
An Attractor Network Model of Serial Recall 
 

Matt Jones (mattj@umich.edu) and Thad A. Polk (tpolk@umich.edu) 
Department of Psychology, 525 E. University 

Ann Arbor, MI 48109 USA 
 

 
 

Abstract 

We present a neural network model of verbal working 
memory which attempts to illustrate how a few simple 
assumptions about neural computation can shed light on 
cognitive phenomena associated with the serial recall of 
verbal material.  We assume that neural representations 
are distributed, that neural connectivity is massively 
recurrent, and that synaptic efficiency is modified based 
on the correlation between pre- and post-synaptic 
activity (Hebbian learning). Together these assumptions 
give rise to emergent computational properties that are 
relevant to working memory, including short-term 
maintenance of information, time-based decay, and 
similarity-based interference. We instantiate these 
principles in a specific model of serial recall and show 
how it can both simulate and explain a number of 
standard cognitive phenomena associated with the task, 
including the effects of serial position, word length, 
articulatory suppression (and its interaction with word 
length), and phonological similarity. 

Introduction 
Working memory is among the most intensively studied 
cognitive processes in both cognitive psychology and 
neuroscience, and yet results from the two fields have 
not made as much contact with each other as one might 
hope. For example, cognitive psychology has 
discovered a host of robust empirical phenomena 
associated with verbal working memory and has 
developed elegant theoretical models, such as 
Baddeley’s phonological loop, that can explain the 
empirical results (Baddeley, 1986). Nevertheless, the 
details of how these psychological hypotheses are 
instantiated in the brain is an open question (but see 
Burgess & Hitch, 1999, for one recent proposal). 
Similarly, there is a substantial body of neuroscientific 
research investigating the neural substrates of working 
memory in both animals (Fuster, 1973; Funahashi, 
Bruce, & Goldman-Rakic, 1989) and humans (Smith & 
Jonides, 1999), but this work has typically only 
addressed a small subset of the rich behavioral data and 
theories available in cognitive psychology. 

In this paper, we attempt to illustrate that a simple 
and independently motivated model of neural 
computation can make contact with, and even shed light 
on, the cognitive psychology of verbal working 
memory. We begin by describing a few widely 
accepted assumptions about neural computation. Next, 

we discuss some of the emergent computational 
properties of these assumptions that are relevant to 
verbal working memory (e.g., maintenance, decay, 
interference). We then illustrate how these assumptions 
can be instantiated in a specific computational model 
that simulates and explains many of the major 
psychological phenomena associated with the serial 
recall task. 

A Simple Model of Neural Computation 
We begin with three simple and widely accepted 
assumptions about neural computation. The first is that 
representations in the cortex are generally distributed 
across a population of neurons, rather than being 
localized to individual cells.  The second is that there is 
massive connectivity among neurons within local areas 
of cortex and that this connectivity is recurrent rather 
than unidirectional.  The third assumption is that 
synaptic efficiency is modified based on the correlation 
between pre- and post-synaptic activity (Hebbian 
learning; 'cells that fire together wire together'). 

Taken together, these assumptions give rise to 
networks with interesting emergent properties, many of 
which are relevant to working memory.  For example, 
such networks are known to be capable of maintaining 
an activation pattern via internal reverberatory activity 
even after the input to the network has been removed 
(Hopfield, 1982). Those patterns which the network can 
maintain in this way are termed attractors, and under 
the Hebbian learning rule they tend to become those 
patterns to which the network is repeatedly exposed. 
Furthermore, when presented with a noisy or 
incomplete version of a previously trained pattern, the 
activity of the network will tend to converge upon that 
attractor state which is most similar to the input, 
thereby retrieving the original pattern. 

Another property of attractor networks that is 
relevant to working memory is that they naturally 
exhibit similarity-based interference. Attractor 
networks are capable of storing multiple patterns as 
attractor states, but if those patterns are similar to each 
other (overlap substantially) then there is a greater 
likelihood of error. In particular, we have found that 
these networks often retrieve a pattern that in some 
sense represents a group of similar patterns, but from 
which it is not possible to recover a single specific 
pattern unambiguously. 



