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Accounts of learning and generalization typically focus on factors related to lasting changes in repre-
sentation (i.e., long-term memory). The authors present evidence that shorter term effects also play a
critical role in determining performance and that these recency effects can be subdivided into perceptual
and decisional components. Experimental results based on a probabilistic category structure show that the
previous stimulus exerts a contrastive effect on the current percept (perceptual recency) and that
responses are biased toward or away from the previous feedback, depending on the similarity between
successive stimuli (decisional recency). A method for assessing these recency effects is presented that
clarifies open questions regarding stimulus generalization and perceptual contrast effects in categoriza-
tion and in other domains.
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Sequential effects are a pervasive yet underexplored phenome-
non in psychology. Although it is well established that human
behavior relies heavily on long-term knowledge—including infor-
mation about semantic associations, stimulus-outcome contingen-
cies, base rates, and payoffs—short-term dependencies and recent
information also have a significant effect on performance in es-
sentially any repeated task (Bouton, 1993; Garner, 1953; Murdock,
1962; Myers, 1976; Treisman & Williams, 1984). In the majority
of cognitive research, sequential effects are effectively removed
from analyses by averaging response rates over many trials and
ignoring the fine temporal structure of the data. However, ac-
knowledgment and consideration of these phenomena can provide
important insights into the nature of cognitive processes (Gilden,
2001). Furthermore, it has been argued that recency effects repre-
sent a functional adaptation to dynamic properties of natural en-
vironments and thus may be informative for a normative or eco-
logical understanding of cognition (Anderson & Schooler, 1991;
Real, 1991).

Two types of sequential effects have been widely observed in
cognitive tasks, one based on decisional processes and another
based on perceptual processes. Decisional recency effects involve
weighting recent information more heavily, which produces a
tendency to choose responses or actions that have recently been
reinforced. For example, subjects in studies of probability learning

(repeated, uncued, forced-choice tasks) consistently exhibit a bias
toward whichever response was correct on the previous trial (Ed-
wards, 1961; Nicks, 1959). This tendency underlies many of the
core phenomena of classical and operant conditioning (Bouton,
1993) and has also been shown to play an important role in
decision making (Hogarth & Einhorn, 1992). Perceptual recency
effects concern the dependence of the perception of a stimulus
upon the values of other recently presented stimuli. Such effects
are consistently found in psychophysical scaling and absolute
identification tasks, where the magnitude assigned to a stimulus
depends on its relationship to stimuli presented on recent trials
(Garner, 1953; Jesteadt, Luce, & Green, 1977). For example, in
magnitude estimation of tones of varying loudness, the same
stimulus will be labeled as louder when preceded by a quiet tone
than when preceded by a loud tone, once the response to the
previous tone is controlled for (Jesteadt et al., 1977).

Category learning potentially involves both types of recency
effect, as it involves varying stimuli as well as differential rein-
forcement of responses. In a typical category learning experiment,
the subject is presented with a series of stimuli and asked to
classify each into one of two or more categories. Following each
response, feedback is given indicating the correct classification.
Thus the perception of the current stimulus may be influenced by
its relationship to recent stimuli (perceptual recency), whereas the
tendency to assign the stimulus to a category may depend on which
categories have been recently reinforced (decisional recency).
These observations apply not only for experimental studies of
category learning but also for most naturalistic processes whereby
humans acquire new conceptual knowledge. That is, real-world
semantic knowledge is likely subject to sequential effects similar
to those present in categorization experiments. As is shown here,
strong sequential effects persist even after performance on the task
has reached asymptote, suggesting that even expert-level concep-
tual knowledge is subject to continuing systematic variation.

In this article, we describe a statistical approach for separately
measuring decisional and perceptual recency effects in category
learning. The essence of the approach is to determine the separate
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effects of the previous stimulus and the previous category (i.e.,
feedback) upon the current response. One difficulty with studying
sequential effects in category learning is that the majority of
experiments use deterministic structures, in which repeated in-
stances of the same stimulus always lie in the same category. This
practice produces a confounding between previous stimuli and
feedback that makes the decisional and perceptual recency effects
difficult or impossible to separately identify. To break the rela-
tionship between stimulus and feedback, we adopt a probabilistic
category structure, in which every stimulus has a positive proba-
bility of being in any category. This allows the effect of the
previous category to be assessed while the previous stimulus is
held constant, giving a measure of the decisional recency effect.
Similarly, evaluating the effect of the previous stimulus while
controlling for the previous category provides a measurement of
the perceptual recency effect. Furthermore, the use of probabilistic
tasks is more ecologically valid, as it corresponds to the graded and
overlapping nature of real categories (e.g., Rosch & Mervis, 1975).

Following a review of existing evidence for decisional and
perceptual recency effects, we present a mathematical model of
these phenomena in category learning. The model explains how
the previous stimulus and category combine with long-term
knowledge of the category structure to produce categorization
responses, and it shows how the sequence of stimuli, responses,
and feedback can be analyzed to provide independent estimates of
the contributions of each source of information (perceptual re-
cency, decisional recency, and long-term knowledge). The model
serves primarily as an analysis tool, in that fits of its parameters to
empirical data allow quantitative testing of hypotheses regarding
the perceptual and decisional processes underlying sequential ef-
fects. We then present an empirical investigation of sequential
effects in a probabilistic category learning task. Results show clear
evidence of perceptual recency effects, specifically a perceptual
contrast effect whereby the previous stimulus exerts a negative
effect on the representation of the current stimulus. This effect has
not been previously demonstrated and is not predicted by any
existing model of category learning. We also find a decisional
recency effect, whose magnitude depends heavily on the similarity
between successive stimuli. When the current stimulus is similar to
the previous one, subjects have a strong tendency to repeat the
previous feedback. However, with increasing dissimilarity this
tendency weakens and eventually reverses, so that, when succes-
sive stimuli are highly dissimilar, subjects tend to respond with the
opposite of the previous category. Other researchers have at-
tempted to demonstrate negative decisional recency effects be-
tween dissimilar stimuli (Stewart & Brown, 2004; Stewart, Brown,
& Chater, 2002), but as we show below, their evidence is incon-
clusive, because of the confounding between decisional and per-
ceptual recency in deterministic tasks.

In the concluding section, we discuss how the distinction drawn
here between perceptual and decisional recency effects can clarify
important questions regarding sequential effects in category learn-
ing as well as in other domains such as absolute identification. The
two most important questions we address are the nature of per-
ceptual recency—whether it is assimilative (positive) or contras-
tive (negative)—and the existence of negative decisional re-
cency—whether membership of a stimulus in a given category is
used as evidence against membership of highly dissimilar stimuli
in the same category. Both of these questions arise due to the
confounding between previous stimuli and feedback, which leads

to inconsistent or contradictory contributions from the two recency
effects. Measuring these effects separately using the methods
presented here resolves these contradictions and allows a clearer
picture to emerge. Implications are also discussed for the relation-
ship between decisional recency and stimulus generalization. Stim-
ulus generalization is the process by which knowledge acquired
about one stimulus, such as its category membership, is transferred
to another stimulus, to a degree that depends on their similarity
(Shepard, 1957). The dependence of decisional recency on stim-
ulus similarity suggests that it is a by-product of generalization
between successive stimuli, and hence the methods presented here
for measuring decisional recency effects also provide a direct
measure of stimulus generalization. This is a significant advance
because generalization processes are central to many models of
category learning but have not previously been directly measured
in this domain. The present approach thus offers an important tool
for future work investigating psychological processing during cat-
egorization, the roles of short- and long-term memory in category
learning, and the nature of perceptual and category representations.

Decisional Recency Effects

One of the earliest findings in the probability learning literature
is that subjects are biased to respond with whichever option was
given as correct on the previous trial (e.g., Edwards, 1961; Engler,
1958; Jarvik, 1951; Nicks, 1959; Suppes & Atkinson, 1960; see
Myers, 1976, for a review). For example, Engler (1958, Experi-
ment 2, Condition H) found that in a two-choice task with equal
rates of reinforcement for responses A and B, subjects’ overall rate
of choosing A was 50%, but this value was 60% on trials following
reinforcement of A and 40% on trials following reinforcement of
B. Jones and Sieck (2003) found an analogous effect in category
learning, with subjects biased to select whichever category had
been correct on the previous trial.

