuracy on 
the current trial, accuracy of the previous response to a stimulus of the same category, and the trial 
number.

Figure 6. (A) The proportion of changed responses on the next trial on which a stimulus from the same 
category is presented (averaging across participants) as a function of the stimulus category and the 
current trial number. Note that ‘1’ on this scale indicates that participants changed their response the 
next time they saw a stimulus from the same category, relative to the current trial.  Conversely, a ‘0’ 
indicates that participants made the same response the next time they saw a stimulus from the same 
category as they did on the current trial. (B) The proportion of changed responses as a function of 
current response accuracy and current trial number. (C) The proportion of changed responses as a 
function of current response accuracy and current single-trial RewP. For ease of interpretation, these 
graphs plot fits of a linear model of change probability, rather than log-odds as in the statistical analyses 
reported in the text.

Figure 7. (A) Post-test accuracy as a function of group, post-test condition, and stimulus orientation 
during the post-test. (B) Median response time for correct responses on the post-test as a function of 
group, post-test condition, and stimulus orientation. These boxplots show the median and the inter-
quartile range (IQR). The whiskers go out to last data point within 1.5*IQR. Note that there were two 
outlying participants in both the game group and the sterile group for response time, but the statistical 
significance of the results was not changed whether these participants were excluded or not.

Figure 8. Predictions of simple reinforcement-learning model. A: Scatterplot of aggregate RewP versus 
practice performance across simulated participants. B: Mean single-trial RewP as a function of trial, 
accuracy of the current response (black = correct, red = incorrect), and accuracy of the response to the 
previous instance of the current category (solid = correct, dashed = incorrect). Compare to empirical 
results in Figure 5b. C: Probability of switching responses the next time a stimulus from the current 
category is presented, as a function of trial and accuracy of the current response. Compare to empirical 
results in Figure 6b. D: Probability of switching responses the next time a stimulus from the current 
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category is presented, as a function of current single-trial RewP and accuracy of the current response. 
Compare to empirical results in Figure 6c.

Figure 9. Predictions of reinforcement-learning model with random variability in subjective reward 
strength. See Figure 8 caption for details.
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Figure 9.





















Game Condition

• Instructions that preceded the practice phase. 



Goblin Quest!
START



You wake up in a cave. The stone floor is cold and damp. How you got 
here you cannot recall… but then you hear a strange croaking noise 
from the adjacent room. Goblins!

Your head is still swimming and your memory fuzzy, but you remember 
your caravan being attacked. The foul beasts must have taken you 
prisoner. 

You don’t know where you are, or how many enemies you will face, but 
one thing is clear: you are going to have to fight your way out.

Next



As you try to escape the cave, you will encounter five different types of goblins, and you will see 
twelve goblins of each type. Different types of goblin are sensitive to different types of weapons, 
so you need to learn what weapon to use to attack the different goblins. 
When a goblin approaches, press:

1. Sword
2. Nunchucks
3. Throwing Star
4. Axe
5. Slingshot

Try to learn what weapon to use by the end of this practice quest.
Here are example goblins:

Note the different body shapes, but similar protrusions

All the goblins have similar protrusions, but the body shape of the goblins are unique. So, study 
the shape of the body to decide what weapon to use. Next



Start with the index finger of your preferred hand resting over the 1, 2, 3, 4, or 5 key at the top of the keyboard

Each goblin encounter will begin with a goblin cue:

Next, a goblin, breathing heavily, will approach: 

Respond with your index finger as quickly as you can once you have decided what weapon you should use to strike the goblin

Next, you will see a feedback cue:

Then, you will see feedback: You slaughtered the goblin=         or The goblin survived=

Then, the next encounter will begin… Next



Let the experimenter know you if you have any questions or if you are 
ready to begin your quest.



Game Condition

• Instructions that preceded the testing phase. 



Goblin Quest!
START



You wake up in a cave. The stone floor is cold and damp. How you got 
here you cannot recall… but then you hear a strange croaking noise 
from the adjacent room. Goblins!

Your head is still swimming and your memory fuzzy, but you remember 
your caravan being attacked. The foul beasts must have taken you 
prisoner. 

You don’t know where you are, or how many enemies you will face, but 
one thing is clear: you are going to have to fight your way out.

Next



As you try to escape the cave, you will encounter five different types of goblins. Different types of 
goblins are sensitive to different types of weapons, so you need to decide what weapon to use to 
attack the different goblins. 
When a goblin approaches, press:

1. Sword
2. Nunchucks
3. Throwing Star
4. Axe
5. Slingshot

Try to remember what weapon to use based on what you learned in last week’s session.
Here are example goblins:

Next



Start with the index finger of your preferred hand resting over the 1, 2, 3, 4, or 5 
key at the top of the keyboard.

