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Abstract 

Diverse evidence shows that perceptually integral dimensions, such as those composing 

color, are represented holistically.  However, the nature of these holistic representations 

is poorly understood.  Extant theories, such as those founded on multidimensional 

scaling or General Recognition Theory, model integral stimulus spaces using a 

Cartesian coordinate system, just as with spaces defined by separable dimensions.  This 

approach entails a rich geometrical structure that has never been questioned but may 

not be psychologically meaningful for integral dimensions.  In particular, Cartesian 

models carry a notion of orthogonality of component dimensions, such that if one 

dimension is diagnostic for a classification or discrimination task, another can be 

selected as uniquely irrelevant.  This article advances an alternative model in which 

integral dimensions are characterized as topological spaces.  The Cartesian and 

topological models are tested in a series of experiments using the perceptual-learning 

phenomenon of dimension differentiation, whereby discrimination training with integral-

dimension stimuli can induce an analytic representation of those stimuli.  Under the 

present task design, the two models make contrasting predictions regarding the analytic 

representation that will be learned.  Results consistently support the Cartesian model.  

These findings indicate that perceptual representations of integral dimensions are 

surprisingly structured, despite their holistic, unanalyzed nature. 
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The Structure of Integral Dimensions:  

Contrasting Topological and Cartesian Representations 

Much of perceptual processing can be characterized as identifying or imposing useful 

structure on sensory input (e.g., Schyns, Goldstone, & Thibaut, 1998).  One way this is 

achieved is by decomposing rich, multidimensional sensations into separate 

psychological dimensions.  For example, we readily perceive the shapes, sizes, and 

colors of objects around us.  However, there are limits to this perceptual decomposition.  

A classic example is color space, which has three mathematical degrees of freedom but 

which can be perceptually decomposed into representations of individual dimensions 

only imperfectly and with cognitive effort (Garner & Felfoldy, 1970).  Stimulus spaces 

with these properties—physically multidimensional, but psychologically difficult to 

analyze—are known as integral dimensions.  A large body of research indicates that 

integral stimuli are primarily processed holistically, meaning as unitary percepts rather 

than as conjunctions of values on component dimensions (Attneave, 1950; Shepard, 

1964; for a review see Kemler Nelson, 1993).  However, despite a long history of 

research, basic aspects of the holistic representations of integral dimensions are still 

poorly understood.  The goal of this study is to explore the structure of these 

representations. 

There is a long history, founded in the tradition of multidimensional scaling (MDS; 

Torgerson, 1958) and continued in General Recognition Theory (GRT; Ashby & 

Townsend, 1986), of modeling multidimensional stimuli as points in a space endowed 

with a Cartesian coordinate system.  Various cognitive tasks are taken to involve 

learning and decision processes within that space.  This standard Cartesian model turns 

out to imply a rich geometrical structure that may not be psychologically meaningful for 

integral dimensions.  As an alternative, we consider a topological model of integral 
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dimensions, in which similarity is defined in a local sense, but beyond that there is 

essentially no structure contained in the representation.  This model is motivated by the 

claim that an integral space is best viewed as a single psychological dimension (i.e., 

information channel), even though mathematically it has multiple degrees of freedom 

(Lockhead, 1972).  From this perspective, an integral stimulus space might be expected 

have little internal structure. 

A principal difference between the Cartesian and topological models, which we 

explore here, concerns the relationships among component dimensions within the 

integral stimulus space.  By component dimension, we mean any (mathematically) 

unidimensional component of the space, such as hue, saturation, or brightness within 

the integral space of color.  According to the Cartesian model, there is a well-defined 

angle between any two component dimensions, and in particular there is a well-defined 

notion of whether two component dimensions are orthogonal (i.e., perpendicular).  

According to the topological model, these properties are not psychologically meaningful. 

This question of orthogonality has important implications for learning with 

integral-dimension stimuli.  Of particular interest here is the phenomenon of dimension 

differentiation, whereby observers learn to perceptually decompose an originally integral 

stimulus space into component dimensions.  Using a training-transfer paradigm with 

(mathematically) two-dimensional stimulus sets, Goldstone and Steyvers (2001) showed 

that experimental participants learn not just the primary dimension that is diagnostic 

during training, but also a complementary dimension that captures the remaining 

variation in the stimuli.  These and subsequent authors (e.g., Op de Beeck, Wagemans, 

& Vogels, 2003) have assumed that the complementary dimension is determined as 

being orthogonal to the primary dimension.  This assumption seems so obvious that it 

has received no scrutiny, and in fact barely any explicit recognition.  However, if the 

topological model is correct, then integral dimensions do not have the geometrical 
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structure necessary to determine orthogonality, and hence the complementary 

dimension must by determined by some other principle. 

One natural alternative hypothesis is that the complementary dimension is 

determined as being statistically uncorrelated with the primary dimension, under the 

distribution of stimuli present in the task.  Such a mechanism makes sense from the 

standpoint of information theory and has precedent in neural coding theory and vision 

research (Barlow & Foldiak, 1989; Simoncelli & Olshausen, 2001), because uncorrelated 

signals have no redundancy and hence maximize representational capacity.  Thus, the 

question is whether the effect of dimension differentiation is to decompose integral 

dimensions into component dimensions that are statistically independent (Independence 

hypothesis) or that are orthogonal according to some preexisting geometry (Orthogonal 

hypothesis).  The Independence hypothesis is compatible with both the topological and 

Cartesian models, whereas the Orthogonal hypothesis is only sensible within the 

Cartesian model.  Therefore, evidence for the Orthogonal hypothesis would rule out the 

topological model and provide the first empirical support that psychological 

representations of integral dimensions have the geometrical structure implied by the 

Cartesian model. 

The present experiments investigate the determinants of the complementary 

dimension learned in dimension differentiation, by manipulating stimulus distributions to 

distinguish the Orthogonal and Independence hypotheses.  All three experiments 

support the Orthogonal hypothesis and, hence, the Cartesian model.  We argue this is a 

surprising finding, despite the fact that it coincides with traditional modeling approaches.  

The geometrical structure assumed by the Cartesian model previously lacked logical or 

empirical support and was (we believe) implicitly assumed only because the alternative 

topological characterization had not been considered.  Nevertheless, the Cartesian 
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geometry appears to be psychologically real, and hence integral dimensions have a 

significant amount of perceptual structure despite their holistic, unanalyzed nature. 

Cartesian versus Topological Models of Integral Dimensions 

With a stimulus space composed of psychologically separable dimensions, the Cartesian 

representation has strong logical support (see Figure 1).  Because each constituent 

dimension has a single degree of freedom and a natural ordering, it is isomorphic to a 

subset of the real number line (e.g., the set of possible brightnesses can be mapped to 

an ordered set of numbers).  Because each stimulus in the combined stimulus space 

can be represented by its values on the constituent dimensions (e.g., values for size and 

for brightness), the combined space is isomorphic to the Cartesian product of the 

individual dimensions.  In the case of two dimensions, the result is the Cartesian plane. 

 --- Figure 1 about here --- 

In modeling integral dimensions, it is common to assume a Cartesian coordinate 

system just as with separable dimensions (e.g., Ashby & Townsend, 1986; Shepard, 

1962).  Generalizations of the Cartesian approach that do not assume orthogonality 

between axes still assume the angle between the axes is an important psychological 

property of the representation (Carroll & Chang, 1972; Tucker, 1972).  However, the 

logical justification for Cartesian representations breaks down for integral stimuli 

because their representations are not compositional.  Consequently, we are left with only 

the left half of Figure 1, with the dotted line standing for an untested assumption. 

One challenge in developing an alternative to the Cartesian model is that it is 

difficult to envision a continuous stimulus space, and nearly impossible to depict one 

graphically, without implicitly building in a geometry.  Fortunately, mathematical tools 

exist for this type of problem, and for present purposes they are not too conceptually 

complex.  We take as a starting point Lockhead’s (1972) suggestion that integral 
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dimensions are best thought of as a single psychological dimension that happens to 

have multiple degrees of freedom (i.e., stimuli are arranged locally as in a plane or 

higher-dimensional space, rather than a line).  Garner (1974, p. 119) expressed a similar 

view: “Psychologically, if dimensions are integral, they are not really perceived as 

dimensions at all…and do not reflect the immediate perceptual experience of the 

subject.”  This view is supported by classic findings showing that processing is usually 

determined by similarity in the joint space rather than similarity along component 

dimensions (Garner, 1974), and by evidence that manipulations affecting discriminability 

along one component dimension have a concomitant effect on the whole space 

(Goldstone, 1994b; Hinson, Cannon, & Tennison, 1998). 

The natural mathematical characterization of a stimulus space that has no 

structure except for local similarity is that of a topological space (see, e.g., Bredon, 1995, 

for an introduction).1  The starting point for defining a topological space is a set, in this 

case the set of all possible stimulus values.  Mathematically, a set is completely 

unstructured, in the same sense as a nominal variable in measurement theory—each 

stimulus is given a label, and no relationships are assumed among different labels.  The 

structure in a topological space comes from a topology defined on the set, which is a 

specification of all open neighborhoods (see Figure 2).  An open neighborhood is a 

subset of elements in the space (i.e., a set of stimuli in the present context) that can be 

thought of intuitively as being similar to each other, or as constituting a local region of 

the space.  Open neighborhoods are easy to understand in a metric space (i.e., a space 

with a well-defined distance between any two points).  In a metric space, the open 

                                                
1 More technically, we assume the structure of a differentiable manifold, which is a topological 

space augmented with a notion of smoothness of paths or curves through the space.  This 

smoothness assumption is not critical, but it simplifies the empirical analysis below. 
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neighborhoods are generated by all sets of the form {y: d(x,y) < ! }; that is, sets 

containing all elements within an arbitrary positive distance (! ) of a given element (x).  

Thus, the open neighborhoods of an element provide information about which other 

elements are arbitrarily close to it.  In a topological space, there is no distance metric, so 

there is no well-defined notion of similarity at a large scale, but the topology (i.e., the 

open neighborhoods) can be thought of intuitively as conferring a notion of local 

similarity.  (Global properties that are often of interest in topology, such as 

connectedness and orientability, emerge from this local similarity structure.) 

 --- Figure 2 about here --- 

To understand better the structure that is and is not present in a topological 

representation, it is illustrative to ask the same question of a Cartesian representation.  

Consider the stimulus spaces depicted in Figures 3A and 3B.  The arrangement of 

stimuli in these two figures is the same; only the scaling is changed.  Thus the two 

figures could be taken as depicting exactly the same psychological representation, 

differing only in how the researcher chose to draw the diagram.  Next, consider the 

orientation of the stimulus space.  Under the dominant MDS model of integral 

dimensions, similarity between stimuli is determined by their Euclidean distance in the 

Cartesian space (Garner, 1974; Shepard, 1964; Torgerson, 1951).  It is well understood 

that the Euclidean metric is unaffected by rotating the stimulus set relative to the 

coordinate system.  This property is taken to have important psychological implications, 

specifically that “axes are arbitrary, and one set is as good as any other” (Ballasteros, 

1989, p. 238).2  Consequently, a diagram such as that in Figure 3C depicts exactly the 

                                                
2 Although there is evidence that certain axes of integral dimensions can be processed differently 

(e.g., Grau & Kemler Nelson, 1988), Kemler Nelson (1993) argues these privileged-axis effects 

are due to analytic representations that are secondary to the holistic (integral) representations 
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same psychological representation as does Figure 3A.  In contrast to findings with 

separable dimensions (e.g., Ashby, Queller, & Berretty, 1999), rigid rotation of an 

integral stimulus space is a purely formal transformation, with no psychological 

implications.3 

 --- Figure 3 about here --- 

The topological model takes this idea further, by asserting that continuous, non-

rigid transformations have no psychological implications either (because they do not 

alter the open neighborhoods of the space).  Thus, under the topological model, Figure 

3D depicts exactly the same psychological representation as do Figures 3A-3C.  

