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ABSTRACT
We discuss the problem of assessing and aiding user perfor-
mance in dynamic tasks that require rapid selection among
multiple information sources. Motivated by research in hu-
man sequential learning, we develop a system that learns by
observation to predict the information a user desires in dif-
ferent contexts. The model decides when the display should
be updated, which is akin to the problem of scene segmen-
tation, and then selects the situationally relevant information
display. The model reduces the cognitive burden of selec-
ting situation-relevant displays. We evaluate the system in a
tank video game environment and find that the system boosts
user performance. The fit of the model to user data provides
a quantitative assessment of user behavior, which is useful
in assessing individual differences and the progression from
novice- to expert-level proficiency. We discuss the relative
benefits of adopting a learning approach to predicting infor-
mation preferences and possible avenues to reduce the nega-
tive consequences of automation.
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INTRODUCTION
We increasingly find ourselves in information-rich environ-
ments. Often, many information sources are potentially use-
ful for completing a task. For example, in coordinating disa-
ster relief, sources of potentially useful information include
video feeds, weather forecasts, inventories of relief supplies,
GPS tracking of support vehicles, etc. Likewise, the many
sensors, gauges, and navigation systems in a modern auto-
mobile are potentially useful to the driver.
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One key challenge people face is identifying which source
of information is desired at the current moment. Although
the information available to a human operator can increa-
se without obvious bound, our basic information processing
capacities remain fixed. Each additional information source
incurs a cost to the human operator by increasing the com-
plexity of the selection process. As informational channels
are added, at some point, the marginal costs (in terms of co-
gnitive load) eclipse the marginal benefits. Indeed, one di-
stinguishing aspect of human expertise may be the ability to
rapidly assess which information is relevant and settle a plan
of action [17].

In this report, we propose and evaluate a system that eases
this selection process by highlighting the information chan-
nel desired by the user. The system, Responsive Adaptive
Display Anticipates Requests (RADAR), learns to appro-
ximate the selection process of the human operator by ob-
serving the user’s selection behavior. In cases where RA-
DAR successfully approximates the human’s selection pro-
cess, the cognitive cost of information selection can be offloa-
ded to RADAR.

RADAR is named after the character Walter “Radar” O’Reilly
from the television series M*A*S*H. Radar O’Reilly had
an uncanny ability to deliver information to his comman-
der moments before the commander formulated his request,
much like how RADAR learns to anticipate the informati-
on needs of the user to reduce cognitive load. In a series of
well-controlled experiments, we evaluate RADAR’s ability
to increase situation awareness and thereby improve perfor-
mance. We then evaluate whether RADAR’s quantitative fits
of individual performance provide a useful means for asses-
sing expertise and individual differences.

RELATED WORK
The topic of plan recognition in AI is concerned with cor-
rectly attributing intentions, beliefs, and goals to the user.
Plan recognition models tend to subscribe to the Belief-Desires-
Intention framework [24]. This line of work relies on knowledge-
based approaches for user modeling and encoding insights
from domain-specific experts [10]. These approaches can
involve identifying a user’s subgoals through task-analysis
[40]. Once a user’s beliefs, intentions, and goals are under-
stood, display can be adapted appropriately [10].

Instead of focusing on identifying the internal state of the
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Figure 1. RADAR takes as input the current context (e.g., recent game
history) and outputs its preferred display to the HUD. The user (e.g.,
the game player) can override RADAR’s choice. Such corrections serve
as learning signals to RADAR and increase the likelihood that RADAR
will select the user’s preferred display in similar situations in the future.
Over time, RADAR approximates the information preferences of a spe-
cific user, allowing the user to offload the task of selecting the relevant
information source (i.e., display) from numerous competing options.

user, other approaches rely on input from domain experts to
adapt display to emphasize the information to which the user
should attend. For example human experts can label episo-
des and these episodes can serve as training instances for ma-
chine learning models that prioritize display elements [34].
Alternatively, input from human experts can be used to build
expert systems or Bayesian models to prioritize display [13].

Our approach diverges from the aforementioned work. Rat-
her than prescribe which information source a user should
prioritize, we attempt to highlight the information a user
would select if the user searched through all possible opti-
ons. Our approach may be preferable in domains where it is
unclear what is normative. Unlike work in plan recognition,
we sidestep the problem of ascribing and ascertaining the
user’s internal mental state. Instead, RADAR learns to di-
rectly predict a user’s desired display from contextual (i.e.,
situational) features. We do not deny that a user’s explicit
beliefs, desires, and intentions are important for determining
information preferences. Rather, we suggest that some im-
portant aspects of cognition are grounded in lower-level me-
chanisms that are not effectively assessed through introspec-
tion and direct questioning. Furthermore, many higher-level
beliefs may be embodied in terms of the display choices that
people make in the environment. Thus, the correlates of so-
me higher-level beliefs may be directly observable in users’
actions. Our studies test these general notions by evaluating
how successful a system can be in the absence of explicit
representations of users’ beliefs and intentions.

