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ABSTRACT: BICA (Biologically-Inspired Cognitive Architectures) is a DARPA Phase-I program whose goal is to create the  
next  generation of  cognitive architecture  models based on principles of  psychology and neuroscience.   This project  is  
motivated by the belief that traditional artificial intelligence research has hit a wall in its quest to develop truly intelligent 
agents: although agents can be engineered to perform exceedingly well at specific tasks, they are typically quite brittle, unable  
to deal with unforeseen situations and unable to learn from others.  This paper describes the BICA Cognitive Decathlon,  
Challenge Scenarios, and Biovalidity Assessment, a set of tests we designed to evaluate the performance of such agents in a  
variety of situations that cover a core set of cognitive, perceptual, and motor skills typical for a two-year-old human child.  
These  include  behavioral  tasks related to  search,  navigation, manipulation, memory,  language,  and three  pathways to 
procedural  knowledge:  instruction,  demonstration,  and  reinforcement/exploration.  The  test  suite  has  three  distinct 
components: a set of four integrative challenge scenarios that support the goals of building coherent, systematic, integrated 
cognitive agents; a set of focused tasks that can better determine the extent to which the core cognitive competencies match 
the capabilities of humans; and a set of biovalidity assessments to determine the extent to which the agents architecture  
resembles the human brain.  Ultimately, this three-level set of tests was designed to evaluate whether systems are flexible,  
comprehensive, and taskable in complex situations, while still performing tasks in ways similar to human performers.  The test  
specification and the motivations for and background of individual tasks will be discussed.

1. Overview

BICA (Biologically Inspired Cognitive Architectures) is a 
DARPA  Phase  I  project  administered  through  IPTO 
(Information Processing Technology Office) whose goal 
is to promote the next generation of artificial intelligence 
research,  motivated  by  principles  of  psychology  and 
neuroscience.  As with all  models in cognitive science 
modeling,  it  is  important  to  evaluate  and  validate  the 
behavior  of  the  models  against  known  behaviors  of 
humans, to determine whether the goals of the modeling 
effort have been met.  This process is normally done on 
an  individual  basis  by  individual  scientists,  either  by 
showing competence in some domain or by comparing 
the  model’s  behavior  to  human  data.   This  creates 
obvious  conflicts  of  interest,  because  the  researcher  is 

allowed to cherry-pick the best examples and ignore all 
cases  in  which  the  model  produces  inappropriate 
behavior.   Because  the  BICA  program  proposes  to 
support a number of parallel efforts at building AI agents, 
the task of testing the agents’ behaviors was given to an 
independent  team.   This  report  summarizes  the 
evaluation team’s proposed test specification, which was 
sponsored during Phase I of BICA.  It was intended to 
guide the modeling effort during Phase II and serve as 
the annual gateway test for evaluating progress.  At the 
time of this writing, Phase II of the program has not been 
funded, and so the test design may not be exercised in its 
current  form.   However,  future  research  efforts  with 
similar goals may benefit from the work described here.
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2. The Goals of BICA Evaluation

 The primary goals of the BICA program are to develop 
comprehensive biological embodied cognitive agents that 
could learn and be taught like a human. A wide variety of 
tasks could be tested in such a program. The decision was 
made to make serious attempts at embedding the agents 
in a non-symbolic environment in which perception was 
done  on  raw  input  (unprocessed  images  and  sound 
streams)  and  motor  control  was  accomplished  through 
micro-control  of  effectors.   This  limits  the  scope  and 
difficulty of the tasks that  could by accomplished in a 
five  year  program,  and  so  we  designated  the  target 
skillset  to roughly map onto the capabilities of  a  two-
year-old human child.

Research on human development has shown that by 24-
months,  children  are  capable  of  a  large  number  of 
cognitive,  linguistic  and  motor  skills.   For  example, 
according  to  the  Hawaii  Early  Learning  Profile 
development assessment, the linguistic skills of a typical 
24-month-old child include the ability to name pictures, 
use jargon, use 2-3 word sentences, produce 50 or more 
words,  answer  questions,  and  coordinate  language  and 
gestures.  Their motor skills include walking, throwing, 
kicking,  and  catching  balls,  building  towers,  carrying 
objects, folding paper, simple drawing, climbing, walking 
down  stairs,  and  imitating  manual  and  bilateral 
movements.   Their  cognitive  skills  include  matching 
(names to pictures, sounds to animals, identical objects, 
etc.),  finding  and  retrieving  hidden  objects, 
understanding  most  nouns,  pointing  to  distant  objects, 
and solving simple problems using tools (Parks, 2006). 
These tasks tested in the BICA program were designed to 
exercise many of these core skills.
 
The  program  anticipated  that  the  agent  would  be 
embodied  in  a  photorealistic  virtual  environment  or 
robotic platform with controllable graspers, locomotion, 
and  orientation  effectors  with  on  the  order  of  20-40 
degrees of freedom.  The EU RobotCub project (Sandini, 
Metta,  &  Vernon,  2004)  is  perhaps  the  most  similar 
effort, although that effort is focused on building child-
like  robots  rather  than  designing  end-to-end  cognitive-
biological architectures.

  The test specification is designed to promote the goals 
of the BICA program, while encouraging the construction 
of models that were systematic, coherent and consistent. 
One hallmark of human cognition is its flexibility, and so 
performance  should  be  produced  by  a  single  flexible 
system,  rather  than  a  set  of  special-purpose  models 
cobbled  together  into  a  single  meta-model.   Thus,  we 
designed  the  test  specification  to:  (1)  Encourage  the 
development  of  coherent,  consistent,  systematic, 
cognitive  system  that  can  achieve  complex  tasks;  (2) 

Promote procedural and knowledge acquisition through 
learning,  rather  than  programming  or  endowment  by 
modelers;  (3)  Involve  tasks  that  go  beyond  the 
capabilities of traditional cognitive architectures toward a 
level of embodiment inspired by human biology; and (4) 
Promote  and  assess  the  use  of  processing  and  control 
algorithms inspired by neuro-biological processes.  