Although the diagrams are physically different, their differences do not reflect different 

psychological commitments.  In particular, Figure 3D illustrates how orthogonality of 

component dimensions is not a meaningful psychological property in the topological 

model.  Whereas Figures 3A-3C seem to indicate an orthogonal pair of dimensions, this 

is an incidental property of how the diagrams are drawn (whereas in the Cartesian model 

                                                                                                                                            
under investigation here.  We return to the relationship between privileged axes and the present 

findings at the conclusion of this article. 

3 In fact, the finding that integral dimensions are best fit by a Euclidean metric in the MDS 

framework (e.g., Grau & Kemler Nelson, 1988; Handel & Imai, 1972; Hyman & Well, 1967, 1968; 

Torgerson, 1958) is consistent with the topological model.  Because ordinal MDS procedures only 

enforce a monotonic relationship between psychological distance and observed data (e.g., 

similarity ratings), the metric is only determined up to monotonic transformation (e.g., Shepard, 

1962).  Thus, the implication of the Euclidean metric is primarily the negative conclusion that the 

space lacks a well-defined orientation.  Because the Euclidean metric is the unique rotation-

invariant metric among the family typically considered in MDS studies (the Minkowski r-metrics), 

the topological model predicts it to fare the best, by virtue of imposing less extraneous structure 

than the others. 
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it reflects a psychological commitment).  The one constraint in the topological model is 

that if a transformation is not continuous, meaning it “tears” the stimulus space (and 

hence some of the open neighborhoods), then the psychological representation has 

been changed (Figure 3E).  It is in this sense that local similarity is the sole meaningful 

form of structure in the representation. 

Although the Cartesian model also has a topology (as noted above, any distance 

metric implies a topology), we use the term topological model to mean the assumption 

that topology is the only structure present in the representation, that is, that there is no 

Cartesian structure.  An intuitive way to think of the contrast between the Cartesian 

model and the topological model is by analogy to sheet metal and rubber.  A sheet of 

metal has a rigidity that confers a stable geometry.  Any two lines have a well-defined 

angle of intersection, and given any one line (and a point of intersection), there is a 

unique other line that intersects it perpendicularly.  In contrast, if one were to draw two 

intersecting lines on a sheet of rubber, the sheet could be stretched to make their angle 

of intersection take on any nonzero value.  All the rubber has is a local similarity 

structure, in that it cannot be torn.  The topological model thus constitutes a significant 

departure from extant models, in that it attributes far less structure to perceptual 

representations of integral dimensions.  Thus the topological model is more 

parsimonious, and hence should be viewed as a viable alternative in the absence of 

direct evidence for the geometrical structure implied by the Cartesian model. 

Design of Experiments 1 and 2 

The experiments reported here test between the Cartesian and topological models of 

integral dimensions, by contrasting the Orthogonal and Independence hypotheses of 

dimension differentiation.  Experiments 1 and 2 extend the dimension differentiation 

paradigm of Goldstone and Steyvers (2001, Expts. 3 & 4), which is illustrated in Figure 
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4A.  The 16 points represent stimuli, arranged in a circle within a two-dimensional 

integral stimulus space (morphed faces or colors varying in brightness and saturation).  

During training, the stimuli were divided into two equal-sized categories, as indicated by 

the solid horizontal line.  The participants’ task was to learn to classify the stimuli, from 

corrective feedback.  On each trial, a stimulus was presented, the participant responded 

with one of the two category labels, and then the correct response was displayed.  

Following training, each participant was given a transfer task, using the same stimuli but 

divided into new categories, as indicated by one of the two dashed lines in Figure 4A 

(participants were told the categories had changed).  The orientation of the transfer 

boundary relative to the training boundary was manipulated between participants, as 

either 90 or 45 degrees.  The critical finding was that transfer performance, defined as 

the proportion of correct classifications, was superior in the 90-degree condition. 

 --- Figure 4 about here --- 

Goldstone and Steyvers concluded the superior transfer in the 90-degree 

condition arose because the dimension that was diagnostic at transfer was perfectly 

irrelevant during training.  They argued that the training phase induces, at least 

temporarily, an analytic representation of the stimuli, composed of the primary 

(diagnostic) dimension and a complementary (irrelevant) dimension.  When the 

complementary dimension becomes diagnostic at transfer, the transfer task can be 

directly solved using this newly learned dimension, thus facilitating transfer performance. 

The question addressed by the present experiments is what determines the 

complementary dimension.  According to the Orthogonal hypothesis, the complementary 

dimension is orthogonal to the diagnostic dimension in training, with respect to a 

psychologically intrinsic geometry of the stimulus space.  According to the Independence 

hypothesis, the complementary dimension is uncorrelated with the diagnostic dimension, 

under the distribution of stimuli present in the task.  With the circular stimulus distribution 
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used by Goldstone and Steyvers (2001), these two hypotheses make exactly the same 

prediction.  To distinguish between them, Experiments 1 and 2 adopt an elliptical 

stimulus distribution, as shown in Figure 4B.  This change enables us to construct 

separate Perpendicular and Uncorrelated conditions, in which the diagnostic dimension 

at transfer is either perpendicular to or uncorrelated with the diagnostic training 

dimension.  Comparing transfer performance between these conditions provides a test 

between the Orthogonal and Independence hypotheses.  Under the assumption that 

transfer performance will be greatest when the diagnostic dimension at transfer 

coincides with the complementary dimension learned from training, the Orthogonal 

hypothesis predicts superior transfer in the Perpendicular condition, whereas the 

Independence hypothesis predicts superior transfer in the Uncorrelated condition. 

In interpreting Figure 4B, one must keep in mind that the diagnostic dimension in 

each task is not the boundary itself; it is the dimension that best separates the two 

categories.  Conventionally, this dimension is treated as lying perpendicular to the 

boundary.  For example, because the training boundary in Figure 4B is shown as 

horizontal, the diagnostic dimension would be referred to as the vertical dimension.  This 

convention is technically inappropriate in the context of the topological model, because it 

relies on a well-defined geometry to the space, although a reader choosing to think in 

those terms will encounter no confusion.4 

                                                
4 A more rigorous definition of a component dimension is a mapping from the stimulus space to (a 

subset of) the real number line, giving the value of every stimulus on the dimension in question.  

This mapping can be identified with its isoclines, which are sets of stimuli sharing a fixed value of 

the dimension.  The category boundary determines the diagnostic dimension because it is one 

such isocline.  The conventional view of a dimension as running perpendicular to its isoclines 

identifies the dimension with its gradient, which is not defined in a topological manifold. 
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In the Perpendicular condition, the category boundaries in training and transfer 

are perpendicular, and hence so are the diagnostic dimensions.  In the Uncorrelated 

condition, the diagnostic training and transfer dimensions are uncorrelated in the sense 

that, if all 24 stimuli were expressed in terms of their values on these two dimensions, 

those two variables would be uncorrelated across the stimulus set.  One easy way to 

see this is to observe that the training boundary and the uncorrelated transfer boundary 

jointly partition the stimuli into four equally sized subsets.  Therefore, knowing which side 

of the training boundary a stimulus lies on gives no information (even probabilistically) 

regarding which transfer category it belongs in. 

The Cartesian model is logically consistent with both the Orthogonal and 

Independence hypotheses.  Although the model assumes that integral stimulus spaces 

have meaningful geometry, this geometry would not necessarily have to play a role in 

dimension differentiation.  However, if orthogonality between component dimensions has 

any psychological implications at all, it seems that it would have to contribute to 

determining the irrelevant dimension in tasks like the training tasks used here.  

Therefore the Cartesian model strongly favors the Orthogonal hypothesis. 

According to the topological model, any two linearly independent dimensions are 

sufficient to parameterize the space, in the sense that specifying the values of any 

stimulus on both dimensions fully determines that stimulus.  Therefore, any component 

dimension other than the diagnostic dimension is logically capable of serving as the 

complementary dimension.  Assuming the dimension that is learned depends on 

experience (i.e., the new analytic representation is not chosen blindly), a natural 

expectation is that it should be driven by stimulus statistics, in particular as in the 
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Independence hypothesis.5  There may be other plausible principles that are compatible 

with the topological model, but the Orthogonal hypothesis is not, because it relies on 

information that the model holds is absent from the perceptual representation. 

In summary, the goal of Experiments 1 and 2 was to compare transfer 

performance between Perpendicular and Uncorrelated conditions.  Transfer 

performance is taken as an index of how well (or whether) participants have developed a 

psychological representation of the diagnostic dimension, as a consequence of learning 

the training categorization.  Superior transfer in the Uncorrelated condition would support 

the Independence hypothesis of dimension differentiation and lend support to the 

topological model of integral dimensions.  Superior transfer in the Perpendicular 

condition would support the Orthogonal hypothesis and would rule out the topological 

model, by providing direct evidence for the intrinsic geometry entailed by the Cartesian 

model.   

One modification to the logic of Figure 4B made in the actual experiments was 

that the training task was varied between subjects while the transfer task was held fixed 

(rather than the other way around), so that transfer performance could be directly 

compared across conditions.  Experiments 1 and 2 achieved this control in two different 

ways.  In Experiment 1, the training tasks in the Perpendicular and Uncorrelated 

conditions differed by a rotation of the stimulus set, so that the appropriate transfer 

boundary was the same in both conditions.  In Experiment 2, the roles of training and 
                                                

5 Correlations between component dimensions are not necessarily well-defined in the topological 

model, because they can be altered by nonlinear transformations.  However, under the 

smoothness assumption of the differentiable manifold (Footnote 1), we can assume nonlinear 

considerations are negligible as long as the range of the stimulus set is sufficiently restricted. This 

is a necessary assumption of the topological model for it to apply to our or Goldstone & Steyvers’ 

(2001) studies. 
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transfer boundaries in Figure 4B were reversed, so that subjects were trained on 

different boundaries (dashed lines) and transferred to a common boundary (solid line).  

Details of both experiments are given below. 

Experiment 1 

Participants in Experiment 1 leaned to classify color patches varying in brightness and 

saturation.  These two physical dimensions form a classic example of an integral 

perceptual space (Garner & Felfoldy, 1970).  Every participant performed a training and 

a transfer task, which drew stimuli from the same region of color space but which 

differed in the particular stimuli presented and in how they were partitioned into 

categories.  The category labels differed for the two tasks, and participants were 

instructed at transfer that they would now sort the colors in a new way. 

There were six experimental conditions, illustrated in Figure 5.  The conditions 

differed in the stimuli and the category boundaries used in training and in transfer.  The 

conditions were grouped into three types, based on the relationship between training 

and transfer tasks: Perpendicular (Conditions 1 & 4), Uncorrelated (2 & 5), and Control 

(3 & 6).  Conditions 1-3 used the same transfer task, as did Conditions 4-6.  Contrasting 

transfer performance between conditions of different types using the same transfer task 

allowed two separate tests between the Orthogonal and Independence hypotheses.  The 

predictions for these contrasts are shown in Table 1 (the Unsupervised hypothesis is 

introduced in the Discussion of Experiment 1). 