Category learning offers a richer domain for studying sequential
effects than probability learning, because of the presence of vary-
ing cues. In particular, Jones and Sieck (2003) found in a classi-
fication task with probabilistic feedback that the magnitude of the
decisional recency effect depends on the similarity between suc-
cessive stimuli. Stimuli in their experiments varied on three
binary-valued features. When the present stimulus matched the
previous stimulus completely, the decisional recency effect was
large; when these stimuli mismatched on all three dimensions, the
effect was near zero. Overlap on one or two feature dimensions led
to intermediate decisional recency effects. These results were
based on a logistic regression analysis that accounted for the
different response rates to different stimuli. However, the pattern
of decisional recency effects can be illustrated by holding the
present stimulus fixed and computing subjects’ response rates to
this stimulus as a function of the previous category and the
similarity between present and previous stimuli. Regardless of the
choice of present stimulus, the same pattern emerges, as exempli-
fied in Figure 1. The overall response rate to the stimulus used for
this example is about 75%, but as the figure shows, this value
depends strongly on information from the previous trial. On trials
when the previous stimulus is identical to the present one, there is
a large bias toward repeating the previously correct category, as
seen by the large difference between the two bars at distance 0. For
trials on which the previous stimulus is increasingly dissimilar, this
effect progressively weakens.
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The dependence of decisional recency effects on similarity
between successive stimuli suggests a close relationship to stim-
ulus generalization. Stimulus generalization, which has been stud-
ied most thoroughly in research on operant conditioning, is the
process by which an individual uses knowledge about one stimulus
(such as the probability that it predicts a reward) to respond to
another, often novel, stimulus. The strength of generalization be-
tween stimuli is positively related to their similarity. For example,
a pigeon trained to peck at a key of a certain color to obtain food
will subsequently respond to a new key of a different color, but at
a slower rate if the new color is very different from the trained
color than if the colors are similar (Guttman & Kalish, 1956).
Shepard (1957) subsequently showed that generalization strength
is directly determined by the psychological (as opposed to physi-
cal) similarity between stimuli, and thus generalization allows a
powerful measure of the structure of perceptual representations.

In the context of category learning, stimulus generalization
amounts to classifying stimuli based on the category labels of
previous, similar stimuli. This process is explicitly assumed by
exemplar models of categorization (Nosofsky, 1986) and is im-
plicitly built in to nearly all other models (Gluck, 1991; Kruschke,
1992; Love, Medin, & Gureckis, 2004; Smith & Minda, 1998).
Despite this widespread acceptance of the role of generalization in
category learning, direct measurement of generalization of the sort
carried out in conditioning has yet to be achieved in this domain.
Developing a technique for directly assessing stimulus generaliza-
tion during categorization would clearly be an important method-
ological advance in understanding the processes involved in learn-
ing new categories. In this article, we show how elaborating the
relationship between sequential effects and generalization leads to
such a method.

The hypothesis adopted here is that decisional recency arises
because generalization is stronger for recent stimuli than more
distant ones. If this characterization is correct, then the decisional
recency effect is far more sophisticated than a simple feedback
echo. For example, the large, simple recency effect observed in
probability learning may be due to the lack of meaningful stimulus
variation, which leads the generalization gradient to be sampled
only at a distance of zero, where generalization is strong but not
especially complex. The variable stimuli present in category learn-

ing allow for generalization to manifest as a richer phenomenon,
one that potentially plays a significant role in subjects’ perfor-
mance of the task. Unfortunately, binary stimuli such as those used
by Jones and Sieck (2003) provide minimal additional structure;
for example, they allow no measurement of the quantitative effects
of continuous stimulus variation, and they leave open the possi-
bility that the dependence of decisional recency on similarity is
due primarily to special processing of identically repeated stimuli.
Therefore the present study provides a focused test of the claim
that decisional recency is a manifestation of stimulus generaliza-
tion (biased toward recent stimuli), by using continuously varying
stimuli and analyzing the functional relationship between stimulus
distance and recency effects. In addition, the richer stimulus set
allows a more detailed measurement of generalization behavior
that should have greater applicability to more realistic learning
scenarios.

Despite many appealing commonalities, there are important
ways in which generalization may differ in category learning as
compared with conditioning. In a categorization task, the bound-
aries of the stimulus space are well defined (either a priori, as with
binary cues, or by experience after the subject has seen enough
trials to infer the range). Further, the space is divided into logically
symmetric regions corresponding to the two (or more) category
labels. This contrasts with the standard interpretation of condition-
ing in which the stimulus space contains “consequential regions”
that are finite in extent and surrounded by an unbounded region of
inconsequential stimuli (Shepard, 1987). Taken together, these two
properties of category learning suggest that, for a pair of stimuli
that are sufficiently dissimilar (relative to the size of the stimulus
space), observation of one occurring in a certain category might be
taken as evidence against the other belonging to that same category
(cf. Stewart & Brown, 2005). In other words, the goal of dividing
a bounded stimulus space into two category regions, together with
the prior expectation that these regions be roughly comparable in
extent, might lead to a negative generalization effect between
stimuli at opposite ends of the space. A better understanding of this
potential finding should have significance for people’s use of
domain knowledge for learning in structured environments.

Some evidence for a negative generalization effect was found by
Jones and Sieck (2003) in an analysis restricted to the second trial
of the experiment. Subjects for whom the first and second stimuli
in the experiment matched on at least two of the three features
tended to classify the second stimulus in the same category as the
feedback they had received on Trial 1. However, subjects for
whom the first two stimuli mismatched on at least two dimensions
showed the reverse pattern, tending to classify the second stimulus
in the category opposite to that of first. This negative generaliza-
tion effect is almost certainly dependent on the bounded nature of
the stimulus space (e.g., if there had been seven feature dimensions
then a mismatch of two would have likely led to positive gener-
alization). The analysis of Trial 2 is particularly simple to interpret
because subjects have only seen one previous stimulus and thus the
effects of that trial can be trivially isolated. On the other hand,
when data from the full sequence of 300 trials were analyzed, no
evidence was found for negative generalization; at the maximal
distance of three mismatching cues, the recency effect was almost
exactly zero. Thus it is uncertain whether the negative generaliza-
tion effect found by Jones and Sieck is an artifact of some strategy
that is particular to early trials or whether it persists, possibly in a
weaker form, later in learning.

Figure 1. Effects of previous trial from Jones and Sieck (2003, Experi-
ment 2, control condition). Shown are response rates to a single stimulus
(configuration S3 in their notation) as a function of the previously correct
category and the distance between present and previous stimuli. “Distance”
is defined here as the number of mismatching cue dimensions (stimuli were
composed of three binary cues). All six stimuli show the same qualitative
pattern as seen here. Trebitis and Philiosis are the two category labels.
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Additional evidence for negative generalization comes from the
perceptual categorization experiments of Stewart et al. (2002). The
task in this study involved 10 stimuli arranged along a single
dimension, divided in the middle into two deterministic categories.
The primary finding was that when a borderline stimulus was
preceded by an extreme stimulus, classification of the borderline
stimulus was correct more often if the previous stimulus was from
the opposite category. Stewart et al. termed this phenomenon the
category contrast effect, and they interpreted it as evidence for
negative generalization. That is, they assumed that on trials of this
type subjects give the opposite response from whatever was cor-
rect on the previous trial because of the large difference between
present and previous stimuli. Unfortunately, because Stewart et al.
used deterministic categories, decisional and perceptual recency
effects are confounded. Consequently, their evidence for negative
generalization (or negative decisional recency) is inconclusive,
because the category contrast effect may also be due to perceptual
contrast, as explained in the following section.

Perceptual Recency Effects

A ubiquitous finding in studies of psychophysical scaling and
perceptual identification is that the response to a given stimulus
depends systematically on the stimulus that came immediately
before (Garner, 1953; Holland & Lockhead, 1968; Jesteadt et al.,
1977; Lockhead & King,1983; Petrov & Anderson, 2005; Petzold,
1981; Schifferstein & Frijters, 1992; Stewart, Brown, & Chater,
2005; Ward, 1979, 1987; Ward & Lockhead, 1970, 1971). Iden-
tification is similar to category learning, except that there is a
unique response assigned to each stimulus. Stimuli are generally
arranged along a single continuum (e.g., loudness), and the order-
ing of the numerical responses corresponds to the ordering of the
stimuli (e.g., 1 for quietest, 10 for loudest). In such tasks it is
commonly found that responses are positively related to the pre-
vious stimulus, so that, for example, stimuli with the largest values
on the dimension of variation are associated with overestimation of
the stimulus on the following trial (e.g., Garner, 1953; Holland &
Lockhead, 1968). Some investigators have interpreted this bias as
a perceptual assimilation effect, in which the perception of the
current stimulus is assumed to assimilate toward that of the pre-
vious stimulus (Lockhead & King, 1983). However, it is not clear
whether the effect is due to the previous stimulus, per se, or to the
feedback following that stimulus (Garner, 1953). That is, it is
impossible to distinguish the explanation based on perceptual
recency effects from one based on decisional recency effects,
because of the perfect confounding of previous stimulus and
feedback.

