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Abstract

Although the information available to human operators can in-
crease without obvious bound, human information processing
capacities remain fixed. Finding and selecting the relevant in-
formation to display in this deluge of options imposes a burden
on the user. We describe a domain-general system, Responsive
Adaptive Display Anticipates Requests (RADAR), that learns
to highlight the information a user would select if the user
searched through all possible options. By offloading this se-
lection process to RADAR, the user can concentrate on the pri-
mary task. Tests with human subjects in a tank video game en-
vironment that required monitoring several information chan-
nels while maintaining situation awareness revealed that play-
ers performed better with RADAR selecting which channel to
display. RADAR can customize its predictions to a user to
take into account individual differences and changes within a
user over time. RADAR’s emphasis on learning by observing
minimizes the need for explicit guidance from subject matter
experts.

Introduction
We increasingly find ourselves in information-rich environ-
ments. Often, many information sources are potentially use-
ful for completing a task. For example, in coordinating dis-
aster relief, sources of potentially useful information include
video feeds, weather forecasts, inventories of relief supplies,
GPS tracking of support vehicles, etc. Likewise, the many
sensors, gauges, and navigation systems in a modern auto-
mobile are potentially useful to the driver.

One key challenge people face is identifying which source
of information is desired at the current moment. Although the
information available to a human operator can increase with-
out obvious bound, our basic information processing capaci-
ties remain fixed. Each additional information source incurs
a cost to the human operator by increasing the complexity of
the selection process. As informational channels are added,
at some point, the marginal costs (in terms of cognitive load)
eclipse the marginal benefits.

In this report, we propose and evaluate a system that eases
this selection process by highlighting the information chan-
nel desired by the user. The system, Responsive Adaptive
Display Anticipates Requests (RADAR), learns to approxi-
mate the selection process of the human operator by observ-
ing the user’s selection behavior. In cases where RADAR
successfully approximates the human’s selection process, the
cognitive cost of information selection can be offloaded to
RADAR.

RADAR is named after the character Radar O’Reilly from
the television series M*A*S*H. Radar O’Reilly had an un-

canny ability to deliver information to his commander mo-
ments before the commander formulated his request, much
like how RADAR learns to anticipate the information needs
of the user to reduce cognitive load. Before presenting
RADAR and empirically evaluating it in a well-controlled ex-
periment, we briefly review related work.

Related Efforts
The topic of plan recognition in AI is concerned with cor-
rectly attributing intentions, beliefs, and goals to the user.
Plan recognition models tend to subscribe to the Belief-
Desires-Intention framework (McTear, 1993). This line of
work relies on knowledge-based approaches for user mod-
eling and encoding insights from domain-specific experts
(Goodman & Litman, 1992). These approaches can involve
identifying a user’s subgoals through task-analysis (Yi & Bal-
lard, 2006). Once a user’s beliefs, intentions, and goals are
understood, display can be adapted appropriately (Goodman
& Litman, 1992).

Instead of focusing on identifying the internal state of the
user, other approaches rely on input from domain experts to
adapt display to emphasize the information to which the user
should attend. For example human experts can label episodes
and these episodes can serve as training instances for machine
learning models that prioritize display elements (St. John,
Smallman, & Manes, 2005). Alternatively, input from hu-
man experts can be used to build expert systems or Bayesian
models to prioritize display (Horvitz & Barry, 1995).

Our approach diverges from the aforementioned work.
Rather than prescribe which information source a user should
prioritize, we attempt to highlight the information a user
would select if the user searched through all possible options.
Unlike work in plan recognition, we sidestep the problem of
ascribing and ascertaining the user’s internal mental state. In-
stead, RADAR learns to directly predict a user’s desired dis-
play from contextual (i.e., situational) features. Our approach
emphasizes learning as opposed to preprogrammed interfaces
(Mäntyjärvi & Seppänen, 2002). Adopting a learning ap-
proach to adaptive display has a number of positive conse-
quences, including the ability to take into account individ-
ual differences across users (Schneider-Hufschmidt, Kühme,
& Malinowski, 1993). Another positive consequence is that
minimal input from subject matter experts is required to build
a system. Like other keyhole approaches (Albrecht, Zuker-
man, & Nicholson, 1998), our approach is based on observ-



ing the user’s behavior without interfering with or directly
querying the user.