 --- Figure 5 and Table 1 about here --- 

The first contrast is between the Perpendicular and Uncorrelated conditions, as 

described in the previous section.  The diagnostic dimensions in training and transfer 

differed by 90 degrees in the Perpendicular conditions and 60 degrees in the 

Uncorrelated conditions.  The Pearson correlation between these dimensions, taken 
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over the training stimuli, was .45 in the Perpendicular conditions and 0 in the 

Uncorrelated conditions.  Therefore, the Orthogonal hypothesis predicts superior transfer 

performance in the Perpendicular conditions, and the Independence hypothesis predicts 

superior transfer performance in the Uncorrelated conditions.  In each pair of conditions 

to be contrasted (1 vs. 2 and 4 vs. 5), the training tasks were isomorphic but differed by 

a rotation of 30 degrees, allowing the transfer tasks to be identical. 

The second contrast is between the Uncorrelated and Control conditions.  It 

provides a direct test of the Independence hypothesis, by testing whether the stimulus 

distribution in training can affect performance during transfer, when the diagnostic 

training dimension is held fixed.  In each pair of conditions to be contrasted (2 vs. 3 and 

5 vs. 6), the training tasks differed in stimulus distribution but had the same diagnostic 

dimension, and the transfer tasks were identical.  The diagnostic dimensions in training 

and transfer differed by 90 degrees in both conditions, but their Pearson correlation 

(over the training stimuli) was 0 in the Uncorrelated conditions and .71 in the Control 

conditions.  Therefore, the Orthogonal hypothesis predicts no difference in transfer 

performance between conditions, but the Independence hypothesis predicts superior 

transfer in the Uncorrelated conditions.  The two Control conditions were derived by 

swapping the training tasks of the two Uncorrelated conditions (hence their name, 

because they control for any effects of training distribution).  Thus, the four conditions 

form a 2" 2 design, in which two training tasks are crossed with two transfer tasks.  

Under this view, the Independence hypothesis predicts an interaction between training 

and transfer tasks, such that transfer performance is better when the diagnostic training 

and transfer dimensions are uncorrelated under the training distribution. 

In designing the stimulus sets, we used the coordinates of the Munsell Color 

System, an established standard for psychophysical scaling of color space (Newhall, 

Nickerson, & Judd, 1943).  According to the Cartesian model, this coordinate system is 
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the best candidate for specifying the geometry of perceptual color space.  Therefore, 

according to the Cartesian model, dimensions that are perpendicular in Munsell 

coordinates should be perceptually orthogonal.  The use of these coordinates thus 

underpins the Cartesian model’s predictions. 

Method 

Participants.  Sixty-three undergraduates participated for course credit or $6.  All 

participants could earn a $1 bonus in each phase of the experiment for performance 

above 65%.  Normal color vision was verified using the color plates in Ishihara (1967). 

Stimuli.  Stimuli were circular color patches shown in the center of a CRT monitor 

on a black background.  Each stimulus had a diameter of 5 cm.  All stimuli were of 

Munsell hue 10PB (i.e., in the purple-blue region).  Brightness ranged between 6.8 and 

8.2, and saturation ranged between 4.2 and 7.8 (see Tables A1 & A2 for the complete 

set of values).  Calibration of the monitor and accurate representation of the Munsell 

color system were achieved with a Photoresearch Spectrascan 704 Colorimeter and the 

relevant equations of Brainard (1989) and Travis (1991).  All calculations of stimulus 

values and category boundaries (described next) were based on the assumption that 

one unit of brightness is perceptually equivalent to two units of saturation (e.g., 

Nickerson, 1936). 

Design.  Participants were randomly assigned to six conditions (Ns = 12, 10, 10, 

10, 11, & 10, respectively).  The conditions differed in the stimuli and categories used for 

the training and transfer tasks (see Figure 5).  Every task comprised 24 stimuli, forming 

a circle or ellipse in stimulus space and divided by a straight line into two equally sized 

categories.  In all training tasks, the stimulus ellipse and category boundary were 

arranged so that the diagnostic dimension and the dimension with which it was 

uncorrelated differed by 60¡.  There were two transfer tasks, each using the same 
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circular stimulus set and differing in their category boundaries.  Each transfer task was 

used in three conditions (Conditions 1-3 or 4-6).   

In the Perpendicular conditions, the category boundaries in the training and 

transfer tasks (and hence the diagnostic dimensions) were perpendicular.  In the 

Uncorrelated conditions, the diagnostic training and transfer dimensions were 

uncorrelated with respect to the distribution of training stimuli.  The Control conditions 

were obtained by swapping the training tasks of the Uncorrelated conditions.  Thus, 

Control Condition 3 used the transfer task from Uncorrelated Condition 2 and the training 

task from Uncorrelated Condition 5, and Control Condition 6 used the opposite pairing. 

Procedure.  Participants were instructed prior to the training task that they would 

learn to classify colors into two categories, labeled A and B.  After training, participants 

were told they would see more colors “similar to the ones from before,” which they would 

learn to classify into two new categories labeled X and Y.  The mapping of categories to 

category labels was randomized for each participant and task.  Participants were 

instructed at transfer, “there is NO RELATION between this task and the previous one.  

Knowing whether a color is A or B WILL NOT HELP YOU decide if it is X or Y.”  These 

instructions were intended to discourage simple, explicit strategies at the level of 

individual stimuli, such as hypothesizing that all As are Xs and all Bs are Ys.  They were 

not expected to impede the perceptual-learning processes of dimension differentiation.  

The fact that all three experiments found consistent and systematic transfer differences 

among conditions supports the assumption that the training task affected transfer 

performance, despite the instructions that they were unrelated. 

Each task lasted 240 trials, divided into 5 blocks of 48, separated by self-paced 

breaks.  Every stimulus appeared exactly twice per block; otherwise presentation order 

was randomized.  Each trial began with presentation of a stimulus in the center of the 

monitor.  The participant indicated a category response by pressing A or B during 
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training and X or Y during transfer.  Feedback was given below the stimulus as “Correct” 

(in green font) or “Wrong” (in red) followed by “That was a(n) A/B/X/Y” (in white).  The 

stimulus and feedback remained on the screen together for 1500 ms.  Trials were 

separated by 500 ms of blank display.  The entire experiment lasted 30-50 min. 

Results 

Learning curves at transfer were constructed by computing the proportion correct 

for all subjects in each condition during each transfer block.  Figure 6 displays these 

learning curves, and Table 2 presents mean transfer performance averaged over blocks.   

 --- Figure 6 and Table 2 about here --- 

The difference in transfer performance between Perpendicular and Uncorrelated 

conditions was tested using a mixed-effects ANOVA, with condition type and transfer 

task as between-subjects variables and block as a within-subjects variable.  This 

analysis revealed significant main effects of condition type (F1,39 = 4.10, p < .05), transfer 

task (F1,39 = 19.63, p < .001), and block (F2.97, 115.94 = 9.18 with Greenhouse-Geisser [GG] 

sphericity correction, !  = .743, p < .001).  There were no significant interactions (ps > 

.16).  Collapsing over transfer tasks, average transfer performance in the Perpendicular 

conditions (1 & 4) was 81.3%, compared to 74.6% in the Uncorrelated conditions (2 & 5). 

The difference in transfer performance between Uncorrelated and Control 

conditions was tested using a mixed-effects ANOVA with training and transfer tasks as 

between-subjects variables and block as a within-subjects variable.  This analysis 

revealed significant main effects of training task (F1,37 = 4.16, p < .05), transfer task (F1,37 

= 15.28, p < .001), and block (F3.26, 120.56 = 6.95, GG !  = .81457, p < .001).  No 

interactions involving block were significant (all Fs < 1), but, critically, there was a 

reliable interaction between training and transfer tasks (F1,37 = 5.46, p < .05).  This 

interaction is logically equivalent to a main effect of condition type, with worse transfer 



 Structure of Integral Dimensions 20 

performance in the Uncorrelated conditions than the Control conditions (collapsed 

means: Muncorrelated = 74.6%, Mcontrol = 81.3%).  This result indicates an effect of stimulus 

distribution on transfer, but one opposite that predicted by the Independence hypothesis. 

Discussion 

The results of Experiment 1 support the Orthogonal hypothesis over the 

Independence hypothesis.  Comparison between the Perpendicular and Uncorrelated 

conditions shows transfer performance is better when the training and transfer 

dimensions are perpendicular, even if those dimensions are correlated under the 

distribution of training stimuli.  This result suggests the complementary dimension 

extracted in dimension differentiation is determined by its geometrical relationship to the 

primary dimension, not by their statistical relationship.  This finding is consistent with the 

Cartesian model of integral dimensions and is at odds with the topological model. 

The finding that transfer performance was reliably better in the Control conditions 

than in the Uncorrelated conditions presents a puzzle, because it cannot be explained by 

either hypothesis under consideration.  The Independence hypothesis predicts the 

opposite effect, and the Orthogonal hypothesis predicts no difference at all.  Thus, 

dimension differentiation does not appear to offer an explanation, regardless of how 

integral dimensions are represented.  However, there is a possible explanation rooted in 

unsupervised learning.  The mathematics of the Control conditions is such that the major 

axis of the training stimulus distribution is the same as the diagnostic transfer dimension 

(i.e., is perpendicular to the transfer category boundary; see Figure 5).  This 

correspondence suggests that participants learn the principal dimension of variation 

among the stimuli during training (regardless of the category structure), and that they 

can use that knowledge at transfer if this dimension is sufficiently aligned with the 

diagnostic transfer dimension.  Thus, this Unsupervised hypothesis would predict the 

superior transfer in the Control conditions, as listed in Table 1. 
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Experiment 3 further explores the possibility of an unsupervised learning 

mechanism with integral dimensions that is complementary to the supervised 

mechanism of dimension differentiation.  For now, we note that such a mechanism is 

only possible within the Cartesian model.  In the Cartesian model, the notion of principle 

variation is well-defined because distance and hence covariance are meaningful.  In the 

topological model, this type of information is not present in the perceptual 

representation.  Although information about correlation may be present (see Footnote 5), 

information about covariance is not.  In particular, a stimulus set forming a proper ellipse 

and one forming a circle have exactly the same perceptual characteristics under the 

topological model (they only appear different to the researcher because of how they are 

objectively parameterized).  Therefore, to the extent that the transfer advantage of 

Control over Uncorrelated conditions found here is due to unsupervised learning, this 

finding also supports the Cartesian over the topological model. 

Experiment 2 

An important feature of Experiment 1 was that the transfer task was identical between 

contrasted conditions (i.e., Conditions 1-3 or 4-6).  This was achieved by allowing the 

stimulus set in each condition to differ between training and transfer.  One strength of 

this approach is that it demonstrates that the dimensional structure learned in training 

generalizes to new exemplars.  However, one negative consequence is that any effects 

of training stimulus distribution, as predicted by the Independence hypothesis, might 

have been altered or diluted by the distribution of transfer stimuli.  To address this 

possibility, Experiment 2 followed a modified design in which each participant saw the 

same set of stimuli at training and transfer (see Figure 7).  The design still contrasted 

pairs of Perpendicular and Uncorrelated conditions that had matched transfer tasks.  

Two such pairs were tested, differing by a 90-degree rotation in stimulus space.  The two 
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conditions composing each pair differed only in how the stimuli were divided into 

categories during training. 

 --- Figure 7 about here --- 

Another possible concern with Experiment 1 is that color space is low-

dimensional and densely sampled in participants’ prior experience, and hence the 

statistics of this prior experience might overcome those of a fifteen-minute training task.  