Each goblin encounter will begin with a goblin cue:

Next, a goblin, breathing heavily, will approach: 

Respond with your index finger as quickly as you can once you have decided what 
weapon you should use to strike the goblin

Then, the next encounter will begin…
Let the experimenter know you if you have any questions or if you are ready to 
begin your quest.



Sterile Condition

• Instructions that preceded the practice phase. 



Stimulus Categorization
Start



• You will be asked to categorize a number of complex stimuli.

Next



• There are five categories of stimuli, and you will see twelve stimuli from each category. 
Different types of stimuli go in different categories, so you need to learn in what category to 
place the different stimuli.

• When you see a stimulus, press:
1. Category 1
2. Category 2
3. Category 3
4. Category 4
5. Category 5

• Try to learn in what category to place the stimuli by the end of this practice session.
• Here are example stimuli:

• Note the different body shapes, but similar protrusions

• All the stimuli have similar protrusions, but body shape of the stimuli are unique. So, study the 
shape of the body to decide in what category to place the stimuli.

Next



• Start with the index finger of your preferred hand resting over the 1, 2, 3, 4, or 5 key at the top of the keyboard.

• Each trial will begin with a stimulus cue:

• Next, a stimulus will be presented: 

• Respond with your index finger as quickly as you can once you have decided in what category you should place the stimulus

• Next, you will see a feedback cue:

• Finally, you will see feedback:  Correct=        or Incorrect=

• Then, the next trial will begin…

Next



• Let the experimenter know you if you have any questions or if you are 
ready to begin.



Sterile Condition

• Instructions that preceded the testing phase. 



Stimulus Categorization
Start



• You will be asked to categorize a number of complex stimuli.

Next



• There are five categories of stimuli. Different types of stimuli go in different categories, so you 
need to decide in what category to place the different stimuli.

• When you see a stimulus, press:
1. Category 1
2. Category 2
3. Category 3
4. Category 4
5. Category 5

• Try to remember in what category the stimuli go based on what you learned in last week’s 
session.

• Here are example stimuli:

Next



• Start with the index finger of your preferred hand resting over the 1, 2, 3, 4, or 5 
key at the top of the keyboard.

• Each trial will begin with a stimulus cue:

• Next, a stimulus will be presented: 

• Respond with your index finger as quickly as you can once you have decided in 
what category you should place the stimulus

• Then, the next trial will begin…
• Let the experimenter know if you have any questions or if you are ready to begin.



EEG Recording and Processing

EEG Recording. Scalp EEG was collected from 31 channels of an EEG cap housing a 64-channel 

BrainVision actiCAP system (Brain Products GmbH, Munich, Germany) labeled in accord with an 

extended international 10-20 system (Oostenveld & Praamstra, 2001). EEG data were online-referenced 

to the left earlobe, and a common ground was employed at the FPz electrode site. Electrode 

impedances were maintained below 25 kΩ throughout data collection and a high-pass filter was set at 

0.016 Hz with a sampling rate of 250 Hz. The EEG signal was amplified and digitized with a BrainAmp DC 

amplifier (Brain Products GmbH) linked to BrainVision Recorder software (Brain Products GmbH).

EEG Processing. EEG data processing was conducted with BrainVision Analyzer 2.1 software 

(Brain Products GmhB). Data were re-referenced to an average ears montage and then filtered between 

0.1 and 30 Hz with 4th-order roll-offs as well as a 60-Hz notch filter. Next, the data were inspected and 

prominent artifacts were marked in order to facilitate the subsequent independent component analysis 

(ICA)-based ocular correction (Brain Products, 2013). This function searches for an ocular artifact 

template in a designated channel (FP2) and then finds ICA-derived components that account for a user-

specified amount (70%) of variance in the template-matched portion of the signal in the designated 

channel. The components are then removed from the EEG signal, which is reconstructed for further 

processing. 