One approach to isolating the effect of the previous stimulus is
to use tasks such as magnitude estimation that do not include
feedback. In magnitude estimation the subject assigns a numerical
value to each stimulus presented, with no constraint on the re-
sponse and no corrective feedback. In these tasks there is still a
confounding effect of the previous response (which subjects may
use as a proxy for feedback; Stewart et al., 2005; Ward & Lock-
head, 1970), but in this case the confounding is imperfect due to
inconsistencies in responding. Jesteadt et al. (1977) analyzed the
effects of recent information in a loudness estimation study, by
fitting responses to a regression model with the previous stimulus
and previous response as predictors. Consistent with the decisional
recency interpretation (along with the assumption that previous

responses are used in lieu of feedback) the previous response had
a positive effect on the current response. Furthermore, with the
effect of the previous response controlled for, the previous stim-
ulus was seen to have a negative effect on the present response.
Thus, with the decisional recency effect accounted for, the per-
ceptual recency effect is seen to be negative (i.e., perceptual
contrast rather than assimilation). Subsequent work by Petzold
(1981; see also Schifferstein & Frijters, 1992) that does not rely on
the parametric assumptions of the regression model further sup-
ports the conclusion that the previous stimulus exerts a negative
effect on the present response in magnitude estimation.

The same problem of confounding between the effects of pre-
vious stimuli and feedback arises when assessing sequential effects
in category learning. When the category structure is deterministic,
decisional and perceptual recency effects can be indistinguishable
because of the confounding between previous stimulus and cate-
gory. However, a probabilistic category structure avoids this prob-
lem. In this case, the effects of the previous stimulus and feedback
can be measured separately, using an approach similar to that
followed in magnitude estimation (Jesteadt et al., 1977; Petzold,
1981). The details of our approach are presented below.

The importance of distinguishing between decisional and per-
ceptual recency effects in category learning is illustrated by the
category contrast effect. This phenomenon has been proposed to
arise from a decisional process (i.e., negative generalization; Stew-
art et al., 2002), but it could also be due to perceptual processes.
Specifically, a perceptual contrast effect would lead a stimulus
near the category boundary to be perceived as more like a Cate-
gory A stimulus when preceded by an extreme member of Cate-
gory B, and vice versa. This would lead to more correct responses
when the preceding extreme stimulus is from the opposite category
than when it is from the same category, as illustrated in Figure 2.
Although the two explanations for the category contrast effect are
difficult to distinguish in a deterministic task, they make differing
predictions in a probabilistic task. In a probabilistic task, an
extreme stimulus will receive the same feedback value on most
trials (the modal feedback for that stimulus) but will occasionally
receive the opposite feedback (amodal feedback). Both the nega-

Figure 2. Perceptual explanation of the category contrast effect. In the
top example, the previous stimulus (Sn�1) is in the same category as the
present stimulus (Sn), but perceptual contrast moves the perception of the
current stimulus (�n) away from Sn�1, across the category boundary
(indicated by the blurred vertical line), leading to an incorrect response. In
the bottom example, Sn�1 is in the opposite category; in this case percep-
tual contrast moves �n away from the category boundary, increasing the
probability of a correct response.
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tive generalization and perceptual contrast explanations predict a
category contrast effect when an intermediate stimulus follows an
extreme stimulus with modal feedback, as this case corresponds to
the deterministic version of the task. However, they make opposite
predictions when the feedback for the extreme stimulus is amodal.
The negative generalization explanation states that whenever an
intermediate stimulus follows an extreme stimulus, the response to
the second stimulus tends to be opposite the feedback given for the
first. The value of the previous stimulus itself (i.e., which end of
the range it lies on) has no effect; all that matters is the feedback.
Thus when the feedback is amodal, the negative generalization
explanation predicts the category contrast effect to reverse. The
perceptual contrast explanation makes the opposite prediction.
According to this explanation, the effect is due to the previous
stimulus, not the previous feedback. Therefore variation in the
previous feedback should have no effect, and in particular the
category contrast effect is predicted to remain unchanged when the
previous feedback is amodal. The predictions of the decisional and
perceptual explanations, following both modal and amodal feed-
back, are summarized in Table 1.

Assessing Sequential Effects in Category Learning

The statistical approach presented here for measuring decisional
and perceptual recency effects is based on determining the separate
effects of the previous stimulus and the previous category upon the
current response. Measuring the effect of the previous category
(i.e., feedback) while holding the previous stimulus constant gives
a measure of decisional recency or generalization from one stim-
ulus to the next. Measuring the effect of the previous stimulus
while controlling for the previous category gives a measure of
perceptual recency (i.e., perceptual assimilation or contrast).

The magnitude of stimulus generalization from trial n � 1 to
trial n is equal, by definition, to the effect of the feedback on trial
n � 1 on the response probability on trial n. This implies that
generalization effects can be determined by controlling for the
stimuli Sn�1 and Sn and calculating the effect of the feedback Cn�1

on the response Rn. Specifically, the strength of generalization
between any two stimuli, X and Y, can be determined by separately
computing the response rate to Y on all trials following an instance

of X in Category A and the response rate to Y on all trials following
an instance of X in Category B. The difference between these two
values is equal to the effect of X’s category membership on the
response to Y (whenever Y follows X), and thus provides a measure
of the generalization from X to Y. To account for ceiling effects,
we consider response rates on a log-odds scale. Therefore the
generalization G(X, Y) from X to Y is defined as

G(X, Y) � 1⁄2(Ln�Sn�Y,Sn�1�X,Cn�1�A � Ln�Sn�Y,Sn�1�X,Cn�1�B) (1)

where Ln denotes the log-odds of the response on trial n:

Ln � log� P[Rn � A]

1 � P[Rn � A]�
� log�P�Rn � A]) � log(P[Rn � B]) (2)

and Rn is the response on trial n. The notation in the subscript of
Ln in Equation 1 indicates that Ln is computed only over trials
satisfying the conditions to the right of the “|” (analogous to a
conditional probability). Therefore G(X, Y) is given by the differ-
ence in log-odds response rates to Y attributable to the feedback for
X, computed over those trials on which Y follows X. The coeffi-
cient “1⁄2” is included in the formula for G because the difference
in response rates corresponds to the sum of generalization toward
A on Cn�1 � A trials and generalization toward B on Cn�1 � B
trials (i.e., the generalization effect is counted twice).

Assimilation or contrast effects can be measured using a com-
plementary approach that controls for the current stimulus and
previous category and determines the effect of the previous stim-
ulus. To obtain a measure of the effect of the previous stimulus that
is not affected by generalization, we average log-odds response
rates over trials on which the previous category was A and those
on which the previous category was B. Thus for all pairs of stimuli,
X and Y, we define a conditional response measure M(Y |X) giving
the log-odds of responding to Y when preceded by X that corrects
for generalization effects:

M(Y �X)�1⁄2(Ln�Sn�Y,Sn�1�X,Cn�1�A � Ln�Sn�Y,Sn�1�X,Cn�1�B) (3)

This conditional response measure is equal to the log-odds re-
sponse rate to Y whenever Y follows X, averaged over the two
possible values of the feedback for X. It is important to note that
this is different from simply computing the response log-odds over
all trials on which Y follows X, as it accounts for the differential
frequency with which X falls in the two categories and weights the
two trial types equally. This removes the confounding between
previous stimulus and previous category.

With the effect of the previous category thus controlled for,
perceptual assimilation or contrast can be evaluated by considering
the effect of the previous stimulus, X, on the conditional response
M(Y | X). Consider a task in which stimuli vary along a single
dimension. When plotting M(Y | X) as a function of the current
stimulus, Y, assimilation or contrast effects should appear as a
lateral shift between the curves for different values of X. In the
case of perceptual assimilation, the perception of Y is biased
toward X. Thus when the value of X is low, Y must take on a
greater value to produce the same level of responding as when X
is high. In other words, the curves corresponding to small values of
X become shifted to the high end of the scale, and vice versa. This
pattern is illustrated in Figure 3A. In the case of perceptual

Table 1
Comparison of Predictions Regarding Category Contrast Effect

Feedback Category

Hypothesis

Decisional Perceptual

Modal Same � �
Modal Different � �
Amodal Same � �
Amodal Different � �

Note. All predictions are based on responses to intermediate stimuli
following extreme stimuli. Cases where the response is likely to be optimal
(i.e., matching the modal category) are indicated by “�”; cases where the
nonoptimal (amodal) response is predicted are indicated by “�.” The
“Category” column indicates whether the two stimuli are from the same
half of the stimulus range. The “Feedback” column refers to feedback
given for the extreme stimulus. Deterministic tasks only involve the modal
case (rows 1 and 2), where decisional and perceptual effects are in concert,
whereas probabilistic tasks also include the amodal case, where the hy-
potheses make opposite predictions.
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contrast, the perception of Y is biased away from the value of X,
leading to the opposite pattern (Figure 3B).