To address this concern, stimuli in Experiment 2 were novel faces.  Four photographs 

were used to generate a continuous two-dimensional space of face stimuli using 

Steyvers’ (1999) morphing algorithm.  Figure 8 shows the stimuli used in two of the 

conditions; the other stimulus set was drawn from the same space.  To the extent that 

the Independence hypothesis is correct, these stimuli should provide a better opportunity 

for effects of the stimulus distribution to be observed. 

 --- Figure 8 about here --- 

Together, the differences between Experiments 1 and 2 serve to make 

Experiment 2 a more stringent test of the Orthogonal hypothesis.  The matched stimulus 

sets in training and transfer maximize the possibility for the stimulus distribution to 

influence learning (as predicted by the Independence hypothesis), as does the use of 

novel faces as stimuli.  The matched stimulus sets between contrasted conditions also 

control for any possible unsupervised learning.  Therefore, the Unsupervised hypothesis 

cannot predict any differences between conditions (see Table 1 for predictions from all 

three hypotheses).  Superior transfer performance in the Perpendicular conditions in 

Experiment 2 would thus provide very strong evidence for the Orthogonal hypothesis 

and the Cartesian model. 

Method 

Participants.  Twenty undergraduates participated for course credit. 
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Stimuli.  Stimuli were images of faces, approximately 14 cm high and 12 cm 

wide, presented in the center of an LCD monitor on a black background.  Stimuli were 

generated from photographs of four base faces (all bald Caucasian men) using Steyvers’ 

(1999) morphing algorithm, which generates a stimulus image from input weights for the 

four base faces.  For each stimulus, the weights for base faces A and B were 

constrained to sum to .5, as were the weights for base faces C and D.  The stimuli varied 

in the relative weightings of A versus B and of C versus D.  Images of the stimuli used in 

two of the experimental conditions, as well as the base faces, are displayed in Figure 8. 

The four base faces were selected from a set of 104 candidates.  A six-

dimensional, non-metric (i.e., ordinal), Euclidean MDS solution for the 104 candidate 

faces was obtained using the method of Goldstone (1994a).  A search was then 

performed to find the four faces for which the vectors A – B and C – D were as close as 

possible to being orthogonal and of equal length.  These properties ensured proper 

psychophysical scaling of the stimulus set (according to the Cartesian model).  For the 

four chosen faces, the two dimensions lie at an angle of 88.0 degrees in the MDS space, 

and C – D is longer than A – B by a factor of 1.14.  The latter factor was accounted for in 

all stimulus-generation calculations (i.e., a unit along the CD dimension was equated to 

1.14 units along the AB dimension). 

Design.  Participants were randomly assigned to four conditions (Ns = 5, 5, 6, & 

4, respectively).  The stimulus values and category structures used in all conditions are 

displayed in Figure 7.  One set of 24 stimuli was used for training and transfer in 

Conditions 1 and 2.  During training, the stimuli were partitioned into categories 

differently for the two conditions, but both conditions used the same transfer categories.  

A second set of 24 stimuli was used for Conditions 3 and 4, which again used different 

training categories but had identical transfer tasks.  Each of these pairs comprised one 

Perpendicular condition (Conditions 1 & 3) and one Uncorrelated condition (2 & 4). 
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Procedure.  Participants were instructed prior to the training task that they would 

be shown faces of people who live in two fictitious towns, Bradford and Troy, and their 

job would be to learn which town each person lives in.  After training, participants were 

told they would now learn to classify each person based on whether his last name is 

Smith or Jones.  Participants were instructed that “knowing which town someone might 

live in WILL NOT HELP YOU decide whether they are a Smith or a Jones.”  The 

mapping of categories to category labels was randomized for each participant and task.  

Response keys were B and T in training, and S and J in transfer.  The rest of the 

procedure was identical to that of Experiment 1. 

Results 

Figure 9 displays transfer learning curves by block, and Table 3 presents mean 

transfer performance in all four conditions.  Collapsing over transfer tasks, transfer 

performance averaged 79.8% in the Perpendicular conditions and 76.1% in the 

Uncorrelated conditions.  The reliability of this difference was confirmed by a mixed-

effects ANOVA, which revealed main effects of condition type (F1,16 = 5.10, p < .05), 

transfer task (F1,16 = 34.65, p < .001), and block (F2.93, 46.94 = 6.00, GG !  = .733, p < .001).  

None of the interactions was significant.  

 --- Figure 9 and Table 3 about here --- 

Discussion 

The results of Experiment 2 lend further support to the Orthogonal hypothesis 

over the Independence hypothesis.  As in Experiment 1, participants exhibited better 

transfer performance when the diagnostic dimensions in training and transfer were 

perpendicular rather than uncorrelated.  Unlike Experiment 1, the same stimulus 

distribution was used for training and transfer, eliminating the possibility that correlation 

between dimensions plays a role but only when defined with respect to the transfer 

distribution (e.g., that dimension differentiation somehow occurs during transfer).  
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Furthermore, this result was obtained using unfamiliar stimuli (faces) drawn from a vast, 

high-dimensional space, for which statistics from prior experience should play a minimal 

role.  Finally, because both conditions within each contrasted pair used the same set of 

training stimuli (with different category structures), unsupervised learning cannot explain 

any differences in transfer performance. 

Experiment 3 

A final experiment was conducted to evaluate the unsupervised learning mechanism 

suggested by the results of Experiment 1.  It was suggested above that the unexpected 

transfer advantage in the Control conditions of Experiment 1 arose because the 

dimension of maximal variation (i.e., the first principal component) in the training 

stimulus distribution coincided with the diagnostic transfer dimension.  Central to this 

explanation is the proposal that participants engage in a form of unsupervised learning 

that extracts that principal component (regardless of the category structure), which in 

turn affects stimulus representations or attention during the transfer task.  Because this 

Unsupervised hypothesis is incompatible with the topological model, direct evidence for 

this hypothesis would provide further support for the Cartesian model. 

The strategy of Experiment 3 was to measure a particular rotational bias 

predicted by the Unsupervised hypothesis in participants’ patterns of errors.  In every 

condition, the diagnostic dimensions at training and transfer were perpendicular, but the 

first principle component of the training distribution was oblique to both of these (see 

Figure 10).  The Unsupervised hypothesis predicts participants’ attention will be biased 

away from the diagnostic dimension during transfer, in the direction of this unsupervised 

dimension.  The experiment design contrasts pairs of conditions that differ only in the 

training distribution, and hence in the direction of the predicted bias.  In the Clockwise 

conditions, the unsupervised dimension is situated clockwise from the diagnostic transfer 
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dimension, and hence the Unsupervised hypothesis predicts a clockwise bias in 

participants’ errors (as elaborated below).  The Counterclockwise conditions have a 

reverse relationship and hence lead to the opposite prediction. 

 --- Figure 10 about here --- 

The logic of the predictions for Experiment 3 is illustrated in Figure 11 for the 

case of Condition 1.  Figure 11A shows the training task, with lines indicating the 

diagnostic training dimension, the dimensions that are perpendicular to and uncorrelated 

with that dimension, and the unsupervised dimension.  As elsewhere in this article, we 

indicate dimensions by boundaries or isoclines, rather than the conventional view of a 

dimension as lying perpendicular to its isoclines, because that convention is 

inappropriate in the context of the topological model.  Thus, the unsupervised dimension 

is indicated by the minor axis of the stimulus distribution, because the first principal 

component is perpendicular to this boundary.   

 --- Figure 11 about here --- 

The Unsupervised hypothesis predicts attention will shift to the unsupervised 

training dimension.  The effect on the transfer task can be modeled as stretching the 

stimulus space along the attended dimension, as shown in Figure 11B (e.g., Nosofsky, 

1986).  Although we draw on extant theories to model the effects of selective attention, 

the current proposal differs markedly from previous theories in how and when selective 

attention operates.  Existing theories assume that selective attention is feedback- or 

goal-driven and that it does not operate reliably with integral dimensions or in arbitrary 

directions in perceptual space (Garner, 1974; Nosofsky, 1992; but see Goldstone, 

1994b).  We return to the implications of the present proposal in the General Discussion. 

The predicted perceptual representation of the transfer task, resulting from 

attention to the unsupervised training dimension, is shown in Figure 11C.  The 

arrangement of stimuli under this representation leads to a prediction of asymmetric 
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rates of classification errors near the category boundary.  In particular, the two critical 

border stimuli (boxed) should be misclassified more often than the other two border 

stimuli (circled).  A similar, weaker asymmetry is predicted for stimuli further from the 

boundary.  The prediction of asymmetric error rates can be understood in a number of 

different ways and is qualitatively the same for all standard theories of category 

representations.  First, similarity to members of the opposite category is greater for the 

critical stimuli than for the other border stimuli.  Therefore, exemplar-based models 

predict more errors for the critical stimuli (e.g., Nosofsky, 1986).  Second, similarity to 

the opposite prototype (defined as the mean or centroid of all stimuli in each category) is 

greater for the critical stimuli.  Therefore, prototype models make the same qualitative 

prediction (e.g., Smith & Minda, 1998).  Third, the training category boundary is rotated 

clockwise in the attentionally altered representation of Figure 11C.  Consequently, the 

orthogonal dimension under this representation (i.e., the predicted complementary 

dimension) corresponds to a decision bound that is rotated clockwise from vertical.  

Therefore, models that learn decision bounds with a tendency toward unidimensional 

rules make the same qualitative prediction as well (e.g., Ashby & Maddox, 2005). 

Rather than simply comparing error rates to the border stimuli, we devised a 

more sensitive measure that takes into account responses to all stimuli.  Specifically, a 

linear classifier was fit to each participant’s transfer responses.  The classifier is similar 

to classic decision-bound models of categorization (Ashby & Maddox, 1993) but is 

simpler and is intended merely as a data-analysis tool.  The classifier is derived from a 

logistic regression with category response as the outcome and objective stimulus 

coordinates as the two predictors.  The regression coefficients are then translated to an 

orientation, by taking the arctangent of their ratio.  This process amounts to fitting each 

participant’s responses using a two-dimensional logistic function (basically a smoothed 

step function) with degrees of freedom for its orientation and steepness.  A participant 
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responding without rotational bias would produce an orientation perfectly aligned with 

the true category boundary, whereas the predicted asymmetry of classification errors 

would manifest as a deviation of the estimated orientation away from the true boundary.  

This deviation served as the dependent measure in Experiment 3.  The Unsupervised 

hypothesis predicts the deviation to be clockwise in the Clockwise conditions and 

counterclockwise in the Counterclockwise conditions. 

Notwithstanding that Experiments 1 and 2 appear to rule out the Independence 

hypothesis, this hypothesis also makes a prediction in Experiment 3, which is directly 

opposite the prediction of the Unsupervised hypothesis.  In each Clockwise condition, 

the dimension that is uncorrelated with the diagnostic dimension at training is rotated 

counterclockwise relative to the transfer dimension (see Figure 11A).  Therefore, 

following essentially the same reasoning as above, the Independence hypothesis 

predicts a counterclockwise bias in participants’ classification errors.  The reverse 

reasoning applies to the Counterclockwise conditions.  Finally, because the training and 

transfer dimensions are perpendicular in all conditions (absent any modification of the 

perceptual space by unsupervised learning), the Orthogonal hypothesis by itself predicts 

no effects of training condition in this experiment.  Table 1 lists the predictions of all 

three hypotheses.  In summary, Experiment 3 provides a direct test of the Unsupervised 

hypothesis, as well as a contrast with the Independence hypothesis. 

Method 

Participants.  Forty undergraduates participated for course credit. 