Reward Positivity and Single-Trial Feedback Amplitude. The reward positivity (RewP) was 

obtained by segmenting the EEG data into epochs beginning 100 ms before and ending 1000 ms after 

the onset of feedback (correct [�] or incorrect [X]). These epochs were then baseline corrected from 

-100 to 0 ms. Next, epochs were automatically rejected if they contained a >50 µV/ms change, a >100 

µV change in a moving 200-ms window, or a <0.5 µV change in a moving 200-ms window at electrodes 

of interest (Fz, Cz, and Pz). On average, 99.1% (SD = 3.38% across participants) of epochs were retained, 

and each participant had at least 60 epochs retained. The remaining epochs (M = 31.2, SD = 16.4, 



minimum = 11) for correct feedback were averaged, and the remaining epochs (M = 48.0, SD  = 16.2, 

minimum = 9) for incorrect feedback were averaged separately. Next, a difference wave was formed by 

subtracting the incorrect average from the correct average. The positive peak in the difference wave 

showed considerable latency variability between participants, so an adaptive mean amplitude window 

technique was employed (Clayson, Baldwin, & Larson, 2013). Specifically, the RewP for each participant 

was defined as the mean amplitude in a 40-ms time window centered around the positive peak between 

245 and 345 ms at electrode Fz in that participant’s difference wave. The choices of range of possible 

time windows (245 – 345 ms) and electrode (Fz) were based on the positive peak in the difference wave 

grand average across all participants in both groups. The sFAs were quantified by taking the mean 

amplitude on each trial in this same individualized 40-ms time window.

Encoding Stimulus-Preceding Negativity. The encoding stimulus-preceding negativity (eSPN) is a 

negative-going slow wave time-locked to a cue about a forthcoming stimulus that should be learned. It 

is generally thought to reflect neural activity in preparation for processing the stimulus, and it has been 

linked to stimulus recall, so it was assessed for exploratory purposes (Gruber & Otten, 2010; Otten, 

Quayle, Akram, Ditewig, & Rugg, 2006). Specifically, it was obtained by segmenting the continuous EEG 

data into a separate epoch for each trial beginning 100 ms before and ending 2000 ms after the onset of 

the fixation cross (i.e., ending at stimulus onset). These epochs were then baseline corrected from -100 

to 0 ms. Next, epochs were automatically rejected if they contained a >50 µV/ms change, a >100 µV 

change in a moving 200-ms window, or a <0.5 µV change in a moving 200-ms window at electrodes of 

interest (Fz, Cz, and Pz). On average, 99.3% (SD = 1.41% across participants) of epochs were retained, 

and each participant had a minimum of 73 retained epochs. The remaining epochs were averaged, and 

eSPN was quantified by taking the mean amplitude between 1800 and 2000 ms at the electrode (Pz) at 

which the eSPN was most negative in the grand average across participants in both groups (Otten et al., 

2006). 



Feedback Stimulus-Preceding Negativity. The feedback stimulus-preceding negativity (fSPN) is a 

negative-going slow wave time-locked to a cue indicating forthcoming feedback about a behavioral 

response. It is thought to generally reflect anticipation of the feedback, and it has been linked to 

motivation, so it was assessed for exploratory purposes (Novak, Novak, Lynam, & Foti, 2016). 

Specifically, it was obtained by segmenting the EEG data into epochs beginning 100 ms before and 

ending 2000 ms after the onset of the fixation square (i.e., ending at onset of the feedback). These 

epochs were then baseline corrected from -100 to 0 ms. Next, epochs were automatically rejected if 

they contained a >50 µV/ms change, a >100 µV change in a moving 200-ms window, or a <0.5 µV change 

in a moving 200-ms window at electrodes of interest (Fz, Cz, Pz, and F8). On average, 97.3% (SD = 4.55% 

across participants) of epochs were retained, and each participant had a minimum of 62 retained 

epochs. The remaining epochs were averaged, and fSPN was quantified by taking the mean amplitude 

between 1800 and 2000 ms at the electrode (F81) at which the fSPN was most negative in the grand 

average across participants in both groups (e.g., Novak et al., 2016). 

Supplemental Results

Encoding Stimulus-Preceding Negativity. The eSPN was not statistically different between the 

two groups (β = -0.194, p = 0.624), nor was the eSPN related to performance during acquisition when 

controlling for group (β = -0.004, p = 0.937). Averaging retention and transfer test performance 

together, we found no significant relationship between average post-test performance and the eSPN (β 

= 0.105, p = 0.142). Finally, there was no reliable relationship between the aggregate RewP observed 

during practice and the eSPN (β = 0.221, p = 0.310).

1 fSPN was actually maximal at FP2, but we did not analyze the component at this electrode due to its proximity to 
the ocular muscles.



Feedback Stimulus-Preceding Negativity. As with the eSPN, the fSPN was not statistically 

different between the two groups (β = -0.134, p = 0.423), nor was the fSPN related to performance 

during acquisition when controlling for group (β = 0.013, p = 0.668).  The fSPN was also not significantly 

related to average post-test performance controlling for group (β = 0.025, p = 0.471). Finally, there was 

no reliable relationship between the aggregate RewP observed during practice and the fSPN (β = -0.088, 

p = 0.407).