Our approach emphasizes learning as opposed to prepro-
grammed interfaces [22]. Adopting a learning approach to
adaptive display has a number of positive consequences, in-
cluding the ability to take into account individual differences
across users [31]. Another positive consequence is that mi-
nimal input from subject matter experts is required to build
a system. Like other context-aware applications that adopt a
keyhole approach [2, 38], our approach infers a users pre-
ferences without interfering with or directly querying the
user [15]. Interfaces that highlight recently selected menu
items follow a similar logic [9], though the work we will
propose is more open ended in terms of possible predictors
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Figure 2. RADAR utilizes a buffer network to represent and learn from
recent context (e.g., game history). Context is represented as a series of
time slices. The tank game results are based on a context consisting of
ten time slices of 250 ms each. The buffer functions as a shift register
— the slice from the immediate time step enters one side of the buffer,
all other time slices shift over one slot to accommodate the new entry,
and the least recent time slice is removed from the buffer. Each time sli-
ce consists of a feature vector describing the current situation. Table 1
lists the features used for the tank game. Each possible display in the
HUD has a detector that collects evidence to determine whether it is
the situationally appropriate display. Association weights between fea-
tures at various positions along the buffer and each detector are learned
through error correction learning. For example, if a user prefers to ha-
ve the fuel scope displayed when fuel is low, the weight from the fuel
level feature’s low value at various positions along the buffer to the fuel
scope display detector will develop large, positive weights.

and learnable relationships from predictors to display prefe-
rences.

Rather than anticipating a user’s information needs like RA-
DAR does, related work aims to predict when a user can be
interrupted by a new task, such as a phone call [8, 14, 16].
However, work on the cost of user interruption may bear on
RADAR’s first decision stage (discussed below), which de-
termines when to introduce new information. Additionally,
models of user interruptibility provide information about the
user’s state that may be predictive of display preferences.
Therefore, the outputs from these models, along with other
measures of cognitive load, could serve as valuable inputs to
RADAR.

OVERVIEW OF RADAR
RADAR is designed to operate in task environments in which
the user must select which display among numerous displays
to monitor. For example, we evaluate RADAR in an arcade
game environment in which players select which of eight
possible displays to show on a Head-Up Display (HUD). Fi-
gure 1 illustrates how RADAR operates in such task environ-
ments. RADAR takes as input the current context (e.g, recent
game history) encoded as a feature vector and outputs to the
HUD the display it thinks the user wishes to view. The user
is free to override RADAR’s choice. RADAR learns from
the user’s acceptance or rejection of its display choices and
over time converges to selecting the displays the user desi-
res. Alternatively, RADAR can observe and learn to mimic a
user’s display preferences offline. After online training, RA-
DAR can be used to select displays. In the studies reported
here, offline training was used.
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RADAR employs a two-stage stochastic decision process at
every time step. In the first stage, RADAR estimates the pro-
bability that a user will update the HUD given the current
context. When the sampled probability from the first stage
results in a display update, RADAR proceeds to the second
stage (otherwise the current display remains unchanged). In
the second stage, RADAR estimates the probability distri-
bution for the next display choice given the current context,
and samples this probability distribution to select the next
display.

Figure 3. Screenshots from our modified version of the BZFlag tank ga-
me are shown. The top panel shows the selection menu listing the eight
possible displays from which players can choose. These eight possible
displays correspond to the first eight features listed in Table 1. Once
a display is selected, the menu is replaced with the chosen display in
the HUD, as shown in the bottom panel. Players can offload the task of
selecting relevant displays to RADAR.

The motivation for the two-stage approach is both compu-
tational and psychological. Separating display prediction in-
to two stages improves RADAR’s ability to predict display
transitions. The same display currently desired is highly like-
ly to be desired in 250 ms. This constancy would dominate
learning if both stages were combined. The second stage’s
focus on display transitions allows for improved estimation
of these relatively rare, but critical, events.

Psychologically, the first stage corresponds to identifying
key events in a continuous (unsegmented) environment, whe-
reas the second stage corresponds to predicting event transi-
tions. To make an analogy to speech perception, people seg-

ment the continuous speech stream into words (akin to RA-
DAR’s first stage) in the absence of reliable acoustical gaps
between words [29]. Akin to RADAR’s second stage, people
anticipate which word (i.e., event) is likely to follow given
the preceding words [23].