Stimuli.  Stimuli were generated as in Experiment 2, using the same four base 

faces.  Because of differences in overall performance between the two transfer tasks of 

Experiment 2, the scaling factor obtained from the MDS solution (see Expt. 2 Methods) 

was omitted and the AB and CD dimensions were scaled equally, as a simple default 

assumption.  Note that because the diagnostic dimensions in all tasks in Experiment 3 



 Structure of Integral Dimensions 29 

were aligned with one of these nominal dimensions, their relative psychological scaling 

does not affect whether they are orthogonal and does not affect any of the predictions. 

Design.  Participants were randomly assigned to four conditions (Ns = 11, 9, 10, 

& 10, respectively).  The stimulus values and category structures used in all conditions 

are displayed in Figure 10.  Conditions 1 and 2 used the same transfer task, as did 

Conditions 3 and 4.  Both transfer tasks used the same, circular set of stimuli, with 

diagnostic dimensions differing by 90 degrees.  In all conditions, the diagnostic training 

dimension was perpendicular to the diagnostic transfer dimension.  The two conditions 

associated with each transfer task differed only in their distributions of training stimuli.  In 

each Clockwise condition (1 & 3), the major axis of the (elliptical) training distribution 

was 36.95 degrees clockwise from the transfer dimension (i.e., from being perpendicular 

to the transfer category boundary).  This relationship was 36.95 degrees 

counterclockwise in the Counterclockwise conditions (2 & 4). 

Procedure.  The procedure of Experiment 3 was identical to that of Experiment 2. 

Results 

Transfer learning curves by block are shown in Figure 12.  A mixed-effects 

ANOVA revealed significant effects of transfer task (F1, 36 = 13.55, p < .001) and block 

(F2.91, 104.86 = 16.71, GG !  = .72817).  Neither the main effect of condition type (Clockwise 

vs. Counterclockwise) nor any of its interactions was significant (ps > .24), implying the 

manipulation of training distributions did not affect transfer performance, as expected. 

 --- Figure 12 about here --- 

Prior to fitting the linear classifier to transfer responses, a grand-average learning 

curve was computed using a block size of 10 trials.  Based on visual inspection, the first 

two points of this curve were markedly lower than the rest.  Because the predictions for 

this experiment regard error patterns once the categories were reasonably well learned, 
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and because random behavior early in learning adds noise to the classifier fits, the first 

20 transfer trials (out of 240) were omitted from the classifier analysis. 

The linear classifier was estimated by fitting a logistic regression to the final 220 

transfer responses from each participant, with the two objective stimulus dimensions (AB 

and CD) as predictors.  The resulting regression coefficients are denoted #AB and #CD.  

The orientation of the classifier was then computed as $ = tan-1(#AB/#CD).  The arctangent 

function was defined to take values between 0¡ and 180¡, and 180¡ was added to $ if #AB 

< 0.  Under this definition, $ represents the orientation of the best-fitting linear bound 

separating the participant’s category responses, measured in degrees clockwise from 

horizontal (with respect to the graphical scheme of Figure 10). 

Table 4 presents the results of the classifier analysis.  Mean deviation of 

classifier orientation for each condition is reported in terms of degrees clockwise from 

the optimal category boundary.  Thus, the table reports $ – 90¡ for Conditions 1 and 2 

and $ for Conditions 3 and 4.  Collapsing across transfer conditions, transfer responses 

were biased an average of 11.2¡ (clockwise) in the Clockwise conditions and -13.5¡ (i.e., 

13.5¡ counterclockwise) in the Counterclockwise conditions.  This difference was 

confirmed by a 2" 2 ANOVA, which revealed a main effect of condition type (Clockwise 

vs. Counterclockwise; F1,36 = 10.44, p < .01), a marginal effect of transfer task (F1,36 = 

4.10, p < .1), and no interaction (F1,36 = 1.75, p > .1). 

 ---Table 4 about here --- 

Discussion 

The results of Experiment 3 confirm the predictions of the Unsupervised 

hypothesis.  In both Clockwise and Counterclockwise conditions, transfer responses 

were biased in the direction of the unsupervised training dimension.  Regardless of how 

the categories are represented (by exemplars, prototypes, or decision bounds), this 
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effect is consistent with selective attention to that dimension.  Because the experimental 

manipulation varied the training stimulus distribution while holding the diagnostic 

dimension fixed, the observed effects are due to the stimuli themselves and not the 

category structure (i.e., feedback), thus implicating unsupervised learning.  A great deal 

of theoretical and empirical work has supported the proposal of supervised, feedback-

driven selective attention among separable dimensions (i.e., attention to predictive or 

diagnostic dimensions; Jones, Maddox, & Love, 2005; Nosofsky, 1992; Sutherland & 

Mackintosh, 1971), but the present finding of unsupervised attention with integral 

dimensions is novel and not anticipated by extant category-learning models. 

The results also provide further evidence against the Independence hypothesis, 

which predicts a pattern opposite what was observed.  The Orthogonal hypothesis, 

taken alone, predicts no effect either way, but this is not a problem for that hypothesis 

because it is not in competition with the Unsupervised hypothesis.  The Orthogonal and 

Independence hypotheses concern dimension differentiation (specifically, what 

determines the complementary dimension), whereas the Unsupervised hypothesis 

concerns a putative separate learning process, based only on the stimuli and not the 

category structure.  One could try to save the Independence hypothesis by conjecturing 

that dimension differentiation contributed a bias that was opposite what was observed, 

but that this bias was overcome by the effect of unsupervised learning.  However, 

Experiment 2 found no evidence for the Independence hypothesis when unsupervised 

learning was controlled.  Taken together, the experiments support the Orthogonal over 

the Independence hypothesis as an explication of dimension differentiation, with 

unsupervised learning as an additional, separate mechanism.  Because the Orthogonal 

and Unsupervised hypotheses are both incompatible with the topological model, the two 

learning mechanisms provide separate sources of support for the Cartesian model. 
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General Discussion 

The goal of this study was to contrast the Cartesian and topological models of integral 

dimensions, by testing between the Orthogonal and Independence hypotheses.  

Experiments 1 and 2 both supported the Orthogonal hypothesis, by showing that when 

subjects learn to discriminate two categories of stimuli, they transfer best to a task in 

which the new diagnostic dimension is perpendicular to (rather than uncorrelated with) 

the original one.  This finding in turn supports the Cartesian model, because it shows the 

geometrical structure that model attributes to integral perceptual spaces—in particular, 

angles between component dimensions—is psychologically meaningful. 

The other primary finding from this study also supports the Cartesian model over 

the topological model.  Experiments 1 and 3 found evidence for an unsupervised 

learning effect, whereby subjects learn or attend to the dimension of maximal variation in 

the stimulus distribution, regardless of the category structure.  This effect was opposite 

the predictions of the Independence hypothesis.  It is also incompatible with the 

topological model, because distance in perceptual space, and hence the dimension of 

maximal variation, are not psychologically well-defined according to that model. 

These results come from using both colors and faces as stimuli.  There is debate 

over whether faces are processed differently from other stimuli (e.g., Bukach, Gauthier, 

& Tarr, 2006; Grill-Spector, Knouf, & Kanwisher, 2004), but faces and colors 

nevertheless led to the same conclusions here.  The convergence between two such 

different integral dimensions speaks to the generality of these conclusions. 

We view the support for the Cartesian model as surprising, despite its traditional 

role in both MDS (Garner, 1974; Kruskal, 1964; Shepard, 1962, 1964; Torgerson, 1958) 

and GRT (Ashby & Lee, 1991; Ashby & Maddox, 1994; Ashby & Townsend, 1986).  The 

strong geometrical structure assumed by the Cartesian model had received little 

acknowledgement or scrutiny, and it was adopted primarily because the alternative had 
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not been considered.  Here we have shown how setting aside the assumptions of the 

Cartesian model leads to a model in which the representation of integral dimensions is 

much more primitive and unstructured, its only principle of organization being the local 

similarity that defines a topological space.  The lack of internal structure noted by past 

researchers of integral dimensions (Garner, 1974; Lockhead 1972) strongly suggests 

something like the topological model considered here.   

Nevertheless, the present results indicate that component dimensions (i.e., 

directions) in an integral stimulus space have well-defined angles, and distances in 

different directions can be meaningfully compared.  Both of these properties are 

inconsistent with the topological model, but they are direct consequences of the core 

assumptions of the Cartesian model.  Therefore, integral dimensions have an internal 

geometric structure of the type implied by Cartesian models.  This metric structure is 

likely adaptable with sufficient experience (Goldstone, 1998; Schyns et al., 1998), but it 

appears to be a fundamental, if malleable, characteristic of the perceptual 

representation. 

One possible objection is that interpretation of the present results depends on 

assuming the stimuli were correctly scaled (despite the careful calibration methods used 

in all three experiments).  Indeed, the main effects of transfer task on transfer 

performance in all three experiments suggest that the CD face dimension was more 

discriminable than the AB dimension, and that discrimination between high-saturation–

low-brightness and low-saturation–high-brightness was easier than between high-

saturation–high-brightness and low-saturation–low-brightness (cf. Melara & Marks’, 

1990, finding of interaction between pitch and loudness).  Likewise, selective attention 

might increase the salience of the diagnostic dimension in training or transfer (although 

this effect is known to be weak with integral dimensions), effectively stretching the 

perceptual space along that dimension (Nosofsky, 1986).  However, neither of these 
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effects should be expected to alter the relationship between diagnostic training and 

transfer dimensions in the Perpendicular conditions, because the change in scaling 

would be aligned with those dimensions.  Hence, the predictions of the Orthogonal 

hypothesis should not be altered.  More critically, positing a different stimulus scaling 

cannot save the Independence hypothesis, because any linear transformation of 

stimulus coordinates cannot change the correlations between diagnostic dimensions at 

training and transfer.  Likewise, the topological model holds that the choice of coordinate 

system is irrelevant (because psychologically, there is no coordinate system), so there is 

no way for it to predict a different result under a different choice of scaling. 

Holistic and Analytic Representations 

Our results are reminiscent of previous findings of privileged axes with integral 

dimensions (Foard & Kemler, 1984; Grau & Kemler Nelson, 1988; Melara, Marks, & 

Potts, 1993a), but the theoretical implications are quite different.  Research has shown 

that classification or discrimination along certain component dimensions in integral 

spaces (e.g., brightness and saturation, or pitch and loudness) is easier than along 

other, rotated dimensions.  These privileged axes are evidence for the presence of 

(weak) analytic representations of integral dimensions, which have been argued to be 

secondary to holistic representations (Kemler Nelson, 1993).  Whereas this past work 

shows privileged axes exist, the current study can be viewed as addressing the 

principles guiding their acquisition.  The results indicate that when new privileged axes 

are learned (either temporarily or permanently), they are chosen to be orthogonal with 

respect to an intrinsic geometry of the perceptual space.  Critically, because subjects 

learned new, arbitrary dimensions (especially with the face stimuli), this geometrical 

structure must be a preexisting property of the holistic representation itself, before 

dimension differentiation takes place. 



 Structure of Integral Dimensions 35 

This conclusion also bears on the difference between analytic (separable) and 

holistic (integral) representations.  According to the topological model, transitioning from 

a holistic to an analytic representation entails a radical reorganization that adds a great 

deal of new structure to the perceptual space.  Instead, the present results indicate that 

much of that structure already exists; the only change is in selecting a particular 

orientation or set of axes.  This shift might arise from a change in perceptual 

representation, enabling access to or explicit encoding of stimulus values on the 

separate dimensions (Goldstone & Steyvers, 2001).  Alternatively, it may arise as a 

change in hypotheses regarding how concepts are distributed, as oriented randomly in 

stimulus space versus aligned with particular axes (Austerweil & Griffiths, 2010). 