Figure  2.1.   Depiction  of  test  specification  design. 
Program  goals  guide  design  of  challenge  scenarios, 
whose  core  skills  are  tested  in  the  Decathlon. 
Performance  on  these  tests  is  compared  to  robust 
qualitative behavioral and biological phenomena.

To achieve these goals, we designed three types of tests: 
Challenge Scenarios, the Cognitive Decathlon, and a set 
of Biovalidity Assessments.  The Challenge Scenarios are 
designed  to  require  integrated  end-to-end  systems, 
covering a wide range of capabilities over the set of test 
problems.   The  Cognitive  Decathlon  is  intended  to 
provide  stepping stones  along the way to the complex 
scenario  tasks,  testing  specific  systems  and  core 
competencies against human behavior.   The biovalidity 
assessment  is  designed  to  determine  how  well  the 
systems resemble the neural computation systems.  

We designed a three-thrust test suite for pragmatic and 
conceptual reasons in order to best promote the goals of 
the  program.   Challenge  scenarios  were  meant  to  be 
complex  tests  that  couldn’t  be  accomplished  by  small 
special  systems;  this  encouraged  coherent  systematic 
architectures.   Decathlon tasks were meant to be small 
targeted tasks  could test  the  special  systems in  greater 
detail  and  provide  useful  comparisons  to  human 
behavioral  data.   The  biovalidity  assessments  were 
designed to  ensure  that  the  large-scale  and small-scale 
architectures were indeed inspired by the biology, and not 
just standard AI approaches mapped onto a set of brain 
regions.
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Thus, as depicted in Figure 2.1, the program's goals guide 
the selection of  the Challenge Scenarios;  the scenarios 
require  core  cognitive,  perceptual,  and  motor  skills, 
which are tested in greater detail in the Decathlon Events. 
Performance  in  the  Decathlon  were  planned  to  be 
compared to robust behavioral and neurological findings 
of humans.

3. The Challenge Scenarios

Over  the  proposed  five-year  scope  of  the  program, 
versions of four distinct integrative challenge scenarios 
are planned to be tested.   The tasks are designed with 
increasing  levels  of  complexity,  so  that  initial 
performance levels can be demonstrated year after year, 
but  the  tests  maintain  utility  with  sets  of  increasingly 
complex  challenges  presented  as  the  agents  attain 
competency.

Table 3.1 Overview of BICA Challenge Scenarios. 

The  Challenge  Scenarios  are  designed  to  provide 
integrative  tasks  for  embodied,  learning  agents  to 
perform.  In this section, we describe basic versions of 
each challenge scenario.   These are,  for the most  part, 
novel tasks designed specifically for this program.  Past 
empirical  data  on  human  subjects  exists  for  some 
versions  of  some  of  these  tasks,  but  we  anticipated 
collecting new data on human subjects to compare to the 
agents’ performance.

 
 3.1 The Object Search Task

This task is designed to test navigation and search ability, 
together  with  the  ability  to  learn  through  declarative 
instruction  and  from episodic  memory.  The  task  takes 
place  in  a  connected  series  of  rooms,  and  begins  by 
showing the agent a probe object.  The agent is asked to 
find and retrieve a copy of that object from somewhere in 
the  environment.   Verbal  hints  and  constraints  will  be 
given to the agent to help guide search, and the agent 
should  use  knowledge  of  environment  gained  during 
earlier trials to guide later search paths. 

3.2 Observational Language and Procedure Learning

This  task  is  designed  to  test  the  agent’s  ability  to 
manipulate  its  effectors  and  other  objects  by 
observational  learning,  and  to  learn  the  language 
constructs that  describe these objects and events.   The 
task  takes  place  in  a  room  with  an  instructor  and  a 
number  of  manipulable  objects.  The  instructor  will 
perform  construction  or  manipulation  tasks  while 
describing them in words.  The agent will be instructed to 
perform that task (or an earlier learned task) and be given 
feedback on its success.  As language production skills 
improve, agents will be asked to describe actions it or the 
instructor is performing.  Tasks could range from simple 
object-action events (“I am dropping the ball”) to object 
construction  (“I  am  building  a  tower.”),  coordinated 
action (“I  am hitting the  cup with  the  hammer.”),  and 
complex compound events. (“I am sweeping the floor”).

3.3 Self-directed Search and Construction Task

An important  aspect  of  human intelligence  is  the self-
directed  ability  to  explore  the  environment  and  learn 
from it.   Yet  most  problems AI  systems  face  are  well 
defined with clear goal. Perhaps a more difficult problem 
is  discovering  these  goals  in  the  first  place.  This  task 
attempts  to  replicate  the  notion  of  goal  discovery  by 
generating an environment populated with an ecology of 
rewards and punishments.  The agent must  explore the 
environment and discover useful behaviors on its own, or 
by  observing  other  intelligent  agents  operating  in  the 
same environment.  The task involves the construction of 
multi-component  objects  which  can  be  redeemed  for 
reward once completed. Components of the objects will 
be  distributed  in  systematic  ways  probabilistically 
through the  environment,  and  the  agent  will  receive  a 
reward when redeemed.  Some objects may be easy to 
construct  but  produce  small  rewards;  others  may  be 
difficult  to  construct  be  produce  larger  rewards.   This 
task uses aspects of the Object Search Challenge and the 
Observational  Language  and  Procedure  Learning  Task, 
but  also  requires  an  additional  level  of  self-directed 
exploratory  behavior  that  is  adjusted  through 
reinforcement to generate more valuable behaviors.  are 
planned  to  actions,  the  agent  should  discover  which 
constructed objects are more valuable, both in terms of 
their reward and the work required to find and construct 
them. 