Overview of RADAR
RADAR is designed to operate in task environments in which
the user must select which display among numerous displays
to monitor. For example, we evaluate RADAR in an arcade
game environment in which players select which of eight pos-
sible displays to show on a Head-Up Display (HUD). Figure 1
illustrates how RADAR operates in such task environments.
RADAR takes as input the current context (e.g, recent game
history) encoded as a feature vector and outputs to the HUD
the display it thinks the user wishes to view. The user is free
to override RADAR’s choice. RADAR learns from the user’s
acceptance or rejection of its display choices and over time
converges to selecting the displays the user desires. Alterna-
tively, RADAR can observe and learn to mimic a user’s dis-
play preferences offline. After online training, RADAR can
be used to select displays. In the studies reported here, offline
training was used.
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Figure 1: RADAR takes as input the current context (e.g.,
recent game history) and outputs its preferred display to
the HUD. The user (e.g., the game player) can override
RADAR’s choice. Such corrections serve as learning signals
to RADAR and increase the likelihood that RADAR will se-
lect the user’s preferred display in similar situations in the
future. Over time, RADAR approximates the information
preferences of a specific user, allowing the user to offload the
task of selecting the relevant information source (i.e., display)
from numerous competing options.

In terms of current implementation, RADAR employs a
two-stage stochastic decision process at every time step. In
the first stage, RADAR estimates the probability that a user
will update the HUD given the current context. When the
sampled probability from the first stage results in a display
update, RADAR proceeds to the second stage (otherwise the
current display remains unchanged). In the second stage,
RADAR estimates the probability distribution for the next
display choice given the current context, and samples this
probability distribution to select the next display.

The motivation for the two-stage approach is both compu-
tational and psychological. Separating display prediction into
two stages improves RADAR’s ability to predict display tran-
sitions. The same display currently desired is highly likely to

be desired in 250 ms. This constancy would dominate learn-
ing if both stages were combined. The second stage’s focus
on display transitions allows for improved estimation of these
relatively rare, but critical, events. Psychologically, the first
stage corresponds to identifying key events in a continuous
(unsegmented) environment, whereas the second stage corre-
sponds to predicting event transitions. To make an analogy
to speech perception, people segment the continuous speech
stream into words (akin to RADAR’s first stage) in the ab-
sence of reliable acoustical gaps between words (Saffran,
2003). Akin to RADAR’s second stage, people anticipate
which word (i.e., event) is likely to follow given the proceed-
ing words (McRae, Spivey-Knowlton, & Tanenhaus, 1998).

The probability distributions associated with both stages
are estimated by simple buffer networks (Cleeremans, 1993).
As shown in Figure 2, buffer networks represent time spa-
tially as a series of slots, each containing the context (e.g.,
game situation) at a recent time slice, encoded as a feature
vector. The buffer allows both ongoing events and events
from the recent past to influence display prediction. Despite
their simplicity, buffer networks have been shown to account
for a surprising number of findings in human sequential learn-
ing (Gureckis & Love, 2007). At each time step, weights
from the buffer are increased from activated features to the
display option shown in the HUD, whereas weights to the
other display options are decreased. Over time, this simple
error correction learning process approximates a user’s infor-
mation preferences.

RADAR’s Formal Description
Player Model Our model of the player’s choice behavior
assumes that the player’s preferred channel at any time, t, is
determined by the state of the game at that time, St , together
with the recent history of the game, (St − l)1≤l<L. The recent
history is included, in addition to the current state, to allow for
fixed delays in information need (e.g., the player wants to see
channel Y, l timesteps after event X occurs). The parameter L
determines the maximum delay, that is, the longest time that
past information can remain relevant to the player’s choice.
This parameter is currently set to 10 (i.e., 2.5 s).

For compactness, we write the sequence of current and re-
cent game states as

S = (St−l)0≤l<L (1)

Because changing channels incurs a cost in terms of atten-
tion and motor resources, we do not assume that the player
changes the HUD to his or her preferred channel whenever
that preference changes. Instead, we assume a two-step
stochastic process, in which at every timestep there is a prob-
ability that the player will change channels and, if the channel
is changed, a probability distribution over the channel to be
selected. The probability of switching channels is given by