One view is that event segmentation serves an adaptive func-
tion by integrating information over the recent past to impro-
ve predictions about the near future (see [21], for a review).
In support of this view, individuals who are better able to
segment ongoing activity into events display enhanced me-
mory [41]. People’s judgments of event boundaries are relia-
ble [33] and tend to show high agreement with others [26].
For example, two people watching a person make a peanut
butter and jelly sandwich will tend to agree on the steps in-
volved. These two people will also both segment off surpri-
sing or unexpected events, like the sandwich maker dropping
the sandwich on the floor.

Behavioral measures reveal that cognitive load increases at
event boundaries. Reading speed slows when event boun-
daries are crossed [28, 42]. Recognition for objects in pic-
ture stories, virtual reality, and movies becomes worse when
an event boundary is crossed [27, 35]. In addition to the-
se behavioral measures, neurophysiological measures track
event boundaries. Events boundaries are associated with in-
creased activity (as measured by fMRI) in bilateral posteri-
or occipital, temporal, and parietal cortex, along with right
lateral frontal cortex [33]. EEG measures corroborate these
findings [32]. Furthermore, pupil dilation and increased fre-
quency of saccades are associated with crossing event boun-
daries [36]. One hypothesis is that RADAR will benefit users
by updating display at event boundaries because cognitive
load, environmental change, and uncertainty are highest at
such times. In Study 4, we assess whether display updates
occur at event boundaries.

The probability distributions associated with both stages (event
segmentation and event prediction) are estimated by simple
buffer networks [6]. As shown in Figure 2, buffer networks
represent time spatially as a series of slots, each containing
the context (e.g., game situation) at a recent time slice, en-
coded as a feature vector. The buffer allows both ongoing
events and events from the recent past to influence display
prediction. Despite their simplicity, buffer networks have be-
en shown to account for a surprising number of findings in
human sequential learning [12]. At each time step, weights
from the buffer are increased from activated features to the
display option shown in the HUD, whereas weights to the
other display options are decreased. Over time, this simple
error correction learning process approximates a user’s in-
formation preferences. RADAR’s weights can be used to as-
sess individual differences and user performance.

RADAR’S FORMAL DESCRIPTION

Player Model
Our model of the player’s choice behavior assumes that the
player’s preferred channel at any time, t, is determined by
the state of the game at that time, St, together with the re-
cent history of the game, (St−l)1≤l<L. The recent history
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is included, in addition to the current state, to allow for fi-
xed delays in information need (e.g., the player wants to see
channel Y, l timesteps after event X occurs). The parame-
ter L determines the maximum delay, that is, the longest ti-
me that past information can remain relevant to the player’s
choice. Increasing this parameter initially improves system
performance, though eventually performance declines as the
ratio of data points to tunable weights becomes small. The
choice of L = 10 (i.e., 2.5 s) for the applications described
here attempts to balance these constraints.

For compactness, we write the sequence of current and re-
cent game states as

S = (St−l)0≤l<L (1)

Because changing channels incurs a cost in terms of atten-
tion and motor resources, we do not assume that the player
changes the HUD to his or her preferred channel whenever
that preference changes. Instead, we assume a two-step sto-
chastic process, in which at every timestep there is a proba-
bility that the player will change channels and, if the channel
is changed, a probability distribution over the channel to be
selected. The probability of switching channels is given by

pt
change(C

t,S) = P[change(t + 1)|Ct,S] (2)

where Ct is the current channel. If the player does change
channels, the probability of selecting channel j is equal to

pt
choice(j,S) = P[Ct+1 = j|change(t + 1),Ct,S] (3)

Context Representation
The state of the game at any time, t, is represented by a vector
of F feature values:

St = (St
f )1≤f≤F

These features used in the studies reported here are listed in
Table 1. Continuous features are discretized, and all features
are coded to take on values 0 ≤ Sf < Vf (where Vf is the
number of possible values of feature f ).

Prediction
The display system operates by predicting two sets of pro-
babilities, corresponding to the two steps in the model of
the player’s choice behavior: pchange, the probability that
the player will change channels; and pchoice, the distribution
over the new channel if the channel is changed. Both types
of probabilities are predicted from the information in the ga-
me history, S. The system learns a separate set of weights w
for the two types of predictions, each indexed by the current
channel (Ct), feature (f ), value for that feature (v), and lag
(l); the weights for pchoice are also additionally indexed by
the value of the candidate new channel (j). The system’s pre-
dictions are derived as a linear combination of these weights
with the feature-value activations, at, currently in the buffer:

pt
change(C

t,S) =
∑
f ,l,v

wchange
Ct,f ,l,v · at

f ,l,v (4)

pt
choice(C

t, j,S) =
∑
f ,l,v

wchoice
Ct,j,f ,l,v · at

f ,l,v (5)

Operation
At each timestep the system changes the channel with pro-
bability pchange(Ct,S). When it does change the channel, it
selects the channel j that maximizes pchoice(Ct, j,S) sub-
ject to j 6= Ct.