A Mathematical Model of Sequential Effects in Category
Learning

In this section we present a mathematical model that unifies the
above discussions of decisional and perceptual recency effects in
category learning. Many of the principles of this model are direct
reflections of the statistical methods described in the previous
section. Thus the model serves to formalize the assumptions un-
derlying those methods as well as to make explicit certain details
required for quantitative predictions. However, the model is not
intended to represent a strong theory of sequential effects in itself;
indeed it was formulated with the goal of remaining theoretically
minimal. The main function of this model is as a data analysis tool
(i.e., generalized regression) that allows separate measurement of
both types of recency effects. The model also serves as a means for
expressing specific hypotheses about sequential processes, such as
perceptual contrast and generalization between successive stimuli.
Conversely, parameter estimates from fits of the model to empir-
ical data allow for quantitative tests of these hypotheses, as elab-
orated below.

The model assumes that responding is based on a combination
of long-term knowledge of the category structure and generaliza-
tion from recent stimuli. Our approach thus lies between models
that assume subjects generalize equally from all past stimuli (e.g.,
Nosofsky, 1986) and models that assume responses are based only
on comparison to the most recent stimulus (Stewart et al., 2002).
By distinguishing between short- and long-term processes, our
model also leaves open the possibility that these two sources of
information are used in qualitatively different ways (following the
distinction between short- and long-term memory; Atkinson &
Shiffrin, 1968). For simplicity, we restrict short-term effects to the
immediately preceding trial, but extending that component of the
model to include dependencies over two or more trials is
straightforward.

The long-term component of the model is purely descriptive,
consisting of a mapping from the perceived value of the current
stimulus to a response probability:

P�Rn � A] � f [b � w � �n] (4)

Here �n is the perception of the current stimulus, w represents the
strength of association for the stimulus-category mapping, and b is
a bias term. The linear form of the association between stimuli and
categories (i.e., the w � �n term) is made for sake of simplicity, as
the nature of long-term category representations is not a focus of
the current study. Similarly, the value of w is assumed to be stable
as we are not addressing learning effects (i.e., it is assumed that the
category structure is already well-learned). Both of these assump-
tions are made solely for convenience and are not necessary
components of our approach. The function f corresponds to re-
sponse selection and is taken to be the sigmoid function commonly
used in both neural networks and logistic regression:

f(x) �
1

1 � e�x (5)

Again, this assumption is made largely for convenience, and our
approach is compatible with other response selection functions.
However, as will be seen below, the present form of the long-term
component of the model appears adequate for the current study, as
it corresponds closely to the empirical data.

The perception �n of the current stimulus is assumed to depend
on the physical values of both the present and previous stimuli
(under the simplifying assumption that sequential effects are re-
stricted to the immediately preceding trial). Assuming a linear
psychophysical function for the stimuli under investigation (as is
reasonable for the stimuli used in the present empirical investiga-
tion; Wiest & Bell, 1985), the following form can be assumed for
� (cf. DeCarlo & Cross, 1990):

�n � Sn � c � Sn�1 (6)

Here c determines the effect of the previous stimulus on the current
percept. A positive value of c produces a positive dependence of
the percept on the previous stimulus, corresponding to an assim-
ilation effect. Similarly, a negative value of c corresponds to a
contrast effect.

For the stimulus generalization component of the model, we
adopt the standard hypothesis that generalization strength is solely
a function of psychological distance between stimuli (Shepard,
1957). Again assuming a linear psychophysical function, the psy-
chological distance is proportional to the physical distance. Thus

Figure 3. Illustration of perceptual assimilation and contrast effects. The
vertical axis represents response rate corrected for generalization effects
(see Equation 3). 3A: Predicted pattern resulting from perceptual assimi-
lation. Response curves for low values of the previous stimulus are shifted
toward the high end of the scale. 3B: Predicted pattern resulting from
perceptual contrast. Response curves for low values of the previous stim-
ulus are shifted toward the low end of the scale.
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generalization is built into the model as a bias toward the previous
category with magnitude determined by the absolute difference
|Sn – Sn�1| between present and previous stimuli. When the gen-
eralization term is included, the full form of the model becomes

P�Rn � A] � f [b � w � �n � Cn�1 � �(�Sn � Sn�1�)] (7)

Here � denotes the generalization gradient, giving generalization
as a function of interstimulus distance. The previous category
Cn�1 is coded as �1 for A and �1 for B and determines the
direction of the generalization effect. Thus when � is positive, the
response is biased toward the previous category (positive gener-
alization), and when � is negative, the response is biased toward
the opposite category (negative generalization). The model as-
sumes that the generalization effect is combined with the response
tendency from the long-term component of the model, and the sum
is passed through the response function to generate a response
probability.

Two possible forms for the generalization gradient have been
proposed in the literature. The first is the exponential, which has
received support in conditioning and identification studies (Shep-
ard, 1957, 1987). The second is the Gaussian, which has been
supported in category learning (Nosofsky, 1986) and which also
might result from exponential generalization convolved with nor-
mally distributed perceptual noise (Ennis, 1988). In light of em-
pirical results presented below, we focus here on the Gaussian
form. In addition, to allow for the possibility of negative general-
ization over large distances, we include a constant term allowing
the generalization gradient to have a nonzero asymptote:

��d) � m � ke��d2
(8)

Here d is the distance between successive stimuli, m is the level of
asymptotic (large-distance) generalization, k determines the peak
level of generalization (at d � 0, when successive stimuli are
identical), and � determines the rate at which generalization de-
cays with distance (i.e., the width of the generalization gradient).
Both k and � are constrained to be nonnegative.

As an alternative to response probability, the model’s predic-
tions can be written in terms of response log-odds. Because the
log-odds transformation is the inverse of the sigmoid response
function f, the model’s specification in terms of response log-odds
simplifies to

Ln � b � w � �n � Cn�1 � ���Sn � Sn�1��

� b � wSn � cwSn�1 � Cn�1 � �(�Sn � Sn�1�) (9)

Thus response log-odds is expressed as a sum of four terms: the
response bias or intercept term, the present stimulus, influence of
the previous stimulus via perceptual assimilation or contrast, and
stimulus generalization.

Formal Predictions

The model presented in the previous section allows quantitative
formulation and evaluation of predictions regarding sequential
effects in a categorization task. Our approach takes advantage of
the close correspondence between components of the model and
the methods described above for assessing decisional and percep-
tual recency effects. In essence, the model is “solvable” such that
the implications of each of its parameters for empirical predictions

can be given explicitly (rather than implicitly), making the relation
between theory and data transparent.

From Equations 1 and 9, the model predicts generalization
between any pair of stimuli, X and Y, to be

G(X,Y)�1⁄2(Ln�Sn�1�X,Sn�Y,Cn�1�A � Ln�Sn�1�X,Sn�Y,Cn�1�B)

� 1⁄2[b � w � �n � 1 � �(�Y � X�)]

� 1⁄2[b � w � �n � (�1) � �(�Y � X�)]

� �(�Y � X�). (10)

Therefore the generalization gradient � assumed by the model
directly corresponds to the predicted empirical gradient G. This
allows hypotheses concerning subjects’ generalization behavior to
be tested by evaluating fits of the model with respect to the
parameters defining �. For example, the prediction of negative
generalization between highly dissimilar stimuli can be evaluated
by finding the best-fitting value of the asymptotic generalization
parameter m and testing whether this value is reliably negative.

The model also allows quantitative evaluation of predictions
regarding perceptual contrast or assimilation. From Equations 3, 6,
and 9, the model predicts the adjusted conditional response rate to
Y following X (i.e., controlling for generalization effects due to the
previous category) is predicted to be

M(Y � X) � 1⁄2(Ln�Sn�1�X,Sn�Y,Cn�1�A � Ln�Sn�1�X,Sn�Y,Cn�1�B)

� 1⁄2�b � w � (Y � c � X) � 1 � �(�Y � X�)]

� 1⁄2[b � w � (Y � c � X) � (�1) � �(�Y � X�)]

� b � w � (Y � c � X). (11)

Thus the conditional response profile for each value of X is shifted
along the stimulus scale by a constant of –c � X. This provides a
simple relationship between the value of c and the methods de-
scribed earlier for evaluating perceptual recency effects. When c is
positive, Equation 11 predicts the pattern shown in Figure 3A,
corresponding to perceptual assimilation. When c is negative, the
opposite shift is predicted as in Figure 3B, corresponding to
perceptual contrast.1 Evaluation of the best-fitting value of c thus
provides a test between the perceptual contrast and perceptual
assimilation hypotheses.

Empirical Investigation

An experiment was conducted to investigate sequential effects
in categorization using the methods presented above. The stimulus
set comprised 10 simple geometric figures varying along a single
dimension. To separately evaluate contrast and generalization ef-
fects, we used a probabilistic structure in which every stimulus had
a nonzero probability of being in either category. The outcome
probability followed a logistic, or sigmoid, function of stimulus
value as illustrated in Figure 4, with high-valued stimuli tending to
lie in Category A and low-valued stimuli in Category B (with

1 Note that the model predicts linear M-profiles, whereas the example in
Figure 3 uses curved profiles (to emphasize the horizontal shift). This
aspect of the data is not relevant to the model’s central principles as it
depends on the nature of the long-term stimulus-category association.
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actual category labels counterbalanced across subjects). This out-
come probability function was chosen to match the long-term
response component of the model, so as to minimize any depen-
dence of the results of the model-based analyses on assumptions
regarding long-term category representation.