Learning of new analytic representations raises a number of open questions, 

having to do with the nature of the representation when dimension differentiation is 

partial and not permanent, such as in our experimental participants at the end of training.  

Does the representation lie somewhere on a continuum between integral and separable, 

with one (or more) axis systems partially dominant in an otherwise isotropic space; or 

are there parallel, competing representations, one integral and holistic and the other(s) 

separable and compositional (but somehow not fully established)?  Likewise, can 

multiple sets of privileged axes exist simultaneously?6  Research by Melara, Marks, and 

colleagues (Melara & Marks, 1990; Melara, Marks, & Lesko, 1992; Melara et al., 1993a; 

                                                
6 In the topological model an additional, analogous question arises in learning an individual set of 

privileged axes.  If a diagnostic dimension remains fixed, but the stimulus distribution changes 

over time, are multiple complementary dimensions learned (each uncorrelated with the diagnostic 

dimension under a different experienced stimulus distribution), or is the distributional information 

somehow combined to produce a single complementary dimension?  This issue does not arise in 

the Cartesian model (with the Orthogonal hypothesis) because a primary dimension determines a 

unique complementary dimension regardless of stimulus distribution. 
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see also Foard & Kemler Nelson, 1984) suggests that analytic representations exist 

independently from holistic representations and that task factors can moderate their 

relative influence, but the details of how these representations interact have yet to be 

settled (Kemler Nelson, 1993; Melara, Marks, & Potts, 1993b).  

Unsupervised Learning with Integral Dimensions 

This study began with the goal of testing between Cartesian and topological 

models by investigating the determinants of the complementary dimension learned in 

dimension differentiation.  However, the manipulation of stimulus distributions in these 

experiments led to an additional, unanticipated effect, which appears to be a form of 

unsupervised learning, driven by the dimension of greatest variation within the stimulus 

set.  This finding provides additional support for the Cartesian model, as explained 

above (because the dimension of greatest variation is not well-defined in the topological 

model), but it is also theoretically significant in its own right. 

The unsupervised learning observed here can be viewed as a form of selective 

attention, but of a fundamentally different nature than the type of selective attention 

previously studied in category learning and related paradigms.  Previous research has 

shown that category learning can induce a shift of attention to the diagnostic dimension 

(Nosofsky, 1986), affecting perceptual discrimination and generalization (Goldstone, 

1994b; Jones et al., 2005).  In contrast, the present effect appears to be driven by the 

distribution of stimuli, regardless of the category structure.  Furthermore, extensive 

research comparing integral and separable dimensions shows that feedback- or goal-

driven attention is weak with integral stimuli (in fact, this is generally taken as a defining 

property of integral dimensions; Garner, 1974; Shepard, 1964).   

Other research on categorization has demonstrated unsupervised effects of 

stimulus distributions, but of a different form than found here.  Pothos and Close (2008) 

found that subjects’ preference for unidimensional versus multidimensional sorts in 
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spontaneous classification depends on how stimuli are clustered.  Gureckis and 

Goldstone (2008) showed that when categories are composed of distinct clusters 

(separated by regions of low stimulus density), subjects subsequently show enhanced 

discrimination between stimuli in different clusters within the same category.  This latter 

effect is anticipated by models of category learning that explicitly represent categories as 

unions of stimulus clusters (Anderson, 1991; Griffiths, Canini, Sanborn, & Navarro, 2007; 

Love, Medin, & Gureckis, 2004).  Canini, Shashkov, and Griffiths (2010) demonstrate 

that transfer between categorization tasks can be improved when training and transfer 

categories are recombinations of a common set of clusters. 

The unsupervised learning observed here appears closely related to the 

statistical procedure of principal components analysis (PCA).  PCA works by computing 

the covariance matrix of some data distribution and then rank-ordering its eigenvectors 

according to their eigenvalues. Projecting out the lower-ranked eigenvectors produces a 

simpler representation of the data that can be more effective in problems of estimation 

and prediction (see, e.g., Joliffe, 2002).  Principles related to PCA, for learning the most 

informative dimensions in a stimulus set, have been proposed as models for vision (Bell 

& Sejnowski, 1997), object recognition (Intrator & Gold, 1993), speech perception 

(Toscano & McMurray 2009), and lexical acquisition (Landauer & Dumais, 1997).  PCA 

and similar algorithms have also been proposed as models for human face perception 

(Burton, Jenkins, Hancock, & White, 2005; Dailey, Cottrell, Padgett, & Adolphs, 2002; 

Furl, Phillips, & O'Toole, 2002; Turk & Pentland, 1991; Valentin, Abdi, & Edelman, 1997).  

The demonstration of unsupervised learning in the present study goes beyond this 

previous work by directly manipulating the covariance structure of the stimulus set, and 

by showing an effect of this manipulation in the course of a half-hour learning task 

(whereas previous theories have tended to focus on developmental timescales).  

Furthermore, the present results indicate this unsupervised learning also occurs in 
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colors, suggesting it is a generic principle of perceptual learning with integral 

dimensions, rather than being specific to face recognition. 

A further question regarding this unsupervised learning mechanism is how it 

relates to the supervised mechanism of dimension differentiation.  One possibility is that 

the two mechanisms operate independently, one driven by the stimulus distribution and 

the other by the category structure.  Experiment 2 showed that transfer performance 

depends on the training category structure (in line with the Orthogonal hypothesis) when 

the stimulus distribution is held fixed, and Experiment 3 showed a corresponding effect 

of stimulus distribution (in line with the Unsupervised hypothesis) when the category 

structure is held fixed.  Therefore, both sources of information play a role.  However, it is 

also possible that supervised and unsupervised information are combined in learning a 

single analytic representation, which aims somehow to balance their contributions.  This 

possibility has precedent in research on semisupervised learning, wherein areas of low 

stimulus density can guide learning of a category boundary (Kalish, Rogers, Lang, & 

Zhu, 2011; Zhu, Rogers, Qian, & Kalish, 2007), and in object segmentation following 

categorization, wherein the segments people learn are jointly influenced by the stimuli 

present and how they are divided into categories (Goldstone, 2003; Pevtzow & 

Goldstone, 1994).  More research is needed to determine how supervised and 

unsupervised information interact in learning with integral dimensions. 

Conclusion 

The type of structure contained in a psychological representation is a subtle but 

fundamental question.  We have shown here how standard Cartesian models of integral 

dimensions imply more structure than is commonly realized, and how mathematical 

constructs from topology allow alternative models that do not make these assumptions.  

Our experimental results indicate that perceptual representations of integral dimensions 

have a surprising amount of intrinsic structure, sufficient to determine angles between, 
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and to compare stimulus variation along, different component dimensions.  This 

structure is consistent with the geometry induced by a Cartesian coordinate system.  An 

important future question will be to investigate the sensory, developmental, or innate 

mechanisms that give rise to this geometrical structure. 
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Appendix: Stimulus Values 

Stimulus values for all experiments were calculated using mathematical 

(trigonometric) functions for circles and ellipses.  This appendix reports the generating 

functions, numerical values, and critical mathematical properties for each stimulus set.  

For all experiments and conditions, the training categories are denoted by 1 and 2, and 

the transfer categories by 3 and 4. 

Experiment 1 

Transfer stimuli for Experiment 1 are described first, because their mathematics 

is simpler and motivates the design of the training stimuli.  All conditions used a common 

set of stimuli for transfer, arranged in a perfect circle with respect to the assumed scaling 

of the space.  First, a set of abstract stimulus values were defined on the unit circle as 

 
    

!  

x = cos(" )

y = sin(" )
 (A1) 

The parameter $ takes on 24 equally spaced values, from 7.5¡ through 352.5¡ in 

increments of 15¡.  Equation A1 thus defines 24 points, (x, y), arranged evenly around a 

circle.  Next, the abstract values were scaled to Munsell Value (v) and Chroma (c): 

 
    

!  

v = 7.5 +.7"x

c = 6 +1.4"y
 (A2) 

Equations A1 and A2 define a circle centered on Value (brightness) 7.5 and Chroma 

(saturation) 6, with a radius of .7 value units or 1.4 chroma units.  These two increments 

were assumed to be psychologically equivalent based on Nickerson’s (1936) classical 

scaling work showing that one unit of value is perceptually equivalent to two units of 

chroma. 



 Structure of Integral Dimensions 49 

Table A1 presents the transfer stimulus values for Experiment 1, as generated by 

Equations A1 and A2.  The table also shows how the stimuli were partitioned into 

categories.  In Conditions 1-3, the category boundary was between stimuli 

corresponding to $ = 22.5¡ and $ = 37.5¡ and (at the opposite side of the circle) between 

$ = 202.5¡ and $ = 217.5¡.  This partition corresponds to a category boundary oriented 

30¡ counterclockwise from the brightness axis (under the graphical arrangement of 

Figure 6).  In Conditions 4-6, the partition was between $ = 142.5¡ and 157.5¡ and 

between $ = 322.5¡ and 337.5¡, corresponding to a boundary 30¡ clockwise from the 

brightness axis. 

To generate the training stimuli, abstract stimulus values were defined 

analogously to Equation A1, but this time in an ellipse: 

 

    

! 

x = cos(")

y = 2

3
sin(") + 1

3
cos(")

 (A3) 

with $ taking on the same 24 evenly spaced values as above.  The ellipse defined by 

Equation A3 is shaped as in the training task for Conditions 2 and 6 shown in Figure 6 

(except for scaling).  The other training tasks were obtained by rotation and reflection.  

For Condition 1, the ellipse defined by Equation A3 was rotated 30¡ counterclockwise. 

 Condition 1: 

    

!  

" x = 3
2

x # 1
2

y

" y = 1
2

x + 3
2

y
 (A4) 

The coefficients 
  

!  

3
2  and 

  

! 

1

2
 are the cosine and sine of 30¡, respectively.  For Conditions 

3 and 5, the ellipse of Equation A3 was flipped horizontally. 
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 Conditions 3 & 5: 
  

! 

" x = #x

" y = y
 (A5) 

For Condition 4, the ellipse was rotated 30¡ counterclockwise and flipped vertically. 

 Condition 4: 

    

! 

" x = 3
2

x # 1
2

y

" y = # 1
2

x # 3
2

y
 (A6) 

No rotation or reflection was applied for Conditions 2 and 6. 

 Conditions 2 & 6: 
  

!  

" x = x

" y = y
 (A7) 

Lastly, the same scaling used for the transfer stimuli (Eq. A2) was applied to 

center each stimulus set on Value 7.5 and Chroma 6 and to equate the psychological 

scaling of the two dimensions. 

 
    

! 

v = 7.5 +.7 " # x 

c = 6 +1.4 " # y 
 (A8) 

Each training task was thus defined in three steps: generation of the abstract ellipse in 

(x, y) coordinates (Eq. A3), rotation or reflection into (x', y') coordinates (Eqs. A4-A7), 

and scaling onto Value and Chroma (Eq. A8).  Table A2 reports the resulting Munsell 

coordinates of the training stimuli. 

In all conditions, the training category structure was defined so that the abstract 

variable x (i.e., prior to rotation or reflection) was the relevant dimension, by assigning 

stimuli with x < 0 (90¡ < $ < 270¡) to Category 1 and the remaining stimuli to Category 2.  

Setting $ = 90¡ or 270¡ in Equation A3 yields x = 0, which confirms that the intended 
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category boundary x = 0 perfectly bisects the border stimuli at $ = 82.5¡ and 97.5¡ and at 

$ = 262.5¡ and 277.5¡. 