Learning
The weights wchange and wchoice are computed from the
player’s manual choice behavior, by minimizing the followi-
ng error terms:

Echange =
{

(pchange)2 Ct+1 = Ct

(1 − pchange)2 Ct+1 6= Ct (6)

Echoice =
[
1 − pchoice(Ct+1)

]2
+

∑
j 6=Ct,Ct+1

pchoice(j)2

(7)

The former is summed over all timesteps, and the latter is
summed over all timesteps on which the player changed chan-
nels (Ct+1 6= Ct). In practice, the weights in RADAR’s buf-
fer networks are estimated directly and efficiently using op-
timized linear algebra routines rather than trial-by-trial error
correction procedures. Both methods converge to the same
solution, but trial-by-trial learning takes longer to do so.

Model Variants
In addition to the model formalized above, we have explored
a variety other frameworks that instantiate RADAR’s gui-
ding principles, including Bayesian models and logistic re-
gression. The results presented in this paper were based on
the formalism presented above, but we have achieved similar
results using other variants of the model.

Prescience
Others have hypothesized that information should be pro-
vided “just ahead” of the need [15]. We provide a testbed
for such notions. RADAR is trained so as to predict players’
display-selection behavior in advance of when that behavior
would actually occur. This is accomplished by shifting the
channel values relative to the feature values in the training
set. The sequence of channel values selected by the player
(i.e. on all timesteps in the model’s training dataset) is mo-
ved earlier by τ steps, which effectively teaches the model to
predict players’ behavior τ steps into the future. Thus, when
allowed to control the display, the model is able to immedia-
tely select the player’s (predicted) preference τ steps into the
future. The shift, τ , is currently set to 2 timesteps, i.e. 500
ms.
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EVALUATING RADAR
Evaluating context-aware systems is challenging. Real-world
studies are often impractical and difficult to properly control.
Video game environments offer a number of substantial ad-
vantages for evaluation [3]. Our environment is a synthetic
environment in that we aim to abstract functional relation-
ships that we hope generalize to numerous actual operatio-
nal environments [11]. Our synthetic environment is not in-
tended to be realistic of an actual environment. Rather it is
intended to allow us to test basic principles that generali-
ze broadly. Unlike other studies involving context-aware sy-
stems, our studies provide rich, objective measures that can
be quantitatively assessed, as opposed to relying on subjec-
tive self-report measures provided by subjects [4].

RADAR was evaluated in a video game task environment
in which human players battled robot tanks. The task envi-
ronment was adapted from the open source BZFlag 3D tank
battle game (see www.bzflag.org). Modifications to BZFlag
included expanding the state of a player’s tank to include li-
mited ammunition, fuel, and health. Players could pick up
corresponding flags in the game to replenish these assets.
Additionally, the display was modified to include a pop-up
menu that allowed players to select one of eight possible dis-
plays to view on the HUD.

The eight possible displays for the HUD correspond to the
first eight features listed in Table 1. Three of the displays
provided the levels of the aforementioned assets. Three other
displays were player-centered scopes that indicated the loca-
tion of flags to replenish the corresponding asset. The remai-
ning two displays consisted of a terrain map and a line-of-
sight unit radar that provided the positions of enemy tanks
and fire when not obscured by building structures. Figure 3
illustrates the menu for selecting which display to send to
the HUD display as well as an example HUD.

RADAR’s task was to anticipate the displays a player wis-
hed to have shown on the HUD, thus allowing the player to
offload display selection to RADAR and devote full attenti-
on to game play. Successful game play requires maintaining
situation awareness of the state of one’s tank, the locations
of flags to replenish assets, and the position of enemy tanks.
Our prediction is that RADAR will improve players’ situati-
on awareness and performance by providing information at
the appropriate time.

Below, we discuss results from a series of studies compa-
ring player performance under RADAR to various controls.
In each study, subjects were evaluated in game situations in-
volving two enemy (robot) tanks. A game ended when the
subject’s tank was destroyed. When an enemy tank was de-
stroyed, it was replaced by a new enemy tank at a random lo-
cation. In between-subjects designs, subjects were randomly
assigned to condition. In within-subjects designs, condition
order was randomized across games. Players were recruited
from the University of Texas’s undergraduate population and
participated in only one study. In all studies, experimenter
and subjects were blind to condition. A typical game lasted
around one minute.