Method

Participants

Twenty students at the University of Texas at Austin participated for $6
payment or course credit. All participants were offered monetary bonuses
of up to $2 for good performance.

Stimuli

Stimuli were solid gray rectangles presented on a 17-inch (43-cm) CRT
monitor on a black background. Each stimulus was 1.3 inches (3.3 cm)
wide and varied in height from 1.4 to 3.2 inches (3.6 to 8.1 cm) in 10
equally spaced intervals. Stimuli were centered horizontally and were
aligned vertically such that the bottom edge was always 4.4 inches (11.2
cm; 43%) from the bottom of the screen. Thus all that varied was the
location of the top of the rectangle.

Design

Stimuli were randomly and independently selected for each trial, with
category sampled according to the logistic function P[A] � 1/(1 � e��(S�5.5)).
Here S represents the current stimulus, coded as {1, . . . , 10}. The scaling
parameter � was set so that outcome probabilities ranged from 10% to
90%. The outcome-probability function is displayed graphically in Fig-
ure 4. Every subject received the same category structure, up to random
assignment of category labels.

Procedure

Subjects were instructed that they would be presented with a series of
rectangles from two categories and that their job was to select which
category each stimulus came from. No information was given regarding the
category structure or whether the categories were overlapping. Each trial
began with a stimulus presented in isolation on the monitor. The subject
responded by pressing either D or K on a standard keyboard. These labels
were mapped to the abstract categories in a random fashion for each

subject. The word Correct (in green) or Wrong (in red) appeared below the
stimulus 250 ms after the response, with the sentence That was a D or That
was a K (in white) one line below. All feedback was displayed in 0.33-inch
(8.5-mm) font. The stimulus and feedback remained on the screen for 750
ms, after which the screen was cleared for 500 ms before the start of the
next trial. Trials were grouped into blocks of 50. After each block, text
appeared informing the subject of how many trials had been completed, the
total number of trials in the experiment, and the proportion of correct
responses in the most recent block. The experiment consisted of 10 blocks
(500 trials) and lasted between 35 and 50 min.

Results and Discussion

Performance

Mean performance by block is displayed in Table 2. As can be
seen from the table, subjects learned the task relatively quickly and
reached asymptote at nearly 70% as compared with optimal per-
formance of 75.1%. Because performance appears to have ap-
proached asymptote by the second block, all analyses are based on
Blocks 2 through 10. Because the focus of most analyses is the
effects of information from the previous trial, the first trial from
each block is also omitted.

Effects of Previous Category

An initial analysis of decisional recency effects was performed
by computing each subject’s proportion of responses that matched
the previously correct category. The overall mean repetition prob-
ability was 53.9%, which is significantly greater than chance
(50%), t(19) � 4.91, p 	 .0001.

A more detailed pattern is revealed by examining this recency
effect while controlling for the previous stimulus. Figure 5 shows
the effect of the previous category on average response profiles,
with separate panels for each value of the previous stimulus.2 For
example, Figure 5A shows the response profile for trials on which
the previous stimulus was 1 (as indicated by the vertical gray line).
In each panel, the dotted curve represents trials on which the
previous category was Category A and the solid curve represents
trials on which the previous category was Category B. Four aspects
of this figure are important. First, for all values of the previous
stimulus, the Category A curve is predominantly higher than the

2 In producing Figures 5–9, we took advantage of the symmetry between
categories, that is, the logical invariance of the task under reversal of
category labels and reflection of the stimulus continuum about its midpoint.
For example, in Figure 5 the proportion of Category A responses to
Stimulus Y following Stimulus X in Category A is also based on the
proportion of Category B responses to Stimulus 11–Y on trials following
Stimulus 11–X in Category B. Collapsing over this symmetry serves only
to simplify presentation of the data and reduce the influence of statistical
noise, and it has no bearing on interpretation of any of the results presented.

Figure 4. Category structure for the experiment. Shown is each stimu-
lus’s probability of being in Category A on any given occurrence.

Table 2
Mean Performance (%) by Block

Block

1 2 3 4 5 6 7 8 9 10

65.3 68.7 69.9 69.0 66.5 68.0 69.3 70.7 67.6 70.2
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Category B curve, reflecting the overall tendency to respond with
the previous category. Second, the magnitude of this effect is quite
large, corresponding to a difference in response rates of up to 54%.
Third, this decisional recency effect tends to be greatest when the
current stimulus is similar to the previous stimulus (i.e., the sep-
aration between the curves is greatest where they intersect the gray
line marking the previous stimulus). Fourth, when successive
stimuli are highly dissimilar the decisional recency effect becomes
slightly negative.

The data shown in Figure 5 were converted to measures of
generalization using Equation 1. For each panel (i.e., each value of
the previous stimulus), the response curves for the two values of
the previous category were converted to log-odds and their differ-
ence was then calculated and multiplied by 1⁄2. This resulted in
generalization curves G(X, –) for each previous stimulus to all
possible current stimuli. Figure 6 shows these generalization
curves plotted against the difference between present and previous
stimuli. The curves overlap closely, especially for small to mod-

Figure 5. Effect of previous category on mean responses. 5A–5E correspond to trials on which the previous
stimulus was 1 through 5, respectively. The gray bar in each graph indicates the location of the previous stimulus.
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erate distances. This overlap shows that the magnitude of the
decisional recency effect, when considered on a log-odds scale,
depends only on the distance between successive stimuli. This
supports the hypothesized relationship between decisional recency
and stimulus generalization. Figure 6 also illustrates how the
technique presented here allows direct mapping of an empirical
generalization gradient. As can be seen, the gradient follows an
approximately Gaussian form, although the tails appear to asymp-
tote slightly below 0, indicating negative generalization for suffi-

ciently dissimilar stimuli. (The present nonparametric approach
does not lend itself to a reliable test of this negative generalization,
but a more conclusive analysis is presented below in the modeling
section.) Once again, the overall magnitude of generalization is
quite large, with a peak of 1.27 (obtained by averaging over all five
curves). This corresponds to an odds ratio of over 12:1 between
trials when the previous category was Category A and trials when
it was Category B.

Effects of Previous Stimulus

The approach proposed above for measuring perceptual assim-
ilation or contrast effects (see Equation 3) amounts to converting
each pair of curves in Figure 5 to log-odds and then computing
their average. This calculation yields conditional response curves
M(–|X) for each value X of the previous stimulus. As explained
above, these response curves control for the previous category
such that contributions from generalization cancel out. The curves
are displayed in Figure 7. As this figure shows, the curves are
shifted laterally relative to one another, such that a greater value of
Sn�1 requires a greater value of Sn to achieve the same response
probability. This pattern implies a perceptual contrast effect.

Model-Based Analyses

To obtain statistical tests of the above findings, we fit the
sequential-effects model (see Equation 7) to the data for each
subject (Blocks 2–10, again omitting the first trial of each block).
Fits were obtained by maximum likelihood, using a general pa-
rameter search routine. Average fitted parameter values are dis-
played in Table 3. These fitted parameters were used to test the
hypotheses of perceptual contrast, which translates to the condition
c 	 0, and negative generalization between distant stimuli, which
translates to m 	 0.

The assimilation/contrast parameter c was negative for 18 of the
20 subjects, indicating a robust perceptual contrast effect. The
mean value of �.17 implies that each unit increase in the value of
the previous stimulus led on average to a .17-unit decrease in the
perceived value of the current stimulus. A one-sample t test shows
this effect to be highly significant, t(19) � 4.69, p 	 .001. As a
further test of the significance of the perceptual recency effect, we
fit the nested model with c fixed at zero to each subject’s data. This
restriction led to an average reduction in log-likelihood of 2.48 per
subject, �2(20) � 99.3, p 	 10�11.

The asymptotic generalization parameter m was negative for 14
of the 20 subjects, indicating that generalization over large dis-

Figure 6. Empirical generalization gradients for different values of the
previous stimulus. Generalization is computed according to Equation 1.
Stimulus distance is the value of the current stimulus minus the value of the
previous stimulus.

Figure 7. Log-odds response rates conditioned on the previous stimulus,
calculated from Equation 3. These conditional response rates control for
the previous category and hence average over generalization effects. The
separation of the curves indicates a perceptual contrast effect.