3.4  Open-ended tasking 

Previous challenge scenarios offer agents opportunities to 
demonstrate  the  ability  to  learn  in  narrow domains  of 
performance.  Yet the flexibility of human cognition has 
substantial  breadth  in  its  ability  to  accomplish  a  wide 
range  of  tasks.   This  task  extends  the  skill  repertoire 
beyond the narrowly-defined tasks, and can contain any 

Task Name Description
Object Search Task Search and object recognition; 

learning through instruction
Observational 
Language & 
Procedure Learning 
Task

Manipulation, action-object- 
language mappings; 
observational learning

Self-directed Search 
and Construction 
Task

Self-directed exploration and 
learning, search, construction, 
goal inference.

Open-ended Tasking Open-ended taskability
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task  that  can  be  taught  through  instruction, 
demonstration, and feedback.  Such tasks will attempt to 
demonstrate  the  true  flexibility  and  performance 
capability  of  the  agents,  and  will  hopefully  allow  the 
discovery of unique and serendipitous solutions. Possible 
tasks  could include  things like:  playing  simple  games, 
sorting  objects  according  to  different  rules,  tasks 
requiring  coordinated  action  with  the  teacher,  the 
construction  of  novel  artifacts,  the  learning  of  simple 
action-command associations, etc.

4. The BICA Cognitive Decathlon

Like  the  Olympic  Decathlon,  the  BICA  “Cognitive 
Decathlon” is designed to test a range of core skills used 
to accomplish more complex tasks.  Despite its name, the 
decathlon  involves  roughly  20  sub-tasks  or  tests 
organized  into  six  task  categories.   The  primary 
motivation for these tasks is to test the component skills 
that  are  involved  in  solving  the  challenge  problems 
against behavioral and biological standards.  This design 
was chosen to guide the independent modeling teams in 
building coherent systems that solve complex problems 
in ways similar to human performers, while encouraging 
a  reusable  modular  approaches  rather  than  special-
purpose  engineered  solutions.   Additionally,  the  tasks’ 
limited scope provides a better comparison to empirical 
and  neurobiological  data.    Prior  research  using  these 
tasks has produced a wealth of empirical data on adults 
and children performance characteristics.  We anticipated 
comparing agent performance to robust trends  identified 
in  these  prior  experiments,  as  well  as  conducting  new 
experiments  where  necessary.   We  provide  basic 
descriptions  of  these  tasks  below,  along  with  some 
information on the prior research.
 

Figure 4.1.  Graphical depiction of the BICA Cognitive 
decathlon.  Grey rounded boxes indicate individual tasks 
that  require  the  same  basic  procedural  skills.  Black  
rectangles  indicate  individual  trial  types  or  task 
variations. Lines  indicate areas where  there  are  strong 
relationships between tasks.

Table 4.1.  The BICA Cognitive Decathlon Tasks

4.1. Visual Identification

The ability to identify visual aspects of the environment 
is a critical skill used for many tasks faced by humans. 
This  skill  is  captured  in  a  graded  series  tests  that 
determine whether an agent can tell whether two 'objects' 
or ‘events’ are identical; and what parts of two complex 
events or objects play corresponding roles.   

The  notion  of  sameness  (cf.  French,  1995)  is  an  ill-
defined  and  perhaps  socially  constructed  concept,  and 
this  ambiguity  helps  structure  a  series  of  graded  tests. 
Typically,  objects  used  for  identification  will  be 
comprised of two or more connected components, have 
one  or  more  axes  of  symmetry,  and  have  color  and 
weight properties.   Objects can differ  in color,  weight, 
size, component structure, relations between components, 
time  of  perception,  movement  trajectory,  location,  or 
orientation.  In these tasks, color, mass, size, component 
relations are defined as integral features to an object, and 
differences  along  these  dimensions  are  sufficient  to 
consider  two  objects  different.   Neuropsychological 
findings (e.g., Wallis & Rolls, 1997) show that sameness 
detection is invariant to differences in translation, visual 
size,  and view, and differences along these dimensions 
should  not  be  considered  sufficient  to  be  indicate 
difference.

.

In the basic task, the agent will be shown two objects., 

Task Level
1. Vision Invariant Object Identification

Object ID: Size discrimination
Object ID with rotation
Visual Action/Event Recognition

2. Search & 
Navigation

Visual Search
Simple Navigation
Travelling Salesman Problem
Embodied Search
Reinforcement Learning

3. Manual Control 
& Learning

Motor Mimicry
Simple (1-hand) Manipulation
Two-hand manipulation
Device Mimicry
Intention Mimicry

4. Knowledge 
Learning

Episodic Recognition Memory
Semantic Memory/Categorization

5. Language &
Concept Learning

Object-Noun Mapping
Property-Adjective
Relation-Preposition
Action-Verb
Relational Verb-Coordinated Action

6. Simple Motor 
Control

Eye Movements
Aimed manual Movements
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and be required to determine whether the objects are the 
same or different.  The different types of trials include:

4.1.1.  Invariant Object Recognition

 On “same” trials, the objects will be oriented in the same 
direction.  On “different” trials, objects will differ along 
color, visual texture, or shape.  Even poor visual systems 
should be able to perform well in this task,
 
4.1.2.  Size Differences

Objects are perceived as maintaining a constant size even 
when  the  observer  distance  changes,  creating  large 
differences in the stimulus size. Some neural mechanisms 
involved in object identification have been shown to be 
invariant  to  differences  in  size,  detecting  whether  two 
objects that are identical in shape.  Thus, discriminating 
between two objects  with  identical  shape  but  different 
size can be challenging. This type of trial tests the ability 
to discriminate size differences in two identically-shaped 
objects.   Success  in  the  task  is  likely  to  require 
incorporating at least one other type of information, such 
as body position, binocular vision, or other depth cues.