Table 1. The features used to describe the current game context are
listed. These features serve as inputs to RADAR. From these inputs,
RADAR predicts which display the user wishes to view. The first eight
features encode which channel was shown on the HUD (not the value
of the displayed information).

Feature Type Feature Name
Display Shown (1-8) Terrain Map Unit Radar

Ammo Status Ammo Scope
Health Status Health Scope
Fuel Status Fuel Scope

Tank Condition (9-12) Ammo Level Health Level
Fuel Level Out of Fuel

Flag in View (13-16) Any Flag Ammo Flag
Health Flag Fuel Flag

Flag Picked Up (17-20) Any Flag Ammo Flag
Health Flag Fuel Flag

Dynamic/Battle (21-23) Tank is moving Tank hit
Number of enemy tanks in view

Overview of Studies
The studies presented here examine whether and how ad-
aptive display aids performance and its utility in assessing
user behavior. Study 1 served as an initial test of whether
our adaptive display approach can improve users’ task per-
formance. Study 2 uses the same paradigm to assess whether
RADAR promotes situation awareness. The remaining stu-
dies focus on issues revolving around individual differences
and expertise. Study 3 evaluates the benefits of personali-
zed models and whether RADAR’s automation is preferable
to purely manual operation. Study 4 compares the RADAR
models for subjects at the novice and expert stage of deve-
lopment. This study also evaluates whether display updates
occur at event boundaries. Study 5 evaluates RADAR’s pro-
mise as an assessment tool by testing whether a user’s pat-
tern of display choices, as assessed by RADAR, can predict
the user’s task performance.

These studies are intended to guide RADAR’s development
and evaluate its promise for an array of real-world applica-
tions. Our synthetic task environment is demanding of both
perceptual and cognitive resources and unfolds in real time.
The task is engrossing and intensive, such that players con-
tinue to show improvement after one hundred hours of play.
The environment is sufficiently complex for strong individu-
al differences to be manifested. Like many real-world tasks,
information relevancy in the game is situationally determi-
ned. To make a real-world parallel, a pilot may desire infor-
mation about flap position at take-off and landing, but not
during other portions of the flight. Likewise, a smart-phone
user may welcome an unsolicited review of a nearby restau-
rant when (and only when) the user does not have dinner
plans and it is dinner time. Our experimental environment
embodies these aspects of real-world tasks.

We claim that these studies provide a general evaluation of
RADAR. However, such a claim would be undermined by
carefully tuning RADAR’s features to yield the best results.
For our task environment, we gathered features from volun-
teer players’ verbal reports, as opposed to selecting featu-
res to improve RADAR’s performance. As can be seen from
an inspection of Table 1, the features are fairly rudimentary.
Features include information about the basic state of the ve-
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hicle (e.g., how much fuel is left) and events (e.g., whether
the player has been hit by the enemy). Interestingly, in the
studies that follow, we find that the best predictors of dis-
play preferences are which displays were previously viewed
(e.g., the first eight features in Table 1). These features rela-
ted to display use, along with other basic features tied to the
tank’s conditions (e.g., remaining fuel, see Table 1) could
be determined in real-world applications without any addi-
tional sensors or signal processing. To test the robustness of
our approach, only these features are incorporated in Study
3. Finally, Study 4 details a method for automatically deter-
mining which features are relevant to an individual from a
large candidate set. In summary, we have constructed an en-
vironment and feature set that is intended to provide a strong
evaluation of RADAR’s potential for a number of real-world
applications.

Study 1: Group Model Effects on Task Performance
Methods
Five undergraduate student volunteers in the laboratory ser-
ved as the research subjects. These students each had over
ten hours experience playing the tank game without RADAR
operational (i.e., all displays were manually selected from
the menu). Because this is the first evaluation of RADAR,
the procedure was simplified to the greatest extent possible.
RADAR’s weights were estimated while users played wi-
thout a functioning adaptive display (i.e., all display choices
were determined by the subject), as opposed to incremen-
tally training RADAR online. To further simplify evaluati-
on, a single set of weights that predict the average display
preferences of the group was calculated, as opposed to de-
riving a separate set of predictive weights for each subject.
Thus, at test, each subject interacted and was evaluated with
the same version of RADAR rather than a user-customized
version. These evaluation choices make interpretation of the
results clearer, but potentially reduced RADAR’s benefits as
individual differences in information preferences and drift
within an individual’s preferences over time are not captu-
red by this procedure. The features that describe the game
history for each time slice are listed in Table 1.