Table 3
Mean Parameter Values in Model Fits

Parameter Symbol Average value

Intercept b �3.23
Long-term association w 0.74
Assimilation/contrast c �0.17
Peak generalization k 1.65
Asymptotic generalization m �0.18
Specificity of generalization � 0.24

Note. Median values are given for k and m because of skewed distribu-
tions; other parameters are reported as means.
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tances tended to be negative.3 A Wilcoxon signed-ranks test
showed the median value of m to be negative, Z � �2.05, p 	 .05.
Fits of the nested model with m fixed at zero led to an average .91
decrease in log-likelihood per subject, �2(20) � 36.2, p 	 .05. It
is important to note, however, that the median value of m is much
less, in absolute value, than that of m � k (see Table 3). Thus
negative generalization between dissimilar stimuli was far weaker
than positive generalization between similar stimuli.

The predictions of the fitted model were used to calculate
predicted generalization gradients and conditional response curves
according to Equations 1 and 3. The results of these computations
are shown in Figures 8 and 9. These figures can be directly
compared with the empirical results in Figures 6 and 7, respec-
tively. As can be seen, the model accurately reproduces all qual-
itative aspects of both generalization and perceptual contrast ef-
fects. The quantitative fit is also quite good, even though the
parameters were not optimized for fitting these particular
measures.

Category Contrast Effect

Stewart et al. (2002) defined the category contrast effect as
better performance on intermediate stimuli when preceded by
extreme stimuli from the opposite category than when preceded by
extreme stimuli of the same category. Specifically, in a determin-
istic analogue of the category structure used here, they found better
performance on Stimulus 5 following 10 and on 6 following 1 than
on 5 following 1 or 6 following 10. To replicate their results in the
present nondeterministic category structure, we carried out a cor-
responding analysis, restricted to those trials on which the previous
category was the modal value for the previous stimulus (i.e.,
Category A for 10 and Category B for 1). Furthermore, instead of
correct responses, proportions of optimal responses were calcu-
lated, where the optimal response for each stimulus is defined as its
modal category (e.g., Category A for 6 and Category B for 5). The
proportion of optimal responses in this analysis following “same-

category” sequences (1–5 and 10–6) was 51.3%, whereas the
proportion of optimal responses following “different-category”
sequences (10–5 and 1–6) was 64.1%. These are comparable to
the values found by Stewart et al. (2002) for visual stimuli. The
category contrast effect in this experiment is significant by paired-
samples t test, t(19) � 1.84, p 	 .05 (one-tailed).

As discussed above, this analysis cannot discriminate between
the perceptual and decisional explanations for the category con-
trast effect, because both hypotheses make the same prediction
following modal feedback. However, they do make differing pre-
dictions following amodal feedback (see Table 1). Therefore, to
evaluate the relative contributions of decisional and perceptual
recency to the category contrast effect, we repeated the analysis,
restricted to trials on which the previous category was the amodal
value for the previous stimulus (i.e., Category A for 1 and Cate-
gory B for 10). If category contrast is due to negative generaliza-
tion from extreme to intermediate stimuli, then the effect should
reverse under this analysis. However, to the extent that the phe-
nomenon is due to perceptual contrast, the reversal of the previous
category should have no effect. The analysis found that 46.7% of
responses were optimal following 1–5 and 10–6 sequences, and
78.6% were optimal following 10–5 and 1–6 sequences. Therefore
the category contrast effect was even stronger when the previous
category was amodal than when it was modal. This suggests that
generalization for the stimulus pairs in question was actually
positive and that the category contrast effect is due to perceptual
contrast that is strong enough (in the original version of the effect,

3 This test for negative generalization addresses a different question than
the following analysis concerning the category contrast effect. There, the
issue is whether generalization is negative between extreme and interme-
diate stimuli, that is, stimuli separated by about half the stimulus range. The
analysis here addresses asymptotic generalization, that is, between stimuli
separated by much larger distances. Thus the combined results of the two
analyses imply that negative generalization does not occur for the distances
involved in tests of the category contrast effect (at least for the present
stimuli), but it does occur for larger distances.Figure 8. Predicted generalization gradients from fits of the model.

Figure 9. Predicted perceptual contrast effect from fits of the model.
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when the previous category is modal) to overcome the influence of
this positive generalization. Unfortunately, the amodal analysis
does not contain enough observations (29 total over 20 subjects) to
perform the proper within-subjects comparison of the two category
contrast effects, but it is clear that both effects are in the same
direction, contrary to the prediction of the negative generalization
explanation. Combining these results with those of the analyses
presented above, we can conclude that negative generalization did
occur in this experiment, but only at distances greater than those
involved in the category contrast effect.

General Discussion

Sequential effects have been thoroughly studied in many do-
mains but have only recently received attention in category learn-
ing (Busemeyer & Myung, 1988; Jones & Sieck, 2003; Stewart &
Brown, 2004, 2005; Stewart et al., 2002). The present study adds
to these recent findings by showing that there are two types of
recency effect present in categorization, one based on the effect of
recent stimuli on the perception of the current stimulus (perceptual
recency) and another based on the tendency to assign the current
stimulus to whichever category was recently reinforced (decisional
recency). These two effects, normally unidentifiable because of the
confounding between previous stimuli and categories in determin-
istic tasks, can be separately measured when a probabilistic cate-
gory structure is used.

As shown here, in a probabilistic task, perceptual recency ef-
fects can be assessed by measuring the effect of the previous
stimulus while controlling for the previous category feedback,
whereas decisional recency can be assessed by measuring the
effect of the previous category while holding constant the previous
stimulus. This approach is formalized in a mathematical model of
sequential effects in categorization. The model assumes that re-
sponses are based on a combination of long-term category knowl-
edge and generalization from recent stimuli, and that perception of
the current stimulus is biased by the value of the previous stimulus.
Parameter fits of the model provide quantitative measures of both
perceptual and decisional recency effects as well as the depen-
dence of decisional recency on similarity between successive stim-
uli. The model thus serves as a generalized regression that allows
formal testing of hypotheses concerning the processes underlying
sequential effects.

Application of this methodology to the present experiment led to
a number of important findings. First, there was clear evidence of
a contrastive perceptual recency effect, whereby the perception of
the current stimulus is negatively affected by (i.e., biased away
from) the previous stimulus. To our knowledge, this is the first
demonstration of perceptual contrast in a categorization task, chal-
lenging standard theoretical approaches that assume perception is
unaffected by previous stimuli. Second, our results also show a
decisional recency effect, whereby subjects’ responses are influ-
enced by the feedback on the previous trial. When successive
stimuli are similar, there is a strong tendency to respond with
whichever category was previously correct. With increasing dis-
similarity between present and previous stimuli, this tendency
weakens and eventually reverses. Third, our results demonstrate a
close relationship between the decisional recency effect and stim-
ulus generalization. The magnitude of the decisional recency effect
appears to depend only on similarity between successive stimuli,
which is the hallmark characteristic of stimulus generalization

(Shepard, 1957, 1987). Thus we conclude that the decisional
recency effect is a by-product of the fact that generalization is
stronger from more recent stimuli. Fourth, the technique presented
here allowed nonparametric mapping of the empirical generaliza-
tion gradient. This provides an important check on models that
assume categorization is based directly on generalization (e.g.,
Nosofsky, 1986), as it allows these theories to be directly grounded
in data rather than implicitly tested through model fitting. Fifth, we
found evidence of negative generalization between highly dissim-
ilar stimuli. When the current stimulus is very different from the
previous one, subjects tend to respond with the opposite of the
previously correct category. This constitutes the first demonstra-
tion of negative generalization that is not confounded by percep-
tual explanations. The finding of negative generalization contrasts
with most theories of categorization as well as those of condition-
ing (e.g., Rescorla & Wagner, 1972), which assume that reinforce-
ment of a response will always increase the likelihood of its
repetition.

One variable that was omitted in the analyses of sequential
effects presented here is the previous response. Research in abso-
lute identification has shown that responses are often used in lieu
of feedback when feedback is not provided, but when feedback is
given a diminished effect of the previous response is still observed.
For example, Mori and Ward (1995) found that responses in an
identification task without feedback were negatively dependent on
the previous stimulus and positively related to the previous re-
sponse. On blocks when feedback was provided, the effect of the
previous stimulus (equal to the previous feedback) became
strongly positive, and the effect of the previous response was
reduced. To assess effects of the previous response in the present
study, analyses analogous to those presented above were con-
ducted that controlled for both the previous stimulus and feedback.
These analyses revealed an effect of the previous response that was
similar to, though weaker than, that found for the previous feed-
back. Specifically, there was a tendency for subjects to repeat their
previous response, and this tendency was stronger when successive
stimuli were similar. One interpretation of this result is that sub-
jects were occasionally generalizing based on past responses rather
than feedback, perhaps following trials on which the feedback was
poorly encoded. Alternatively, the effect of the previous response
could be a by-product of autocorrelation induced by fluctuations in
attention or slow variation in long-term category representations
(cf. DeCarlo & Cross, 1990; Gilden, 2001). These possibilities are
interesting topics for future research. As effects of past responses
are not a focus of the present study, we note here only that such
effects do not alter interpretation of any of our other results.
Extensions of the analyses presented above that controlled for the
previous response led to the same conclusions.