Pt
change(C

t ,S) = P[change(t+1)|Ct,S] (2)
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Figure 2: RADAR utilizes a buffer network to represent and
learn from recent context (e.g., game history). Context is rep-
resented as a series of time slices. The tank game results are
based on a context consisting of ten time slices of 250 ms
each. The buffer functions as a shift register — the slice
from the immediate time step enters one side of the buffer,
all other time slices shift over one slot to accommodate the
new entry, and the least recent time slice is removed from the
buffer. Each time slice consists of a feature vector describing
the current situation. Table 1 lists the features used for the
tank game. Each possible display in the HUD has a detector
that collects evidence to determine whether it is the situation-
ally appropriate display. Association weights between fea-
tures at various positions along the buffer and each detector
are learned through error correction learning. For example,
if a user prefers to have the fuel scope displayed when fuel
is low, the weight from the fuel level feature’s low value at
various positions along the buffer to the fuel scope display
detector will develop large, positive weights.

where Ct is the current channel. If the player does change
channels, the probability of selecting channel j is equal to

Pt
choice( j,S) = P[Ct+1 = j|change(t+1),Ct,S] (3)

Context Representation The state of the game at any time,
t, is represented by a vector of F feature values:

St = (St
f)1≤f≤F

These features used in the studies reported here are listed in
Table 1. Continuous features are discretized, and all features
are coded to take on values 0 ≤ S f < Vf (where Vf is the
number of possible values of feature f ).

Prediction The display system operates by predicting two
sets of probabilities, corresponding to the two steps in the
model of the player’s choice behavior: pchange, the proba-
bility that the player will change channels; and pchoice, the
distribution over the new channel if the channel is changed.
Both types of probabilities are predicted from the informa-
tion in the game history, S. The system learns a separate set
of weights for the two types of predictions, each indexed by
the current channel (Ct ), feature ( f ), value for that feature

(v), and lag (l); the weights for pchoice are also additionally
indexed by the value of the candidate new channel ( j). The
system’s predictions are derived as a linear combination of
these weights, weighted by the corresponding unit activation
values:

Pt
change(C

t ,S) = ∑
f,l,v

wchange
Ct,f,l,v ·a

t
f,l,v (4)

Pt
choice(C

t , j,S) = ∑
f,l,v

wchoice
Ct,j,f,l,v ·a

t
f,l,v (5)

Operation At each timestep the system changes the chan-
nel with probability pchange(Ct ,S). When it does change
the channel, it selects the channel j that maximizes
pchoice(Ct , j,S) subject to j 6= Ct .

Learning The weights wchange and wchoice are computed
from the player’s manual choice behavior, by miminizing the
following error terms

Echange =
{

(pchange)2 Ct+1 = Ct

(1− pchange)2 Ct+1 = Ct (6)

Echoice =
[
1− pchoice(Ct+1)

]2
+ ∑

j 6=Ct ,Ct+1

pchoice( j)2 (7)

The former is summed over all timesteps, and the latter is
summed over all timesteps on which the player changed chan-
nels. In practice, the weights in RADAR’s buffer networks
are estimated directly and efficiently using optimized linear
algebra routines (Anderson et al., 1999) rather than trial-by-
trial error correction procedures. Both methods converge to
the same solution, but trial-by-trial learning takes longer to
do so.

Prescience The model is trained so as to predict players’
display-selection behavior in advance of when that behavior
would actually occur. This is accomplished by shifting the
channel values relative to the feature values in the training
set. The sequence of channel values (i.e. on all timesteps
during play) is moved earlier by τ steps, which effectively
teaches the model to predict players’ behavior τ steps into
the future. Thus, when allowed to control the display, the
model is able to immediately select the player’s (predicted)
preference τ steps into the future. The shift, τ, is currently set
to 2 timesteps, i.e. 500 ms.

Evaluating RADAR
RADAR was evaluated in a video game task environment in
which human players battled robot tanks. The task environ-
ment was adapted from the open source BZFlag 3D tank bat-
tle game (see www.bzflag.org). Modifications to BZFlag in-
cluded expanding the state of a player’s tank to include lim-
ited ammunition, fuel, and health. Players could pick up cor-
responding flags in the game to replenish these assets. Addi-
tionally, the display was modified to include a pop-up menu



that allowed players to select one of eight possible displays to
view on the HUD.

The eight possible displays for the HUD correspond to the
first eight features listed in Table 1. Three of the displays
provided the levels of the aforementioned assets. Three other
displays were player-centered scopes that indicated the loca-
tion of flags to replenish the corresponding asset. The remain-
ing two displays consisted of a terrain map and a line-of-sight
unit radar that provided the positions of enemy tanks and fire
when not obscured by building structures. Figure 3 illustrates
the menu for selecting which display to send to the HUD dis-
play as well as an example HUD.