4.1.3.  Identification requiring rotation

Complex objects often need to be aligned and oriented in 
order  to  detect  sameness.   On  these  trials,  identical 
objects will be rotated along two orthogonal axes, so that 
physical  or  mental  rotation  is  required  to  correctly 
identify whether they are the same or different.  

4.1.4.  Event Recognition

Perceptual  identification  is  not  just  static  in  time;  it 
includes  events  that  occur  as  a  sequence  of  path 
movements and interactions in time.  This test examines 
the  agent’s  ability  to  represent  and  discriminate  such 
events.  The  two  objects  will  repeat  through  a  short 
equally-timed  event  loop  (e.g.,  rotating,  moving, 
bouncing,  etc.)  and  the  agent  is  required  to  determine 
whether the two depicted events are the same.

4.2. Search and Navigation

A critical  skill  for  embodied  agents  is  the  ability  to 
navigate through an environment, which forms the basis 
for  numerous  search  skills  and  aspects  of  spatial 
cognition.  A graded series of decathlon events, described 
in the following sections, tests these abilities. 

4.2.1. Visual Search

A core  skill  required  for  many navigation tasks  is  the 
spatial localization of a goal target.  In the visual search 
task,  the  agent  will  view  a  visual  field  containing  a 
number of objects, including (on target-present trials) the 

well-learned  target  light.   The  agent  is  expected  to 
determine  whether  the  target  is  or  is  not  present, 
responding verbally (“YES” or “NO”). Behavior similar 
to human performance will be expected for simple task 
manipulations  (e.g.,  both  color-based  pop-out  and 
deliberate search strategies should be observed).  

4.2.2. Simple Navigation

In this task, the agent will be given the verbal task cue 
“Find the target”,  and will  be expected to identify and 
move  to  the  red  target  light  in  a  room  containing 
obstacles.  The target light will be visible to the agent 
from  its  starting  point,  but  may  be  occluded  at 
intermediate points, depending upon the navigation path. 
Obstacles of different shapes and sizes will be present in 
the room, and will change from trial to trial.  On some 
trials,  the  path  to  the  object  may  be  obstructed  by 
movable  and  manipulable  objects,  and  success  would 
require clearing these obstacles.  Agents will be assessed 
on their competency in the task as well as performance 
profiles in comparison to human solution paths.
 
4.2.3 Traveling Salesman Problem

A skill required for many of the Challenge Scenarios is 
the  ability  to  investigate  multiple  locations  in  a  room, 
forming  an  efficient  search  path  through  to  different 
points of interest.  This requires prioritizing navigation to 
multiple points.  This skill has been studied in humans in 
the context of the Traveling Salesman Problem.

 The  Euclidean  TSP  (E-TSP)  belongs  to  a  class  of 
problems  that  are  “NP-Complete”,  which  means  that 
algorithmic  solutions  can  require  exhaustive  search 
through all possible paths to find the best solution.  This 
is computationally intractable for large problems, and so 
presents  an  interesting  challenge  for  classic  AI 
approaches to intelligence, which typically rely on search 
through  the  problem  space.  Such  approaches  would 
produce  solution  times  that  scale  as  a  power  of  the 
number  of  cities,  and  would  never  succeed  at  finding 
solutions to large enough problems. Yet human solutions 
to the problem are typically close to optimal (5% longer 
than the minimum path) and efficient (solution times that 
are  linear  with  the  number  of  cities)  indicating  that 
humans  solve  the  problem  in  ways  fundamentally 
different  from  traditional  approaches.  Recent  research 
(e.g., Pizlo, et al., 2006) has suggested that humans rely 
on their visual systems to solve the problem, and such 
skill  may  form  the  basis  of  many  human  navigation 
abilities. Thus, this task is ideally suited for evaluating 
the biologically-inspired cognitive agents, as it tests skills 
(prioritized navigation) that are important for embodied 
agents  and  are  solved  by  humans  in  ways  that  rely 
closely on the architecture of their visual system.

The agent  will be tested by being given a verbal task cue 
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(“Find the targets”),  after  which it  will  be expected to 
visit  all  the target  locations.   Once visited,  each target 
light will disappear, to enable task performance without 
remembering  all  past  visited  locations.  The  agents’ 
performance  will  primarily  be  based  on  competence 
(ability  to  visit  all  objects),  and  secondarily  on 
comparison to robust behavioral findings regarding this 
task  (solution  paths  are  close  to  optimal  with  solution 
times that are roughly linear with the number of targets.) 

4.2.3.  Embodied Search

True  search  ability  requires  some  amount  of 
metaknowledge,  to  remember  the  places  that  have 
already been searched.  In this task, the agent must find a 
single  target  light,  which  is  located  inside  one  of  a 
number of occluders scattered around the test room. The 
target  can  be  detected  only  when  an  occluder  is 
approached.  The target will be presented randomly, so 
that  all  locations  have  equal  probability  of  hiding  the 
target light.  Performance will be expected to be efficient, 
with  search  time  profiles  and  perseveration  errors 
(repeated  examination  of  individual  boxes)  resembling 
human data.