The Cause of the Category Contrast Effect

Distinguishing between the two types of recency effect has
important implications for the interpretation of sequential effects.
Below we discuss some of these implications for identification and
scaling paradigms. A more immediate example is the category
contrast effect, which was previously thought to be due to negative
generalization but was seen here to be a result of perceptual
contrast. Evidence for negative generalization was found in the
experiment, but only for distances greater than those involved in
the category contrast effect (which span about half the stimulus
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range). For other stimuli or experimental conditions it is possible
that the crossover point between positive and negative generaliza-
tion is at less than half the stimulus range, in which case negative
generalization would contribute to the category contrast effect.
Therefore our conclusion regarding this phenomenon is not that it
is always fully due to perceptual contrast but simply that its cause
cannot be isolated in a deterministic task. Thus, although the
category contrast effect has been important for understanding the
role of short-term relative judgment in categorization (Stewart et
al., 2002), it is not diagnostic of the particular processes involved.

One other possibility that must be considered regarding the
category contrast effect comes from the memory and contrast
(MAC) model of Stewart et al. (2002). In addition to generaliza-
tion from the previous stimulus as described earlier, MAC assumes
that subjects use a direction-specific strategy in comparing suc-
cessive stimuli. For example, if the current stimulus is smaller than
the previous one, and the previous feedback was Category B, then
the subject is assumed to use his or her knowledge of the category
structure (i.e., Category A items are larger than Category B items)
to infer that the current stimulus is also from Category B. This
strategy has important implications for the effects of amodal
feedback on the category contrast effect. Consider a situation in
which Stimulus 10 is followed by Stimulus 5. If the feedback to
Stimulus 10 was modal (Category A), then according to MAC
negative generalization will make the subject likely (but not cer-
tain) to assign the present stimulus to Category B. If the feedback
to Stimulus 10 was amodal (Category B), then the directional
strategy is assumed to make the subject certain to respond Cate-
gory B. Thus MAC predicts a positive effect of the previous
feedback, such that the category contrast effect will become stron-
ger following amodal feedback, just as was observed here. In other
words, although our results regarding the category contrast effect
show that negative generalization taken alone cannot explain the
phenomenon, they do not rule out an explanation based on nega-
tive generalization plus the directional strategy (e.g., as embodied
in MAC). However, other aspects of our data challenge this
explanation. In particular, the analysis of MAC’s predictions for
the category contrast effect also applies to cases of successive
extreme stimuli from opposite ends of the spectrum (e.g., 10
followed by 1). Again MAC predicts a positive (or possibly null)
relationship between previous feedback and present response,
but in these cases the observed effect was significantly negative.
This observation is our primary evidence that negative general-
ization does occur between stimuli that are extremely dissimilar. In
summary, the data taken as a whole are inconsistent with an
explanation for the category contrast effect based on negative
generalization, with or without the directional strategy. Negative
generalization was seen to occur in this experiment, but only for
distances larger than those involved in the category contrast effect.
Furthermore, the fact that the model presented here predicts the
counterintuitive finding of a negative effect of feedback following
extremely dissimilar stimuli supports our assumption that stimulus
generalization is directionally invariant.

Implications for Theories of Category Learning

The findings of the present empirical investigation go beyond
the scope of current categorization models and suggest extensions
to these models to bring them more in line with human learning.
First, the perceptual contrast effect demonstrated here shows that

sequential effects must be taken into account when determining
models’ input representations. Such sequential effects are not
anticipated by any model of which we are aware. Nearly all
categorization models assume that perception of the current stim-
ulus is veridical and thus do not allow for any variability due to
recent stimuli. Those models that do assume noise in the percep-
tual process (Ashby & Townsend, 1986; Maddox & Ashby, 1993)
assume that this noise is unbiased and independent of previous
trials. The modeling approach presented here (cf. Equation 6)
suggests one way to extend existing models, by elaborating their
input mechanisms to depend on recent stimuli. However, future
research will be required to investigate such extensions as well as
to evaluate their predictions for richer, multidimensional stimuli.

Although existing models have very little to say about percep-
tual recency effects, many models do make predictions regarding
decisional recency effects. The simplest versions of generalization-
based exemplar models (Medin & Schaffer, 1978; Nosofsky,
1986) do not predict sequential effects of any sort, but they can be
easily extended to do so by assuming memory decay. If more
recent exemplars are more likely to be recalled, then they exert a
greater influence on the present response, leading to a decisional
recency effect (Nosofsky, Kruschke, & McKinley, 1992; Nosofsky
& Palmeri, 1997). This recency effect is naturally dependent on the
similarity between successive stimuli, as a consequence of the
models’ generalization-based decision processes (Sieck, 2000).

A second class of models that produce decisional recency ef-
fects is the connectionist model that learns by iterated error cor-
rection (e.g., Gluck & Bower, 1988; Kruschke, 1992; Love et al.,
2004). Connection weights in these models depend most strongly
on recent updates, leading recent events to exert a greater influence
on responses (Estes, 1957). Thus responses that have recently been
reinforced are more likely to be selected. As with the exemplar
models discussed above, these models also predict the decisional
recency effect to depend on successive stimulus similarity. This is
because the learning following feedback to one stimulus will only
affect the response to the subsequent stimulus to the extent that
responses to the two stimuli rely on the same connection weights,
that is, to the extent that the representations of the two stimuli
overlap (Jones, 2003). Thus the similarity structure inherent in the
model’s representational scheme is reflected in the pattern of
decisional recency effects it produces.

A more challenging aspect of our results for current models is
the finding of negative generalization (i.e., a negative decisional
recency effect) for highly dissimilar stimuli. Traditional models of
category learning, and of learning in general, fail to predict this
result because they assume that reinforcement of a response or
outcome always leads to an increased expectation of its reoccur-
rence. One solution is suggested by network models that assume
negative input activations for absent features (Gluck & Bower,
1988). Under this assumption, association of a feature to Category
A leads to association of the feature’s absence to Category B. This
produces negative generalization between sufficiently dissimilar
stimuli. The same mechanism could be extended to exemplar- or
cluster-based connectionist models (Kruschke, 1992; Love et al.,
2004) by assuming a negative baseline activation for hidden nodes.
Such an approach may prove useful in explaining negative gener-
alization along many-valued or continuous stimulus dimensions
such as those used here. A second approach to explaining negative
generalization comes from computational-level models that explic-
itly assume a generalization gradient with a negative asymptote,
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such as the one presented here or the MAC model proposed by
Stewart et al. (2002). Stewart and Brown (2005) showed how the
generalized context model (Nosofsky, 1986) can also be extended
in this way. This extension overpredicts negative generalization,
assuming it to be as strong as positive generalization between
similar stimuli (whereas the present results show the latter effect to
be far stronger), but modifying the functional form of the gener-
alization gradient should allow the model to account better for our
findings without sacrificing its central principles.

Beyond the implications of the present empirical results, a key
contribution of this work is the methodology introduced for sep-
arately evaluating decisional and perceptual recency effects, and in
particular for relating decisional recency to stimulus generaliza-
tion. As mentioned above, stimulus generalization plays a funda-
mental role in many models of category learning (e.g., Gluck &
Bower, 1988; Kruschke, 1992; Love et al., 2004; Medin & Schaf-
fer, 1978; Nosofsky, 1986), yet has until now eluded direct study.
The idea advanced here is that generalization from the previous
stimulus is measurable as the effect of the previous category on the
current response (i.e., the magnitude of the decisional recency
effect), for any given pair of present and previous stimuli. This
effect corresponds to the subject’s tendency to assign the current
stimulus to the category of the previous stimulus (regardless of any
long-term knowledge about the current stimulus’s likely category
membership), or in other words, to generalize category knowledge
regarding the previous stimulus to the current one. The present
empirical investigation demonstrates that this method yields reli-
able generalization gradients (see Figure 6) that are in good agree-
ment with previous findings that strength of generalization de-
pends only on interstimulus distance or similarity (Shepard, 1957,
1987).

The method for directly measuring empirical generalization
gradients during category learning should prove an important
tool in evaluating categorization models, as the patterns of
generalization predicted by various models directly reflect their
representational assumptions. For example, Jones and Sieck
(2003) showed that the adaptive network model of Gluck and
Bower (1988) predicts generalization in a binary-cue task to be
a linear function of the number of matching cues, as a conse-
quence of the model’s feature-based input representation. Be-
cause the empirical generalization gradient was found to be
nonlinear, close to an exponential (cf. Figure 1), Jones and
Sieck were able to rule out this model (see Gluck, 1991, for a
similar argument). The present approach also has implications
for models of attentional learning (Kruschke, 1992, 2001; Love
et al., 2004; Nosofsky, 1986), which predict systematic changes
in generalization gradients in response to differential diagnos-
ticity of various stimulus dimensions. By adapting the mathe-
matical model proposed here to multidimensional stimuli,
Jones, Maddox, and Love (2005) showed how learning effects
on generalization can be directly measured, thus providing an
important test of attentional learning models.