A critical design feature of the training tasks concerns the relationship between 

diagnostic training and transfer dimensions in the three condition types (Perpendicular, 

Uncorrelated, & Control).  First, the diagnostic training dimension in Condition 1 is 30¡ 

counterclockwise from the brightness dimension, because of the rotation applied in 

Equation A4.  This training dimension is parallel to the transfer category boundary for 

this condition, meaning it is perpendicular to the diagnostic transfer dimension.  

Likewise, the training dimension in Condition 4 is 30¡ clockwise from brightness (from 

Eq. A6), which is parallel to the category boundary (i.e., perpendicular to the diagnostic 

dimension) in the transfer task for that condition.  Thus the training and transfer 

dimensions are perpendicular in both Conditions 1 and 4, justifying their designation as 

Perpendicular conditions. 

Second, Equation A3 implies 

 
    

!  

3
2

y " 1
2

x = sin(#), (A9) 

implying that 
    

! 

3
2

y " 1
2

x  is uncorrelated with x (because sin($) and cos($) are 

uncorrelated).  Stated differently, if the stimulus space were linearly transformed or 

reparameterized so that x and 
    

!  

3
2

y " 1
2

x  were the coordinate dimensions, then the 

stimuli would form a perfect circle (of the same form as in Eq. A1).  Therefore, the 

topological model predicts 
    

!  

3
2

y " 1
2

x  as the complementary dimension learned in 

dimension differentiation.  This dimension is rotated 30¡ counterclockwise from the y 

dimension.  It coincides with the diagnostic transfer dimension (i.e., is perpendicular to 

the transfer category boundary) in both Conditions 2 and 5.  Thus the training and 
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transfer dimensions in these conditions are uncorrelated in these two conditions, 

justifying their designation as Uncorrelated conditions. 

Third, elementary calculus applied to Equation A3 shows that x2 + y2 attains its 

maximum at $ = 45¡ and 135¡.  These values correspond to x-y coordinates of 
  

! 

± 1

2
, 3

2

" 
# 
$ % 

& 
' , 

which define the two extremal points on the abstract stimulus ellipse.  The two points lie 

on a line through the origin (in x-y space) that is 30¡ clockwise from vertical.  This line 

defines the major axis of the ellipse, and hence the principal dimension of variation of 

the stimuli.  In Condition 6, no rotation was used in translating from (x, y) to (v, c) (see 

Eqs. A7 & A8), so the principal variation in the stimuli lies 30¡ clockwise from the 

saturation dimension.  This direction coincides with the diagnostic transfer dimension 

(i.e., is perpendicular to the transfer boundary) in that condition.  In Condition 3, the 

reflection applied by Equation A5 leads the principle dimension of variation in the training 

stimuli to lie 30¡ clockwise from the saturation dimension.  Again, this direction coincides 

with the transfer dimension in that condition.  These relationships corroborate the 

statement in the main text that, in Control Conditions 3 and 6, the dimension indicated by 

the Unsupervised hypothesis is identical to the diagnostic transfer dimension. 

Experiment 2 

Stimuli in Experiment 2 were defined using an ellipse equation similar to that 

used for the training stimuli in Experiment 1 (Eq. A3).  Because the same stimulus set 

was used for training and transfer within each condition, the coefficients defining the 

abstract stimulus values x and y had to be modified slightly, so that all of the desired 

category boundaries would cross midway between adjacent pairs of stimuli.   

 

    

!  

x = cos(" )

y = sin(" ) + 1
3

cos(" )
 (A10) 
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In all conditions, the category structure for the transfer task was defined so that x 

was the relevant dimension, by assigning stimuli corresponding to 90¡ < $ < 270¡ to 

Category 3 and the remaining stimuli to Category 4.  Because $ = 90¡ or 270¡ implies x 

= 0, the category boundary defined by x = 0 bisects the border stimuli (at $ = 82.7¡ & 

97.5¡ and $ = 262.5¡ & 277.5¡) as desired.   

In the Perpendicular conditions (1 & 3), the training categories were defined so 

that y was the relevant dimension, by assigning stimuli corresponding to 150¡ < $ < 330¡ 

to Category 1 and the remaining stimuli to Category 2.  From Equation A10, $ = 150¡ or 

330¡ implies y = 0, and therefore the category boundary defined by y = 0 bisects the 

border stimuli (at $ = 142.5¡ & 157.5¡ and $ = 322.5¡ & 337.5¡), as desired.  Because the 

abstract coordinates x and y were scaled directly onto the objective stimulus coordinates 

AB and CD (as described below), the training and transfer dimensions are approximately 

perpendicular according to the MDS fit of the 104 candidate base faces (which suggests 

that AB and CD are nearly perpendicular; see Experiment 2 Methods).  This relationship 

justifies the designation of Conditions 1 and 3 as Perpendicular conditions. 

Regarding the Uncorrelated conditions, Equation A10 implies 

 
    

!  

y " 1
3

x = sin(#) . (A11) 

Therefore 
    

!  

y " 1
3

x  is uncorrelated with the diagnostic transfer dimension x (because 

sin($) and cos($) are uncorrelated), under the stimulus distribution used for both phases 

of the experiment.  Therefore, paralleling the argument above with Experiment 1 (see 

Eq. A9), the topological model predicts that if 
    

!  

y " 1
3

x  is the diagnostic dimension during 

training, then x will be the complementary dimension that is learned.  This dimension lies 
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30¡ counterclockwise from y.7  In the Uncorrelated conditions of Experiment 2 

(Conditions 2 & 4), the training categories were defined so that 
    

!  

y " 1
3

x  was the 

diagnostic dimension, by assigning stimuli corresponding to $ < 180¡ to Category 1 and 

the remaining stimuli to Category 2.  From Equation A11, $ = 0¡ or 180¡ corresponds to 

    

!  

y " 1
3

x  = 0, and therefore the category boundary defined by 
    

!  

y " 1
3

x  = 0 bisects the 

border stimuli at $ = 352.7¡ and 7.5¡ and at $ = 172.5¡ and 187.5¡.  In conclusion, the 

diagnostic training dimension in both Conditions 2 and 4 is uncorrelated with the transfer 

dimension, justifying the designation of these conditions as Uncorrelated. 

In Conditions 1 and 2, the abstract coordinates x and y were scaled onto the 

objective dimensions CD and AB, respectively (where A, B, C, and D denote the four 

base faces used to generate the morph stimuli). 

 Conditions 1 & 2: 
    

!  

AB =.5 +r "y

CD =.5 + r
1.1376

"x
 (A12) 

The scaling factor 1.1376 compensates for the discrepancy between the distances A – B 

and C – D in the MDS solution, to equate the scaling of the two objective dimensions.  

The joint scaling factor r = 
  

!  

3
4

 serves to place all stimulus coordinates into the unit 

square [0, 1] "  [0, 1].  Conditions 3 and 4 were rotated 90¡ counterclockwise from 

Conditions 1 and 2, by scaling –x to AB and y to CD. 

                                                
7 Note that 

    

!  

y " 1

3
x  is proportional to, and hence lies in the same direction as, the 

    

!  

3
2

y " 1
2

x  

dimension discussed above in relation to Experiment 1.  Because the present analysis is only 

concerned with angles and correlations between component dimensions, their magnitudes do not 

matter; only their directions are important. 
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 Conditions 3 & 4: 
    

!  

AB = .5 " r #x

CD = .5 + r
1.1376

#y
 (A13) 

We do not report the numerical values of the stimuli for Experiment 2, both for 

space reasons and because the stimuli depend on the particular base faces used here 

(in contrast to the Munsell coordinates of Experiment 1), but they are presented 

graphically in Figure 8 and can be readily computed from Equations A10, A12, and A13. 

Experiment 3 

The same abstract ellipse from Experiment 2 (Eq. A10) was used for the training 

tasks of Experiment 3.  In all conditions, x was defined as the diagnostic training 

dimension, by assigning stimuli corresponding to 90¡ < $ < 270¡ to Category 1 and the 

remaining stimuli to Category 2 (note from Eq. A10, $ = 90¡ or 270¡ implies x = 0).  This 

category structure was scaled onto the objective stimulus coordinates for the four 

conditions as follows (with r = 
  

!  

3
4

 as above). 

 Condition 1:  
    

!  

AB = .5 " r #y

CD = .5 + r #x
 (A14) 

 Condition 2:  
    

!  

AB =.5 + r "y

CD =.5 + r "x
 (A15) 

 Condition 3:  
    

!  

AB =.5 " r #x

CD =.5 " r #y
 (A16) 

 Condition 4:  
    

!  

AB =.5 " r #x

CD =.5 + r #y
 (A17) 

Consequently, CD was diagnostic in Conditions 1 and 2, whereas AB was diagnostic in 

Conditions 3 and 4. 
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The stimulus set for transfer in all conditions was a circle defined by 

 
    

! 

AB =.5 + r "cos(#)

CD =.5 + r "sin(#).
 (A18) 

In Conditions 1 and 2, stimuli corresponding to 90¡ < $ < 270¡ were assigned to 

Category 3 and the rest to Category 4.  This partition defines a category boundary at AB 

= .5 (since AB = .5 when $ = 90¡ or 270¡) and makes AB the relevant dimension.  In 

Conditions 3 and 4, stimuli corresponding to $ < 180¡ were assigned to Category 3 and 

the rest to Category 4.  This partition defines a category boundary at CD = .5 (since CD 

= .5 when $ = 0¡ or 180¡) and makes CD the relevant dimension.  Therefore, the training 

and transfer dimensions were approximately perpendicular in all conditions, according to 

the MDS solution of the 104 candidate base faces. 

Although the predictions of the Unsupervised hypothesis for Experiment 3 are 

qualitative, it is still informative to determine the orientation of the predicted 

unsupervised dimension (i.e., the first principal component of the training stimulus 

distribution).  Differentiation of x2 + y2 with respect to $ (using Eq. A10) reveals a 

maximum at $ = 
  

!  

tan" 1 13" 1

2 3

# 

$ 
% 

& 

'  
( .  Inserting this value into Equation A10 to calculate the 

ratio of y and x yields 

 
    

! 

y

x
=

13 +1

2 3
. (A19) 

This ratio represents the tangent of the angle between the extremal points on the ellipse 

and the x axis.  The arctangent of this ratio is approximately 53.05¡, meaning the 

predicted unsupervised dimension is 53.05¡ counterclockwise from the x dimension, or  

90¡ – 53.05¡ = 36.95¡ clockwise from the y dimension.  In Condition 1, this orientation 
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translates (via Equation A14) to 36.95¡ clockwise from AB, which is the diagnostic 

transfer dimension in that condition.  Similar reasoning (using Eqs. A15-A17) concludes 

that the unsupervised training dimension differs by 36.95¡ from the diagnostic transfer 

dimension in all conditions, clockwise in the Clockwise conditions and counterclockwise 

in the Counterclockwise conditions. 

Regarding the predictions of the Independence hypothesis, the same reasoning 

as used with Experiment 2 (see Eq. A11) implies that 
    

!  

y " 1
3

x  is uncorrelated with the 

diagnostic training dimension, x, under the distribution of training stimuli.  As above, this 

dimension is oriented 30¡ counterclockwise from the y dimension.  Working through the 

rotations and reflections of the scaling equations (A14-A17) reveals that the uncorrelated 

dimension (i.e., the complementary dimension predicted by the Independence 

hypothesis) differs by 30¡ from the diagnostic transfer dimension, counterclockwise in 

the Clockwise conditions and clockwise in the Counterclockwise conditions. 