4.2.5. Reinforcement Learning

The  earlier  search  tasks  have  fairly  simple  goals,  yet 
human’s  ability  to  search  and  navigate  often  supports 
higher-order  goals  such  as  hunting,  foraging,  path 
discovery.  Reinforcement  learning  plays  an  important 
role  in  these  more  complex  search  tasks,  guiding 
exploration  to  produce  procedural  skill,  and  tying 
learning  to  motivational  and  emotional  systems.   To 
better test the ways reinforcement learning contributes to 
search and navigation, the agents will perform a modified 
search  task  that  closely  resembles  the  so-called  Iowa 
Gambling Task (e.g., Bechara et al., 1994).

The task is similar to the Embodied Search Task, but the 
target  light  will  be hidden probabilistically in different 
locations on each trial.  Different locations will be more 
or  less  likely  to  contain  the  hidden  object,  which  the 
agent is expected to learn and exploit accordingly. The 
probabilistic  structure  of  the  environment  may  change 
mid-task, as happens in the Wisconsin Card Sort (Berg, 
1954), and behavior should be sensitive to such changes, 
moving  away  from  exploitation  toward  exploration  in 
response to repeated search failures. 

4.3. Manual Control & Learning

Along with visual and navigational skills, the agents will 
have ability to control its arms and graspers in order to 
manipulate  the  environment.   Initial  simple  control  of 
these effectors will be tested in the Simple Motor Control 
test  (Section 4.6.3).   This event incorporates for levels 
that go beyond simple control.

 

4.3.1. Motor Mimicry

One pathway to procedural  skill  is  the mimicry of  the 
actions of others.  This task tests this skill by evaluating 
the agents ability to copy manual actions.  For this task, 
the agent will mimic hand movements of the instructor, 
including moving fingers,  rotating hand,  moving arms, 
touching  a  location,  etc.,  but  will  not  include  the 
manipulation of artifacts or the requirement to move two 
hands/arms  in  a  coordinated  manner.  Mimicry  is 
expected  to  be  ego-centric  and  not  driven  by  shared 
attention to absolute locations in space.  Agents will  be 
assessed on their  ability  to  mimic  these  novel  actions, 
and the complexity of the actions that can be mimicked.

4.3.2. Simple (One-hand) Manipulation

A more  complex  type  of  mimicry  involves  interacting 
with objects in a dexterous way. Based on simple verbal 
instructions,  the  agent  is  expected  to  grasp,  pick  up, 
rotate,  move,  put  down,  push,  or  otherwise manipulate 
objects, copying the actions of an instructor.  Given the 
substantial skill required for coordinating two hands, all 
manipulations in this version of the task will involve a 
single arm/grasper. The agent will be expected to copy 
the  instructor’s  action  with  its  own  facsimile  of  the 
object.   Mimicry is  expected to  be  egocentric  and not 
based on shared attention, although produced actions can 
be  mirror-image  of  the  instructors.   Agents  will  be 
assessed  on  their  ability  to  mimic  these  novel 
manipulations, and the complexity of the actions they are 
able to produce.

4.3.3. Two-hand Manipulation
 
Based on simple verbal  instructions (“Copy Me.”),  the 
agent  will  mimic  2-hand  coordinated  movement  and 
construction.  Actions might include picking up objects 
that  requiring two hands,  assembling  or  breaking  two-
piece  objects;  etc.  Evaluation  will  be  similar  to  the 
Simple Manipulation task.

4.3.4. Device Mimicry

Although the  ability  to  mimic  the actions  of  a  similar 
instructor is critical, human observational learning allows 
for  more  abstract  mimicry.   A well-engineered  mirror 
neuron system could possibly map observed actions onto 
the motor  commands used to produce them, but  might 
fail if the observed actions are produced by a system that 
physically differs from the agent, or if  substantial motor 
noise exists.  This task goes beyond direct  mimicry of 
action to tasks that require the mimicry of complex tools 
and devices, and (in a subsequent task) intentions.

The  task  involves  learning  how  a  novel  motor  action 
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maps  onto  a  physical  effect  in  the  environment.  The 
agent will  control  a  novel  mechanized device (e.g.,  an 
articulated arm or a remote control vehicle) by pressing 
several  action  buttons  with  the  goal  of  accomplishing 
some  task.   The  agent  will  be  given  opportunity  to 
explore how the actions control the device.  When it has 
sufficiently explored the control of the device, the agent 
will be tested by an instructor who controls the device to 
achieve  a  specific  goal  (e.g.,  moving  to  a  specific 
location).   The  instructor’s  control  operations  will  be 
visible to the agent, so that it can repeat the operations 
exactly if it chooses.  The instructor will demonstrate the 
action, and will repeat the sequence if requested.
 
4.3.5. Intention Mimicry

This task is based on the device mimicry task, but tests 
more abstract observational learning, in order to promote 
understanding of intention and goal inference. The agent 
will  observe  a  controlled  simulated  device  (robot 
arm/remote  control  vehicle)  accomplish  a  task  that 
requires solving a number of sub-goals.  The instructor’s 
operator sequence will not be visible to the agent, but the 
agent will be expected to (1) achieve the same goal in a 
way (2) similar to how the instructor did.   Performance 
success and deviation from standard will be assessed.

4.4. Knowledge Learning

A major goal of the BICA program is to develop agents 
that  learn  ubiquitously  and  incidentally  about  their 
environment and can use this to solve later tasks.   We 
include  several  memory  assessments  to  determine  the 
extent to which the knowledge memory system produces 
results resembling robust human behavioral findings.