To provide a stringent test of the adaptive display system,
subjects’ ability to manually select displays (i.e., override
RADAR) was disabled. Removing this ability forces sub-
jects to completely rely on RADAR for information upda-
tes and simulates conditions in which operators do not have
the option of scrolling through menus while on task. Perfor-
mance with RADAR functioning was compared to a close-
ly matched control condition. In the control condition, dis-
plays were shown for the same durations as the experimen-
tal condition (i.e., the base rates and mean durations of the
eight displays were matched), but transitions between dis-
plays were determined at random rather than selected by
RADAR. Thus, any benefit of RADAR over the control con-
dition is attributable to RADAR’s selecting the situationally
appropriate displays for the HUD, as opposed to RADAR’s
merely learning which displays are most valuable in general.
Each player completed fifty test games.

Results
The primary dependent measure was the mean number of
enemy tanks destroyed per game. As predicted, subjects kil-
led significantly more (4.54 vs. 3.29) enemy tanks in the ex-
perimental than in the control condition, t(4) = 10.60, p <
.001. All five subjects showed an advantage with RADAR.
These results indicate RADAR’s effectiveness. Performance
with RADAR could not have surpassed the control condition
unless RADAR was successful in providing the situational-
ly appropriate displays and doing so boosted subject perfor-
mance. However, Study 1 does not establish that automation
is beneficial over purely manual operation. This issue is ad-
dressed directly in Study 3.

Study 2: Maintaining Situation Awareness
Methods
The question of primary interest in Study 2 was whether RA-
DAR helps subjects maintain situation awareness. If so, sub-
jects using RADAR should be more aware of the state of
their tank, and thus be more likely to replenish fuel and am-
munition when necessary. Therefore we predicted that RA-
DAR should reduce the rates of dying from causes that are
somewhat avoidable, specifically, running out of fuel or am-
munition.

Study 2 used the same methods and experimental conditions
as Study 1. The weights for the RADAR model derived in
Study 1 were also retained. Nine inexperienced players who
had not participated in Study 1 served as subjects.

Results
The distribution of player deaths by condition is shown in
Figure 4. As predicted, a greater proportion of games ended
with fuel and ammunition depleted in the control condition
than when RADAR was operating, χ2(2, N = 713) = 12.58,
p < .01. These results suggest that players were less aware
of the state of their vehicle in the control condition.

Figure 4. Study 2 demonstrates that players are more likely to lose si-
tuation awareness and die from somewhat avoidable causes, such as
running out fuel, when RADAR is not operating.

Study 3: Individual Differences and Comparison to Ma-
nual Selection
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Studies 1 and 2 establish RADAR’s benefits over closely
matched controls in terms of providing situationally relevant
display. RADAR boosted overall performance and increased
situation awareness relative to controls. However, Studies 1
and 2 do not establish whether RADAR is more effective
than no automation of display choice. Indeed, automation
could lower overall levels of performance relative to fully
manual display selection. Study 3 assesses this possibility
by using a manual control condition.

The second focus of Study 3 was the importance of indivi-
dual differences in display preference. A separate RADAR
model (i.e., set of weight parameters) was estimated for each
player, and performance was compared between players using
their own models and using other individuals’ models. Ad-
ditionally, to evaluate the robustness of our approach, a mi-
nimal feature set, consisting only of features 1-12 in Table 1,
was used.

Methods
Five undergraduate student volunteers in the laboratory ser-
ved as the research subjects. Each student had over ten hours
experience playing the tank game without RADAR operatio-
nal prior to test data collection. A user-specific RADAR mo-
del was fit to each subject using four hours of manual play
data.

Each subject completed test games in three conditions (in
a within-subjects design): Manual, Individual, and Other. In
the Manual condition, no RADAR model was operable and
subjects manually selected all displays (as in the training
phase). In the Individual condition, each subject used the
RADAR model derived from his or her own training data.
In the Other condition, each player used the other players’
models. In both experimental conditions, subjects were allo-
wed to manually override RADAR’s display choices.

To evaluate RADAR’s promise in contexts where minimal
input from subject matter experts is available, a minimal fea-
ture set was used to predict display preferences in all RA-
DAR models. This minimal set consisted of the “Display
Shown” and “Tank Condition” features shown in Table 1.
Each player completed 12 test games in each of the three
conditions. Game order was randomly determined for each
subject with games from the various conditions interleaved.