Table 1: The features used to describe the current game con-
text are listed. These features serve as inputs to RADAR.
From these inputs, RADAR predicts which display the user
wishes to view.

Feature Type Feature Name
Display Shown (1-8) Terrain Map Unit Radar

Ammo Status Ammo Scope
Health Status Health Scope
Fuel Status Fuel Scope

Tank Condition (9-12) Ammo Level Health Level
Fuel Level Out of Fuel

Flag in View (13-16) Any Flag Ammo Flag
Health Flag Fuel Flag

Flag Picked Up (17-20) Any Flag Ammo Flag
Health Flag Fuel Flag

Dynamic/Battle (21-23) Tank is moving Tank hit
Number of enemy tanks in view

RADAR’s task was to anticipate the displays a player
wished to have shown on the HUD, thus allowing the player
to offload display selection to RADAR and devote full atten-
tion to game play. Successful game play requires maintaining
situation awareness of the state of one’s tank, the locations of
flags to replenish assets, and the position of enemy tanks. Our
prediction is that players using RADAR should outperform
those in control conditions.

Below, we discuss results from three studies comparing
player performance under RADAR to various controls. In
each study, subjects were evaluated in game situations in-
volving two enemy (robot) tanks. A game ended when the
subject’s tank was destroyed. When an enemy tank was de-
stroyed, it was replaced by a new enemy tank at a random
location.

Study 1: Group Model Evaluation
Experimental Methods Five undergraduate student volun-
teers in the laboratory served as the research subjects. These
students each had over ten hours experience playing the tank
game without RADAR operational (i.e., all displays were
manually selected from the menu). Because this is the first
evaluation of RADAR, the testing procedure was simplified
to the greatest extent possible. A single set of weights that
predict display preferences was calculated, as opposed to de-
riving a separate set of predictive weights for each subject.
Thus, at test, each subject interacted and was evaluated with

Figure 3: Screenshots from our modified version of the
BZFlag tank game are shown. The top panel shows the se-
lection menu listing the eight possible displays from which
players can choose. These eight possible displays correspond
to the first eight features listed in Table 1. Once a display is
selected, the menu is replaced with the chosen display in the
HUD, as shown in the bottom panel. Players can offload the
task of selecting relevant displays to RADAR.

the same version of RADAR rather than a user-customized
version. To further simplify evaluation, eight hours (across
all five subjects) of game data without a functioning adap-
tive display (i.e., all display choices were determined by the
subject) were used to derive RADAR’s weights, as opposed
to incrementally training RADAR online. These evaluation
choices make interpretation of the results clearer, but poten-
tially reduced RADAR’s benefits as individual differences in
information preferences and drift within an individual’s pref-
erences over time are not captured by this procedure. The
features that describe the game history for each time slice are
listed in Table 1.

To provide a stringent test of the adaptive display system,
subjects’ ability to manually select displays (i.e., override
RADAR) was disabled. Removing this ability forces subjects
to completely rely on RADAR for information updates and
simulates conditions in which operators do not have the op-
tion of scrolling through menus while on task. Performance
with RADAR functioning was compared to a closely matched



control condition. In the control condition, displays were
shown for the same durations as the experimental condition
(i.e., the base rates and mean durations of the eight displays
were matched), but transitions between displays were deter-
mined at random rather than selected by RADAR. Thus, any
benefit of RADAR over the control condition is attributable
to RADAR’s selecting the situationally appropriate displays
for the HUD, as opposed to RADAR’s merely learning which
displays are most valuable in general. For each game, the
probabilities of a subject being assigned to the experimen-
tal or control display conditions were 80% and 20%, respec-
tively. Each player completed fifty test games.

Experiment Results The primary dependent measure was
the mean number of enemy tanks destroyed per game. As
predicted, subjects killed significantly more (4.54 vs. 3.29)
enemy tanks in the experimental than in the control condition,
t(4) = 10.60, p < .001. All five subjects showed an advantage
with RADAR. These results indicate RADAR’s effectiveness.

Study 2: Maintaining Situation Awareness
Study 2 was patterned after Study 1. The same RADAR
group model, experimental conditions, and methods were
used. Nine inexperienced players participating in a 36-hour
sleep deprivation study served as subjects. The question of
primary interest was whether RADAR helps subjects main-
tain situation awareness. If so, subjects using RADAR should
be aware of the state of their tank and die at lower rates from
causes that are somewhat avoidable, such as running out of
fuel or ammunition. Subjects who maintain awareness of the
state of their vehicle are more likely to replenish fuel and am-
munition when necessary. The distribution of player deaths
by condition is shown in Figure 4. As predicted, a greater pro-
portion of games ended with fuel and ammunition depleted
in the control condition than when RADAR was operating,
χ2(2, N = 713) = 12.58, p < .01. These results suggest that
players were less aware of the state of their vehicle in the
control condition.