4.4.1. Episodic Recognition Memory

 A key type of information required for episodic memory 
is the ability to remember a specific occurrence of known 
objects or events in a specific context.  To ensure a basic 
familiarity with all objects to be used in testing, the agent 
will begin in a small “familiarization” room containing a 
number of objects that  can be observed and examined. 
After  a  short  pre-determined period of  time,  the  agent 
will move to a new room (a testing room) and be shown a 
series of configurations of objects.  After a short break, 
the  agent  will  be  shown  another  series  of  objects  or 
events and be asked “Did you see this here before?”  All 
the objects in the test episodes will have been present in 
the familiarization room, but only some (the targets) will 
have  been shown in  the  testing  room.   Agents  should 
interpret the instructions to mean a specific combination 
of objects in a specific arrangement in the specific room 
the test is occurring in.  Agents should produce strength 
effects,  (i.e.,  be  better  at  identifying  objects  that  were 
given more study time).  A secondary phenomenon to be 
produced  is  the  strength-based  mirror  effect,  in  which 

hits  are  greater  and  false  alarms  are  fewer  when  the 
stimuli are given more study.

4.4.2.  Semantic Gist/Category Learning

An important aspect of human semantic memory is the 
ability to extract the basic gist or meaning from complex 
and isolated episodes.  This skill is useful in determining 
where to look for objects in search tasks, and the ability 
to form concept ontologies and fuzzy categories.

The agent will view a series of objects formed from a 
small set of primitive components.  Each object will be 
labeled verbally by the instructor, and the objects will fall 
into a  small  number of  categories (e.g.,  3-5).   No two 
objects will  be identical,  and the distinguishing factors 
will be both qualitative (e.g., the type of component or 
the relation between two components) and relative (e.g., 
the size of components).  Following study, the agent will 
be shown novel objects and be asked whether it belongs 
to  a  specific  category  (Is  this  a  DAX?).   Category 
membership will not be exclusive, may be hierarchically 
structured, and may depend upon probabilistically on the 
presence  of  features  and  the  co-occurrence  and 
relationship between features.  Agent will be expected to 
categorize  novel  objects  in  ways  similar  to  human 
categorization performance.

4.5. Language/Concept Learning

Language  understanding  plays  a  central  role  for 
instruction and tasking, and opens up the domain of tasks 
that  can  be  performed  by  the  agents.   Language 
grounding is a critical aspect of language acquisition (cf. 
Landau et al., 1998), and we will use a series of five tests 
evaluate  the  agents  ability  to  learn  mappings  between 
physical objects or events and the words used to describe 
them.   For  each  test  type,  the  agent  will  be  shown 
examples with verbal descriptions, and later be tested on 
yes-no transfer trials.  Brief descriptions of each test type 
are given below.

4.5.1 Noun-Object Mapping

One of the first language skill developed by children is 
the ability to name objects (Smith & Gasser, 1998), and 
even  small  children  can  form  object-name  mappings 
quickly and permanently with a few examples.  This test 
examines the ability to learn the names of objects.

4.5.2.  Adjective-Property Mapping

A greater  challenge is  learning how adjectives  refer  to 
properties  of  objects,  and  can  apply  to  a  number  of 
objects.  Such skill follows object naming, and typically 
requires many repetitions to master.  This test examines 
the ability of an agent to learn adjectives, and recognize 
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their corresponding properties in novel objects.

4.5.3.  Preposition-Spatial Relation Mapping

Research has suggested that many relational notions are 
tied  closely  to  the  language  used  to  describe  them. 
Spatial relations involve relations of objects, and so rely 
not  just  on  presence  of  components  but  their  relative 
positions.  This test examines the ability of an agent to 
infer  the  meaning  of  a  relation,  and  recognize  that 
relation in new episodes.

4.5.4.  Verb-Action Mapping

Recognition is not static in time, but also involves events 
occurring in time.  Furthermore, verbs describing these 
events are abstracted from the actor objects performing 
the event,  and represent  a  second type of  relation that 
must be learned about objects (Gentner, 1978).  This test 
examines the ability of the agent to represent such events 
and  the  verb  labels  given  to  them,  and  recognize  the 
action taking place with new actors in new situations.

4.5.5.  Relational Verbs-Multi-object actions

The most complex linguistic structure tested will involve 
relational verbs, which can describe multi-object actions 
whose relationship is critical to the correct interpretation 
For example, in the statement, “The cat chased the dog.”, 
the  mere  co-presence  of  dog  and  cat  do  not 
unambiguously  define  the  relationship.   This  test 
examines  the  ability  of  the  agents  to  understand these 
types of complex linguistic structures and how the relate 
to events in the visual world.

4.6.  Simple Motor Control

Because fairly complex motor control will be required, 
the low-level components of this control will be tested in 
comparison to robust human behaviors.  Arguably, low-
level  gross  locomotion  and  manipulation  are  tested  in 
other  tasks;  the  following tasks  focus  on  properties  of 
how eyes and other effectors are moved.

4.6.1. Saccadic Eye Movements

One form of eye movement is known as a saccade, which 
is  typically  a  ballistic  movement  occurring  with  low 
latency  and  durations  to  a  specific  location  in  visual 
space.   This  ability  will  be tested by presenting target 
objects in the visual periphery, to which the agent will 
shift  its  eyes  in  saccadic  movements,  with  time  and 
accuracy profiles similar to humans.