The numerical stimulus values for Experiment 3 are not reported, for the same 

reasons given for Experiment 2, but they are presented graphically in Figure 11 and can 

be readily computed from Equations A11 and A14-A18. 
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Tables 

Table 1: Experiment predictions 

  

Hypothesis Experiment 1 Experiment 2 Experiment 3  

Orthogonal P > U P > U  =  

 U = C 

Independence U > P U > P  <  

 U > C 

Unsupervised C > U U = P  >   

Notes: Predictions for Experiments 1 and 2 compare transfer performance between 

conditions.  Predictions for Experiment 3 compare rotational bias of transfer responses 

between conditions.  Correct predictions are marked by boldface.  P = Perpendicular.   

U = Uncorrelated.  C = Control.   = Clockwise.   = Counterclockwise. 

 

Table 2: Mean transfer performance in Experiment 1 

    

Condition Type Performance  

1 Perpendicular 85.6% 

2 Uncorrelated 82.9 

3 Control 83.9 

4 Perpendicular 76.0 

5 Uncorrelated 67.0 

6 Control 78.8  

 

 

Table 3: Mean transfer performance in Experiment 2 

    

Condition Type Performance  

1 Perpendicular 85.3% 

2 Uncorrelated 83.3 

3 Perpendicular 75.2 

4 Uncorrelated 67.3  
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Table 4: Mean rotational bias in Experiment 3, clockwise from optimal boundary 

      

Condition Type Deviation  

1 Clockwise  8.3 ¡ 

2 Counterclockwise  -27.7 

3 Clockwise  14.3 

4 Counterclockwise  -0.8   
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Table A1: Transfer items in Experiment 1 

  

  Munsell Coordinates   Category  

$ Value Chroma Conds 1-3 Conds 4-6  

7.5 8.194 6.183 4 3 

22.5 8.147 6.536 4 3 

37.5 8.055 6.852 3 3 

52.5 7.926 7.111 3 3 

67.5 7.768 7.293 3 3 

82.5 7.591 7.388 3 3 

97.5 7.409 7.388 3 3 

112.5 7.232 7.293 3 3 

127.5 7.074 7.111 3 3 

142.5 6.945 6.852 3 3 

157.5 6.853 6.536 3 4 

172.5 6.806 6.183 3 4 

187.5 6.806 5.817 3 4 

202.5 6.853 5.464 3 4 

217.5 6.945 5.148 4 4 

232.5 7.074 4.889 4 4 

247.5 7.232 4.707 4 4 

262.5 7.409 4.612 4 4 

277.5 7.591 4.612 4 4 

292.5 7.768 4.707 4 4 

307.5 7.926 4.889 4 4 

322.5 8.055 5.148 4 4 

337.5 8.147 5.464 4 3 

352.5 8.194 5.817 4 3  
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Table A2: Training items in Experiment 1 

  

  Cond 1   Conds 2 & 6   Conds 3 & 5   Cond 4  

$ Category Value Chroma Value Chroma Value Chroma Value Chroma  

7.5 2 7.848 7.571 8.194 7.012 6.806 7.012 7.848 4.429 

22.5 2 7.719 7.829 8.147 7.365 6.853 7.365 7.719 4.171 

37.5 2 7.575 7.963 8.055 7.625 6.945 7.625 7.575 4.037 

52.5 2 7.425 7.963 7.926 7.775 7.074 7.775 7.425 4.037 

67.5 2 7.281 7.829 7.768 7.803 7.232 7.803 7.281 4.171 

82.5 2 7.152 7.571 7.591 7.708 7.409 7.708 7.152 4.429 

97.5 1 7.047 7.205 7.409 7.497 7.591 7.497 7.047 4.795 

112.5 1 6.972 6.758 7.232 7.184 7.768 7.184 6.972 5.242 

127.5 1 6.933 6.258 7.074 6.790 7.926 6.790 6.933 5.742 

142.5 1 6.933 5.742 6.945 6.343 8.055 6.343 6.933 6.258 

157.5 1 6.972 5.242 6.853 5.872 8.147 5.872 6.972 6.758 

172.5 1 7.047 4.795 6.806 5.410 8.194 5.410 7.047 7.205 

187.5 1 7.152 4.429 6.806 4.988 8.194 4.988 7.152 7.571 

202.5 1 7.281 4.171 6.853 4.635 8.147 4.635 7.281 7.829 

217.5 1 7.425 4.037 6.945 4.375 8.055 4.375 7.425 7.963 

232.5 1 7.575 4.037 7.074 4.225 7.926 4.225 7.575 7.963 

247.5 1 7.719 4.171 7.232 4.197 7.768 4.197 7.719 7.829 

262.5 1 7.848 4.429 7.409 4.292 7.591 4.292 7.848 7.571 

277.5 2 7.953 4.795 7.591 4.503 7.409 4.503 7.953 7.205 

292.5 2 8.028 5.242 7.768 4.816 7.232 4.816 8.028 6.758 

307.5 2 8.067 5.742 7.926 5.210 7.074 5.210 8.067 6.258 

322.5 2 8.067 6.258 8.055 5.657 6.945 5.657 8.067 5.742 

337.5 2 8.028 6.758 8.147 6.128 6.853 6.128 8.028 5.242 

352.5 2 7.953 7.205 8.194 6.590 6.806 6.590 7.953 4.795  
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Figure 1. Illustration of logic behind Cartesian representation of separable dimensions.  

Upper left shows a set of stimuli varying in size and brightness.  Because these are 

perceptually separable dimensions (e.g., Smith & Kemler, 1978), the stimulus space can 

be decomposed into separate representations of each (upper right).  The component 

dimensions each have a single degree of freedom and a natural ordering, so they are 

both isomorphic to a subset of the real number line (lower right).  This correspondence 

implies a correspondence between the perceptual representation of the joint stimulus 

space and the Cartesian plane (lower left). 
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Figure 2. Illustration of a topological space.  Points indicate example elements of the 

space, which correspond to stimulus values in the present model.  Shaded regions 

indicate example open neighborhoods of those elements.  In general, there are an 

infinite number of both elements and open neighborhoods (not shown).  The structure of 

the topological space is determined by a specification of all of its open neighborhoods. 
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A C B 

D E 

 

 

Figure 3. Illustration of the distinction between psychological commitments and 

incidental properties of models of perceptual representation.  Each figure is a depiction 

of a continuous, integral perceptual stimulus space (grey region), with points indicating 

particular stimuli.  Figures 3A and 3B differ only in overall scale, an incidental property of 

how the diagram is drawn.  Thus, they can be interpreted as depicting exactly the same 

psychological representation.  Figure 3C differs from 3A only in orientation.  In Cartesian 

models of integral dimensions that assume Euclidean similarity metrics, this rigid rotation 

is also an incidental change with no psychological implications.  Figure 3D differs from 

the others by a non-rigid transformation.  Under the Cartesian model, it depicts a 

meaningfully different psychological representation (e.g., because the rows and columns 

of the highlighted stimuli are no longer orthogonal), but under the topological model, this 

too is an incidental transformation, and all four diagrams (3A-3D) depict exactly the 
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same psychological representation.  Finally, Figure 3E depicts a psychological 

representation that is different from the others according to both Cartesian and 

topological models.  This diagram differs from the others by a discontinuous 

transformation, in which the top and bottom halves of the stimulus space have been torn 

apart and rearranged. 
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Figure 4. Illustration of dimension differentiation paradigm.  Dots indicate stimuli.  Solid 

and dashed lines indicate category boundaries for training and transfer tasks, 

respectively.  Category boundaries determine which component dimension is diagnostic 

in each task.  A: Conceptual design of Goldstone and Steyvers (2001).  Orthogonal and 

Independence hypotheses both predict superior transfer performance in 90º condition, 

because diagnostic transfer dimension is both perpendicular to and uncorrelated with 

diagnostic training dimension in that condition.  B: Conceptual design of Experiments 1 

and 2.  Elliptical stimulus distribution deconfounds whether diagnostic transfer dimension 

is perpendicular to and uncorrelated with diagnostic training dimension.  Perpendicular 

transfer boundary corresponds to complementary dimension predicted by Orthogonal 

hypothesis; thus this hypothesis predicts superior transfer performance in Perpendicular 

condition.  Uncorrelated transfer boundary corresponds to complementary dimension 

predicted by Independence hypothesis; this this hypothesis predicts superior transfer 

performance in Uncorrelated condition.   
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Figure 5. Design of Experiment 1.  Each scatterplot shows the stimuli used within a 

particular phase and condition(s) of the experiment.  Black and grey circles indicate 
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stimuli belonging to the two categories (training and transfer used different pairs of 

category labels).  The boundary drawn through each stimulus set divides the two 

categories and is for illustrative purposes only.  In Perpendicular conditions, the 

dimensions defining the training and testing categories were perpendicular.  In 

Uncorrelated conditions, these dimensions were uncorrelated under the training stimulus 

distribution.  Control conditions form a 2×2 design with Uncorrelated conditions, in which 

two training tasks (with the same diagnostic dimension but different stimulus 

distributions) were crossed with two transfer tasks. 
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Figure 6.  Learning curves for transfer phase of Experiment 1.  Solid and dashed lines 

differentiate conditions using the two different transfer tasks.  Perpendicular: +.  

Uncorrelated: %.  Control: o. 
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Figure 7. Design of Experiment 2, following same presentation scheme as Figure 5. 
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Figure 8. Stimuli used for Conditions 1 and 2 of Experiment 2.  The images along the 

axes are the base faces from which the stimuli were generated.  Stimuli for the other 

conditions and for Experiment 3 were drawn from the same stimulus space. 
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Figure 9. Learning curves for transfer phase of Experiment 2.  Solid and dashed lines 

differentiate conditions using the two different transfer tasks.  Perpendicular: +.  

Uncorrelated: %. 
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Figure 10. Design of Experiment 3, following the same presentation scheme as Figures 

5 & 7.  Clockwise and Counterclockwise refer to the orientation of the first principal 

component of the training stimulus distribution relative to the diagnostic transfer 

dimension.  These labels also refer to the directions of predicted biases in participants’ 

category judgments at transfer, according to the Unsupervised hypothesis. 
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Figure 11. Illustration of predictions for Experiment 3, Clockwise Condition 1.  A: Training 

task, with category boundary indicated by solid line.  Dashed lines represent dimensions 

predicted to be learned by Independence (uncorrelated), Orthogonal (perpendicular), 
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and Unsupervised hypotheses (all dimensions indicated by isoclines).  Perpendicular 

dimension matches the diagnostic dimension at transfer; hence Orthogonal hypothesis 

predicts good and unbiased transfer performance.  Uncorrelated dimension is rotated 

counterclockwise from diagnostic transfer dimension; hence Independence hypothesis 

predicts counterclockwise bias in transfer classification errors.  B: Transfer task, with 

arrow indicating effect of attention to unsupervised training dimension as predicted by 

Unsupervised hypothesis, which is modeled as stretching stimulus space.  C: Resulting 

representation of transfer stimulus set.  Unsupervised hypothesis predicts boxed border 

stimuli to be misclassified more often than circled border stimuli, and more generally a 

clockwise bias is predicted in errors over all stimuli.  Counterclockwise condition is a 

mirror image; hence predictions of Unsupervised and Independence hypotheses are 

reversed in that condition. 
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Figure 12. Learning curves for transfer phase of Experiment 3.  Solid and dashed lines 

differentiate conditions using the two different transfer tasks.  Clockwise: o.  

Counterclockwise: x. 