On the Nature of Perceptual Recency

The nature of perceptual recency effects has long been a topic of
debate in the literature on identification and scaling (DeCarlo &
Cross, 1990; Garner, 1953; Holland & Lockhead, 1968; Jesteadt et
al., 1977; Lockhead & King, 1983; Petzold, 1981; Ward & Lock-
head, 1971). These tasks are similar to category learning except

that each stimulus is assigned a unique response. As suggested
above, we believe much of the confusion regarding sequential
effects in this domain arises from the confounding between pre-
vious stimuli and previous feedback (or previous responses, when
feedback is absent). In absolute identification with feedback, it is
well established that responses are positively correlated to previ-
ous stimuli (e.g., Garner, 1953), although it is not clear whether the
effect is due to the stimulus per se or to the feedback. When
feedback is not present (e.g., in a magnitude estimation task) and
the effect of the previous response is controlled for, the previous
stimulus is seen to exert a contrastive effect on the present re-
sponse (Jesteadt et al., 1977; Petzold, 1981; Schifferstein & Frij-
ters, 1992). However, a problem arises in this type of analysis, due
to autocorrelation of error. Specifically, if judgmental errors are
autocorrelated, as is often found to be the case (DeCarlo & Cross,
1990; Jesteadt et al., 1977; Ward, 1979), analyses that include the
previous response will misinterpret the autocorrelation as a posi-
tive effect of the previous response together with a negative effect
of the previous stimulus (DeCarlo & Cross, 1990). Thus this type
of evidence for perceptual contrast is not readily interpretable.

The approach proposed here for evaluating perceptual recency
effects is to use a task where feedback is present but variable. In
this case the effect of the previous stimulus can be measured while
controlling for the previous feedback, without concerns related to
autocorrelated error. The present application of this idea to a
categorization task provides clear support for a negative perceptual
recency effect, that is, perceptual contrast. This result suggests that
a similar approach could be used in an identification task, again by
using probabilistic feedback. Support for this idea comes from
Experiment 2 of Stewart et al. (2005), in which identification
feedback was occasionally false. This experiment showed a posi-
tive dependence of the current response on the previous feedback,
supporting the feedback-based explanation for the assimilation
effect in identification and suggesting that the effect of the previ-
ous stimulus is, if anything, negative. Still, the influence of the
previous stimulus was not directly addressed, and thus a focused
investigation is still required to determine whether the perceptual
effects in identification are consistent with those found here in
categorization.

Another question regarding the perceptual recency effect is the
degree to which it is truly perceptual. Our use of this term is not
meant to imply that the effect necessarily occurs during sensory
processing but merely that it is present at the level of stimulus
representation, prior to processes related to category representation
or response selection. This claim is supported by the fact that the
contrast effect was present after the effects of category information
(i.e., decisional recency and stimulus generalization) were par-
tialed out. This is not to say that processes associated with learning
the category structure do not affect stimulus representations. In-
deed there is a good deal of evidence that cognitive processes feed
back to influence perception, via mechanisms such as selective
attention, dimension differentiation, and feature discovery (Gold-
stone, 1994; Goldstone & Steyvers, 2001; Schyns, Goldstone, &
Thibaut, 1998). The relationship between these perceptual learning
processes and the perceptual effects found here, especially in more
complex tasks where perceptual learning may play a more signif-
icant role, is an important question for future work. In addition,
because both the perceptual and decisional recency effects depend
on the nature of stimulus representations, the techniques presented
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here may prove useful in studying changes in those representations
that result from perceptual learning.

One explanation that has been advanced for the contrast effect in
identification and scaling tasks is that subjects use the previous
stimulus and feedback as a standard for generating the response to
the current stimulus. For example, Holland and Lockhead (1968)
and Stewart et al. (2005) have proposed that subjects in identifi-
cation experiments use the perceived difference between present
and previous stimuli as a cue for how much to adjust the response
away from the previous feedback (e.g., if the current stimulus
appears 2 steps greater than the previous one, and the previous
feedback was 4, then respond 6). This strategy leads to a negative
dependence of the current response on the previous stimulus. Luce
and Green’s (1974) response ratio hypothesis describes a similar
process in magnitude estimation tasks. Although these explana-
tions place the contrast effect outside of sensory processing, they
are still consistent with our viewpoint, in that the locus of the effect
is the representation of the current stimulus (once the previous
feedback is controlled for). In this case the current stimulus is
represented (partially) in terms of its relationship to the previous
stimulus. The extreme version of this hypothesis, that relative
information is all that is available to subjects (Stewart et al., 2005),
corresponds to the extreme case of perceptual contrast—in this
case, the representation of the current stimulus is entirely deter-
mined by the difference between it and the previous stimulus.

DeCarlo and Cross (1990) attempted to decompose the percep-
tual contrast effect found in magnitude estimation into separate
contributions from pure sensory effects and the relative responding
strategy described above. Unfortunately, their analysis failed to
account for decisional recency effects and thus provides yet an-
other example of the importance of considering the separate con-
tributions of perceptual and decisional recency when interpreting
sequential effects (as advocated here). DeCarlo and Cross’s ap-
proach amounts to using the dependence of the current response on
the previous response as an estimate of subjects’ reliance on
relative responding. This estimate is then used to correct the
influence of the previous stimulus to obtain a measure of the pure
sensory effect (i.e., the influence of the previous stimulus is
assumed to be the sum of sensory effects and effects via relative
responding). Application of this method to data from several
studies yields a positive estimate of the sensory component of the
perceptual recency effect (i.e., sensory assimilation). This is a
somewhat surprising conclusion, given the broad evidence for
sensory aftereffects and neural adaptation in sensory systems (e.g.,
Sekuler & Blake, 1994), which suggests that contrast dominates at
the sensory level. The answer to this seeming contradiction may lie
in decisional recency effects. By assuming the previous response
exerts an effect only through the relative responding strategy,
DeCarlo and Cross’s analysis denies any contribution of decisional
recency. Thus if a decisional recency effect is present (with the
previous response used as a proxy for feedback; Ward & Lock-
head, 1970), the amount of relative responding will be overesti-
mated. This will lead to overcorrection of the effect of the previous
stimulus, so that the estimate of the sensory component of the
perceptual recency effect is biased toward assimilation. In short,
denial of decisional recency may have led sensory contrast to be
mistaken for sensory assimilation. Thus the question of sensory
assimilation versus contrast cannot be answered without an inde-
pendent estimate of the contribution of decisional recency to
magnitude estimation.

The Functionality of Recency Effects

Recency effects have often been thought of as consequences of
limited memory or by-products of error-driven learning, but they
may be more sophisticated and adaptive than this characterization
implies. It has been suggested in the memory literature that priv-
ileged access to recent information may be due not to architectural
capacity limitations but rather to an adaptation to a dynamic
environment (Anderson & Schooler, 1991; Schacter, 1999). In
other words, in natural settings more recent information is more
likely to be relevant and reliable, and thus a well-adapted memory
system would be expected to make that information more avail-
able. A related argument has been made regarding the decisional
recency effect in repeated judgment tasks: If the base rates of
outcomes change over time, successive events will be autocorre-
lated, and thus recent outcomes are more likely to be repeated
(Jones & Sieck, 2003; Real, 1991). The dependence of decisional
recency on stimulus similarity may be explainable in a similar
way, by assuming that category structures, in terms of cue-
category correspondences, change over time. Optimal performance
in such an environment cannot rely on a static and well-learned
stimulus-response mapping, but instead must track the changing
structure by generalizing from recent stimuli.

Another normative argument for recency effects is that they
reflect adaptations to inherent limitations in representational ca-
pacity and information availability. Perceptual recency effects may
be a consequence of encoding stimuli in terms of relative rather
than absolute information to expand the representational range of
a finite neural system (Helson, 1964). To the extent that people
only have access to relative as opposed to absolute stimulus
information, classifying stimuli based on their absolute values
would be impossible and generalization from recent examples may
be the only option (Stewart et al., 2002). Thus perceptual and
decisional recency effects may be related, at a functional level. A
related hypothesis regarding decisional recency is that individuals
lacking long-term knowledge of the category structure, for exam-
ple as a result of hippocampal amnesia, may still perform well by
using a short-term strategy that amounts to similarity-dependent
generalization from the preceding stimulus (Palmeri & Flanery,
2002). All of these proposals highlight the active role of short-term
processes in functioning in dynamic environments with limited
resources. Therefore, through further study of sequential effects in
repeated judgment tasks, researchers may gain a better understand-
ing of the manner in which perceptual stimuli are represented, the
information available to decisional systems, and the statistical
properties of the environments in which those systems are de-
signed to operate.
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