4.6.2. Smooth Pursuit Eye Movements

Additionally, humans are able to smoothly track moving 
objects.  Such a skill relies on close linkage between the 

ocular,  motor,  vestibular,  and perceptual processes, and 
presents a useful test of their integration. Agents will be 
expected to smoothly track objects moving in trajectories 
and  velocities  similar  to  those  humans  are  capable  of 
tracking.
 
4.6.3.  Aimed Manual Movement

Fitts’s (1954) law states that the time required to make an 
aimed movement is proportional to the log of the ratio 
between the distance moved and the size of the target. 
Agents  will  be  tested  in  their  ability  to  make  aimed 
movements to targets of varying sizes and distances, and 
are expected to produce Fitts’s law at a qualitative level.

5. Biovalidity Assessment

As  a  complement  to  the  Challenge  Scenarios  and 
Cognitive  Decathlon,  which  are  behavioral  tests,  a 
parallel  evaluation  framework  was  designed  to  ensure 
that the BICA program achieves its goal of developing 
models  that  incorporate  brain-based  design  principles, 
computations,  and  mechanisms.   These  Biovalidity 
Assessments are structured to occur in three consecutive 
stages over a five-year period.  During this timeframe, 
emphasis  gradually  shifts  from  evaluations  that  allow 
each  team  to  define  and  test  its  own  claims  to  bio-
inspiration  (thereby  accommodating  the  diversity  of 
approaches among different teams) towards evaluations 
that  require  all  teams  test  their  architectures  against 
common  neural  data  sets,  including  functional 
neuroimaging data recorded from human subjects as they 
perform Challenge Scenario and Decathlon tasks.   The 
use of common neural data sets is intended to facilitate 
comparison across teams and to better focus discussion 
as to which approaches are most  successful  on certain 
tasks and why.

5.1 Stage 1: Overall ‘Neurosimilitude’ (Year 1)
Neurosimilitude refers  to  the  degree  to  which a  model 
incorporates  the  design  principles,  mechanisms,  and 
computations  characteristic  of  neurobiological  systems. 
To effectively demonstrate neurosimilitude, teams are to 
describe in detail the mapping of model components to 
brain  structures  and  to  comment  on  the  connective 
topology of their model with respect to that of the brain. 
Assertions  are  to  be  backed  by  references  to  the 
neuroscience literature, including both human and animal 
studies.   Although  neurosimilitude  could  potentially 
encompass  levels  of  detail  ranging  from  single  ion 
channels to cortical microcircuits to large-scale networks, 
BICA primarily seeks biological validity at the level of 
the  brain’s  large-scale  functional  architecture  (for 
example, cognitive control networks that recruit multiple 
neocortical  and  subcortical  areas  during  task 
performance).  Teams are not required to model neural 
information  processing  at  finer  scales;  however,  it  is 
understood that principles and mechanisms operating at 
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one scale can enable functions at a larger scale, and that 
incorporating biological detail can lead to computational 
value added in surprising ways. To the extent that teams 
can demonstrate that modeling microcircuit-level details 
of  neural  systems  contributes  to  behavioral  success 
beyond  what  can  be  accomplished  with  more  coarse-
grained models, inclusion of such details is encouraged.

5.2 Stage 2: Task-Specific Assessments (Years 2-3)
Stage  2,  Year  2,  affords  each  team the  opportunity  to 
compare  the  activity  of  their  model,  in  a  task-specific 
context, to data from the existing neuroscience literature. 
First,  each  team  selects  several  cognitive  functional 
domains, or skills, that feature prominently within a to-
be-specified Challenge Scenario or Decathlon event.  In 
some  cases  these  domains  might  align  with  discrete 
subtasks within the Challenge Scenario/Decathlon event, 
or  they  might  apply  more  generally  across  a  range  of 
episodes within the overarching task.  It is expected that 
teams  will  select  domains/subtasks  that  highlight  the 
biologically  inspired  capabilities  of  their  own 
architecture.   For  instance,  a  team  whose  architecture 
includes  a  detailed  model  of  the  hippocampus  might 
choose a subtask involving spatial navigation and might 
choose  to  show  that  path  integration  in  their  model 
occurs  via  the  same  mechanisms  as  in  the  rat 
hippocampus.  Similarly, a team whose model develops 
the ability to perform a subtask via a temporal differences 
reinforcement  learning  algorithm  might  compare 
prediction error signaling in their model to that reported 
in neuroscience studies involving similar classes of tasks. 
It is not essential that teams perform a parametric fit to 
published  data  sets;  rather,  teams  are  to  be  assessed 
according  to  how well  their  models  capture  important 
qualitative  features  of  the  neural  processes  known  to 
support  key behavioral  capabilities.   Since,  in  the first 
year of Stage 2, teams are selecting for themselves the 
subtasks  against  which  their  models  will  be  assessed, 
each team in effect has considerable influence over how 
its architecture is evaluated.

In  Stage  2,  Year  3,  teams  again  compare  model 
performance to existing neuroscience data in the context 
of the Challenge Scenarios and/or Decathlon tasks.  This 
time,  however,  all  teams  are  required  to  focus  on  the 
same  set  of  subtasks,  which  are  to  be  pre-selected  by 
DARPA.   The  emphasis  on  a  common set  of  tasks  is 
meant  to  facilitate  comparison  across  models  and  to 
compel  each  team  to  begin  thinking  about  biological 
inspiration  in  domains  other  than  those  at  which  their 
models already excel.