Results
Mean kills per condition for the Manual, Individual, and
Other conditions were 5.1, 6.2, 5.9, respectively. Subjects
killed significantly more tanks in the Individual and Other
conditions than in the Manual condition, t(4) = 3.02, p <
.05 and t(4) = 2.84, p < .05, respectively. The advantage
of these RADAR conditions over the Manual condition held
for all five subjects.

These results indicate that individual RADAR models are
more effective than purely manual operation. The strong per-
formance in the Other Individual condition was attributable
to relatively novice subjects benefiting from using the dis-
play models of more experienced subjects. This serendipi-

tous result suggests that RADAR may prove effective as a
training system in which novice subjects train under an ex-
pert’s RADAR model.

Study 4: Novice vs. Expert Humans and Models
Study 4 assessed whether subjects’ mental models shift as a
function of experience on task. Data collected under manual
play were assessed using RADAR to determine the features
that novices and experts attend to when making display up-
dates. Additionally, this data set was used to assess whether
display changes are aligned with event boundaries and whe-
ther these boundaries become sharper as subjects become
more expert.

Methods
Five paid undergraduate students provided twelve hours of
data under manual play. Prior to the experiment, these sub-
jects had no experience with the tank game.

Results
A Novice RADAR model was fit to each subject’s first four
hours of game play and an Expert RADAR model was deri-
ved from the final four hours. Rather than use all the features
listed in Table 1, we determined the features that subjects ac-
tually entertained. This was done by evaluating subsets of all
possible features using cross validation [19]. In cross valida-
tion, including features that are not “psychologically” real
will decrease performance on the data held out to test for
generalization.

Experts’ second RADAR stage involved more features (4.1
vs. 2.8) in accord with findings from the expertise literature
indicating that experts have richer feature vocabularies [37].
Interestingly, this difference (and every other comparison of
novices and experts) strengthens (4.8 vs. 2.4) when one sub-
ject who did not improve (and therefore never truly became
expert) is removed from the analysis. Novice and Expert mo-
dels differed in the features typically included. Larger scale
studies are necessary to assess the basis for these differences
and to answer questions like whether expert models are or-
ganized along deeper principles [5].

RADAR contains two stages, the first of which we claim is
akin to event segmentation. As previously reviewed, cogni-
tive load and change in the environment are greatest at event
boundaries (the very times one would want RADAR to up-
date the display). If display changes in the tank game occur
at event boundaries, then there should be relative stability
in the environment following a display change. Furthermo-
re, because event structure is learned, experts should exhibit
sharper event boundaries than novices.

To evaluate these hypotheses, we measured feature change
(see Table 1 for the features) across consecutive time slices
(250 ms each) in the game ten seconds before and after each
display change. As predicted, there was more feature change
(.28 vs. .21) prior to a display update than after, F (1, 4) =
72.14, p < .01. Furthermore, this difference was larger (.08
vs. .06) for experts than for novices, F (1, 4) = 11.71, p <
.03.
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To assist in visualizing these data, Figure 5 illustrates an ex-
ample expert subject that was run extensively on the task.
Notice that feature change activity drops around the time of
display update. Interestingly, the display update occurs after
feature change activity begins to decrease. This lag might re-
flect the time required for subjects to complete decision and
response processes in the course of making a manual display
selection. RADAR’s prescience (time shifting displays to be
just-in-time) attempts to address this lag.

Time relative to display update

R
at

e 
of

 fe
at

ur
e 

ch
an

ge

-10 -5 0 5 10

-3
-2

-1
0

1
2

Figure 5. Feature change (a proxy for change in the environment) is
plotted in z-scores. Time on the horizontal axis (in seconds) is relative
to display updates (negative is prior to update, positive is post upda-
te). The plot indicates that feature change is greatest prior to a display
change. These results support the notion that display updates are akin
to event boundaries.

Study 5: External Markers of Proficiency and Expertise
One critical challenge in training is evaluating novices’ know-
ledge structures. A variety of laborious and somewhat pro-
blematic techniques, such as think-aloud protocols and struc-
tural assessment, are often used to measure a person’s know-
ledge [20]. These assessments are important because they
can predict trainee comprehension, differentiate between no-
vices and experts, and forecast future achievement [7]. Cri-
tically, as novices progress, their knowledge structures con-
verge with those of experts [1]. One interesting question is
whether RADAR can serve these functions without making
recourse to subject matter experts or special evaluation pro-
cedures.

Experimental Method
Data were collected from forty-six novice subjects. In the
first hour of game play, displays were shown randomly to
familiarize subjects with the game and the displays. In the
second and final hour of game play, subjects played under
manual control. We fit each of the forty-six subjects’ second
hour of play with each of the models (five Novice, five Ex-
pert) from Study 4. For each subject, we determined which
model predicted the subject’s display selections best.