Study 3: Assessing Individual Models
Experimental Methods Five undergraduate student volun-
teers in the laboratory served as the research subjects. These
students each had over ten hours experience playing the tank
game without RADAR operational prior to test data collec-
tion. Four hours of manual play data from each subject
were used to train the various RADAR models evaluated at
test. Unlike Study 1, subjects at test could manually override
RADAR’s display choices. Subjects completed test games in
four conditions: Manual, Group, Individual, and Other In-
dividual. In the Manual condition, no RADAR model was
operable and subjects manually selected all displays (as in
the training phase). In the remaining three conditions, a ver-
sion of RADAR was operable at test. In the Group condition,
a RADAR model was derived for each player using training
data from all the other players combined. In the Individual
condition, a RADAR model was derived for each subjects

Figure 4: Study 2 demonstrates that players are more likely
to lose situation awareness and die from somewhat avoidable
causes, such as running out fuel, when RADAR is not oper-
ating.

using only that player’s own training data. In the Other Indi-
vidual condition, subjects were assigned to another player’s
individual RADAR model. To evaluate RADAR’s promise in
contexts where minimal input from subject matter experts is
available, a minimal feature set was used to predict display
preferences in all RADAR models. This minimal set con-
sisted of the “Display Shown” and “Tank Condition” features
shown in Table 1. Each player completed 12 test games in
each of the four conditions. Game order was randomly de-
termined for each subject with games from the various condi-
tions interleaved. Study 3 evaluates whether RADAR offers
a potential benefit over purely manual operation.

Experiment Results Mean kills per condition are shown in
Figure 5. Subjects killed significantly more tanks in the In-
dividual and Other Individual conditions than in the Manual
condition, t(4) = 3.02, p < .05 and t(4) = 2.84, p < .05, re-
spectively. The advantage of these RADAR conditions over
the Manual condition held for all five subjects. Interest-
ingly, this advantage for RADAR did not arise because of
a reduction in the rate of manual requests. In fact, subjects
made significantly more requests per second (.13 vs. .12)
in the Individual condition than in the Manual condition,
t(4) = 3.91, p < .05, with the effect holding for every sub-
ject.

These results indicate that individual RADAR models are
more effective than purely manual operation. The strong per-
formance in the Other Individual condition was attributable
to relatively novice subjects benefiting from using the dis-
play models of more experienced subjects. This serendipitous
result suggests that RADAR may prove effective as a train-
ing system in which novice subjects train under an expert’s
RADAR model. The fact that more manual requests were
made in the Individual condition than in the Manual condi-
tion suggests that RADAR freed cognitive resources so that
subjects could seek additional information.



Figure 5: Mean kills per game by condition for Study 3.

General Discussion

Advances in information technology make large quantities of
information available to human decision makers. In this del-
uge of information, finding and selecting the relevant piece
of information imposes a burden on the user. This burden is
particularly onerous in dynamic environments in which de-
cisions must be made rapidly. RADAR is a domain-general
system that learns to approximate the information search pro-
cess of an individual user. By offloading this search process
to RADAR, the user can concentrate on the primary task. Ex-
perimental results in a tank video game environment in which
the player must maintain situation awareness demonstrate
RADAR’s promise. Players performed better with RADAR.

Systems that automate tasks for humans often result in
unexpected negative consequences (Miller, Funk, Goldman,
Meisner, & Wu, 2005). We believe RADAR’s design makes
it less likely than most systems to suffer from these problems.
Users can maintain basic control by overriding RADAR’s dis-
play choices (see Figure 1). Mode errors are unlikely because
all automatic updates involve a change of display, which the
user should notice. Trust in the system should be high as
RADAR learns to approximate a user’s desired display pref-
erences, rather than prescribe what the user should view. Fi-
nally, RADAR can be incrementally deployed with increasing
rates of automatization over time.

All the current studies trained variants of RADAR mod-
els from data collected under purely manual conditions. The
results of Studies 1-3 demonstrate that people perform differ-
ently with RADAR operating. Thus, future work will involve
training RADAR models online so that RADAR and human
operators can co-evolve.
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