5.3 Stage 3: Human Data Comparisons (Years 4-5)
In Stage 3, teams are to compare model activity to human 
functional neuroimaging (e.g., fMRI) data recorded from 
subjects  performing  actual  BICA Challenge  Scenarios 
and  Decathlon  events.  Whereas  Stage  2  involves 
comparisons to existing neuroscience data sets from the 

literature, Stage 3 allows for a more direct comparison 
between  model  and  neural  data,  since  models  and 
humans will be performing very similar, if not identical, 
tasks.

To  allow for  comparisons  with  fMRI  data,  teams  will 
generate a simulated BOLD signal using methods of their 
own choosing and will compare the performance profile 
of their model to that of the human brain during discrete 
task elements, with a focus on identifying which model 
components  are  most  strongly  correlated  with  which 
brain areas during which classes of tasks,  and on how 
variations  in  the  patterns  of  correspondence  between 
model  and  brain  activity  predict  performance  across  a 
range of tasks.  (For examples of simulated brain imaging 
studies,  see Arbib et  al.,  2000 and Sohn et  al.,  2005). 
Such  comparisons  are  intended  to  provide  a  solid 
empirical  platform from which  teams  can  demonstrate 
the  incorporation  of  biologically  inspired  principles, 
mechanisms and processes.  Moreover,  it is anticipated 
that Stage 3 comparisons will generate new insights as to 
how  teams  might  further  incorporate  biologically 
inspired  ideas  to  enhance  the  functionality  of  their 
models.

As in Stage 2, the first year of Stage 3 requires each team 
to  identify  several  subtasks/cognitive  skill  domains  of 
their  own choosing for  which they will  demonstrate  a 
compelling  relationship  between  model  activity  and 
neural  data.   Likewise,  the  second  year  of  Stage  3 
involves  a  common  set  of  subtasks  so  as  to  facilitate 
comparisons across teams.  In order to take advantage of 
the fact that fMRI techniques allow for access to human 
brain  activity,  selected  subtasks  are  expected  to 
differentially  involve  higher-order  cognitive  faculties 
associated  with  human  intelligence  (e.g.,  language 
acquisition,  symbol  manipulation).  It  is  expected  that 
there  will  be  significant  methodological  challenges 
involved in parsing and interpreting data from tasks that 
are as open-ended as the Challenge Scenarios, in which a 
subject  may  select  from  a  near  infinite  repertoire  of 
actions  at  any  point  within  a  continuum  of  events. 
However,  the  risks  involved  in  this  approach  are 
outweighed by the potential insights that may be gained 
from  the  ability  to  compare  –  on  a  subsystem-by-
subsystem basis – the dynamics of model activity versus 
human  brain  activity  as  recorded  in  the  same  task 
environment.

6. Discussion

Alan  Turing  (1950)  famously  described  a  test  for 
assessing  artificial  intelligence,  in  which  a  machine 
would be considered intelligent if its behavior cannot be 
distinguished  from a  human’s.   Interestingly,  many  of 
today’s intelligent and robotic systems would fail this test 
because  they perform the task so much better  that  the 
humans they replaced.  For example, no librarian could 
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reproduce the breadth and speed of Google’s knowledge 
retrieval,  and no human assembly worker can rival the 
laser-guided  accuracy  and  consistency  of  an  industrial 
robot.    Yet  when  one  considers  the  flexibility  that 
humans exhibit, no machine (and not even all machines 
put together) can currently come close.

The BICA Project is an ambitious attempt to promote the 
development  of  artificial  intelligence  that  goes  beyond 
the current failings of such systems.  Current systems are 
often engineered to perform specific tasks well, whereas 
humans have evolved to be good at a wide range of tasks. 
Current systems are brittle and do not handle situations 
that  were  not  anticipated;  humans  typically  cope  well 
with  such  situations  and  learn  from  them  for  future 
performance.

Despite  the  fact  that  humans  are  flexible  learners, 
cognitive AI systems are typically evaluated in terms of 
the few specific situations they have been engineered to 
handle,  and  cognitive  science  models  are  typically 
targeted to a  single  experimental  paradigm.  For these 
types of evaluation, the best way to distinguish between 
models  requires  advanced  statistical  techniques  that 
simultaneously  examine  model  complexity  and  the 
complexity of the data set (cf. Myung, 2000 for a review 
of statistical techniques, and Gluck & Pew, 2005, for a 
summary  of  an  effort  to  evaluate  complex  cognitive 
architectures).   These  techniques  often  punish  models 
that  are more flexible,  because they can typically fit  a 
greater variety of data.  Although this is justified when 
dealing  with  a  fine-grained  model  of  a  psychological 
process,  the approach may backfire as models grow in 
complexity and become capable of performing a wider 
variety of tasks.

A central technique in model evaluation has always been 
generalizeability.  This is often used to ensure models do 
not “over-fit” the data  (cf. Busemeyer & Wang, 2000), 
but  we  advocate  that  it  is  especially  well  suited  to 
evaluating AI models in cognitive science because of the 
flexibility  humans  repeatedly  demonstrate.   The  test 
specification described here is motivated by this notion. 
For  this  program,  if  given  the  choice  between  two 
models: one that predicts human performance in a few 
tasks  really  well,  and  another  that  predicts  robust 
qualitative  phenomena  in  more  tasks  but  with  less 
accuracy in each task, the choice is clear—we prefer the 
more flexible model.  We have designed this set of tests 
to evaluate this type of generalizeability. So, rather than 
requiring reasonable quantitative fits to new participants 
or  different  versions  of  a  narrowly-scoped  task,  we 
require  qualitative  prediction  of  robust  phenomena  in 
new situations. We hope that the types of models that the 
BICA program hoped to encourage will soon be able to 
demonstrate this type of flexibility by performing tasks 
the model was never designed to perform, and tasks it 
learns to perform on its own. 
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