Experimental Results
Subjects’ performance in the second hour under manual play
could be predicted by which of the ten models best fit. The
correlation between subject performance and that associa-
ted with the model that best fit was .26 (p < .05). Subjects
that were best fit by one of the five expert models (18 of
the 46 subjects) outperformed (2.5 vs. 1.8 kills per game)
subjects best fit by one of the five novice models, t(44) =
2.13, p < .05. These results are very encouraging at this ear-
ly stage of the project, especially given the sparsity of our
data. RADAR offers the possibility of continuous evaluation
and assessment of trainees without intervention. Somewhat
surprisingly and consistent with our viewpoint, the results
indicate that significant aspects of expertise are externalized
in terms of information preferences revealed through display
requests.

GENERAL DISCUSSION
Advances in information technology make large quantities
of information available to human decision makers. In this
deluge of information, finding and selecting the relevant pie-
ce of information imposes a burden on the user. This burden
is particularly onerous in dynamic environments in which
decisions must be made rapidly. RADAR is a domain-general
system that learns to approximate the information search
process of an individual user. By offloading this search pro-
cess to RADAR, the user can concentrate on the primary
task. Experimental results in a tank video game environment
in which the player must maintain situation awareness de-
monstrate RADAR’s promise. Players performed better with
RADAR.

RADAR provides a powerful tool to quantitatively assess in-
dividual performance and the transition from novice to expert-
level performance. Consistent with findings from the exper-
tise literature, RADAR models derived from expert subjects
involved more features than models derived from novice sub-
jects. RADAR was also successful in evaluating novices’
knowledge structures.

A variety of laborious and somewhat problematic techni-
ques, such as think-aloud protocols and structural assessment,
are often used to measure a person’s knowledge [20]. These
assessments are important because they can predict trainee
comprehension, differentiate between novices and experts,
and forecast future achievement [7]. Critically, as novices
progress, their knowledge structures converge with those of
experts [1]. We found that novices best fit by expert RADAR
models performed best.

Finally, our results indicate that display updates in the tank
game are akin to event boundaries. This finding suggests that
are task environment is sufficiently rich to contain meaning-
ful event structure. The fact that RADAR does a good job at
identifying these boundaries is likely one of the reasons why
its display updates boost user performance.

In the face of these successes, it is important to keep the li-
mitations of the current system in mind. RADAR is not a
cure all and is not intended to satisfy every user need. Alt-
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hough RADAR can be viewed as an information agent, as it
proactively retrieves context relevant information, RADAR
does not perform other tasks commonly associated with in-
formation agents, such as information synthesis [18]. RA-
DAR does not interpret information for the user, nor suggest
how the user should act on information. Critically, RADAR’s
display predictions are not prescriptive. Rather, its choices
reflect the user. For users, RADAR’s function is to predict
the displays that people desire. The displays people desire
may in fact not be the best displays for the situation. RA-
DAR might show limited benefits for users who chronically
request inappropriate displays. Indeed, we find that RADAR
models derived from novice users are in many ways inferi-
or to expert-user models. This latter point highlights another
function RADAR serves, namely serving as an assessment
tool for scientists and practitioners.

Systems that automate tasks for humans often result in unex-
pected negative consequences [25]. One problem with auto-
mation is that automatic changes are often missed by human
operators in systems with low observability [30]. We believe
RADAR’s design makes it less likely than most systems to
suffer from these problems. Users can maintain basic control
by overriding RADAR’s display choices (see Figure 1). Mo-
de errors are unlikely because all automatic updates involve
a change of display, which the user should notice. Trust in
the system should be high as RADAR learns to approxima-
te a user’s desired display preferences, rather than prescribe
what the user should view. Finally, RADAR can be incre-
mentally deployed with increasing rates of automation over
time in order to maximize the benefits of automation and
minimize the detriments [39].

One idea along these lines is make display update’s in RA-
DAR opt-in rather than opt-out. For instance, users could hit
a key when they wish to advance to the display that RA-
DAR’s recommends. This opt-in operation walks the line
between two basic modes of context-aware information re-
trieval: interactive (as in a web search engine where explicit
queries are made) and proactive (as in the RADAR simulati-
ons reported here) [15]. Opt-in operation also eases the com-
putational challenges in training RADAR models online so
that RADAR and human operators can co-evolve. Our stu-
dies demonstrate that human users’ behavior changes with
RADAR operating, so it is critical for RADAR and human
users to train simultaneously in order to converge to an opti-
mal solution.
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