Finally, we have also found that attractor networks 
can be easily extended to exhibit time-based decay. In 
the original formulation of attractor networks, each unit 
was binary (either ON or OFF) and activation patterns 
could be maintained for indefinite periods of time 
(Hopfield, 1982).  Hopfield (1984) subsequently 
showed that networks using more realistic continuous-
valued units could also exhibit similar computational 
properties. We have found that such continuous-valued 
attractor networks are also capable of exhibiting time-
based decay once external input is removed. 

The Serial Recall Task 
In the standard serial recall task, a subject is 

presented, either visually or auditorially, with a 
sequence of items, most often words, letters, or digits.  
Once presentation of the list has been completed, the 
task of the subject is to repeat back the list in its 
original order, either by speaking or by writing. 

This task has been intensively studied and a large 
number of robust behavioral phenomena have been 
identified. Below are some of the major phenomena 
which we will address in this paper. For a more 
thorough review of the literature see Gathercole (1997).  

Serial Position The effects of an item’s position 
within the presented list are generally described as two 
separate phenomena (see, e.g., Crowder, 1972). 
Primacy: Items from the start of the list tend to have a 
higher probability of recall than those from the middle 
of the list. Recency: Items from the end of the list tend 
to be recalled better than those from the middle. 

Word Length Lists composed of items which take a 
longer time to articulate tend to be associated with 
poorer recall (Baddeley, Thompson, & Buchanan, 
1975). 

Articulatory Suppression Requiring subjects to 
overtly articulate irrelevant verbal material during 
presentation of a list tends to impair their performance 
(Murray, 1968). 

Word Length x Articulatory Suppression The effect 
of word length is significantly reduced under conditions 
of articulatory suppression, provided that suppression 
continues throughout recall (Baddeley et. al., 1984). 

Phonological Similarity Recall of a list tends to be 
decreased when the items of the list are phonologically 
similar to or confusable with each other (Conrad & 
Hull, 1964).  Furthermore, when phonological 
similarity is limited to a subset of the items, e.g. those 
in the even positions, then performance on that set is 
selectively impaired as compared to the non-confusable 
items (Baddeley, 1968). 

An Attractor-Based Model of Serial Recall 
The goal of the present model is to demonstrate that the 
basic assumptions about neural computation outlined 

previously are relevant to our understanding of some of 
the behavioral phenomena associated with serial recall.  
To do so, we show how these computational principles 
can be instantiated in a specific model of serial recall 
that exhibits many of these phenomena. 

The model is composed of a number of separate yet 
interconnected attractor networks of the type described 
previously (Figure 1). 

 

 

 

 

 
Figure 1. The architecture of the model. Circles 
represent individual units, rectangles represent 
individual attractor networks, arrows represent 
connections between units in different networks.  Units 
within each network are all interconnected (not shown). 
Both these connections and connections between the 
Item and Association networks (thick arrows) are 
assumed to reflect long-term memory and do not 
change in the simulation. Connections between Position 
and Item (dashed arrow) reflect short-term position-
item associations and are modified according to a 
Hebbian learning rule as each item is presented or 
rehearsed. 

Position Network 
This network encodes position within an arbitrary list of 
items.  As currently modeled, each position corresponds 
to an activity pattern in which 10 out of 100 units are 
active.  Patterns for different positions are pairwise 
disjoint, although this assumption could be changed to 
model more detailed data on positional confusions.  
Although the network itself does not draw a distinction, 
we interpret these patterns as encoding relative, rather 
than absolute, position in the list.  Note that the Position 
network itself encodes no information about item 
identity; this knowledge will be stored in connection 
weights, learned during list presentation and rehearsal, 
between the Position and Item networks. 

Item Network 
The Item network is where the actual elements of the 
list are represented, again as distributed patterns 
comprising 10 active units each.  Individual units are 
meant to correspond to various phonological or 
otherwise acoustic properties of the stimulus (a word or 
letter), and the network is presumed to have learned 
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these patterns via Hebbian learning over repeated 
exposure to each of them.  Thus units which are active 
in the same pattern(s) have mutual excitatory 
connections between them while units which are active 
in different patterns tend to inhibit each other.  The 
result is that the network, when given external input, 
e.g. from the Position network, and then allowed to 
evolve its activity over time, will settle into the learned 
pattern that most closely matches the pattern of the 
input. 

Association Networks 
One crucial aspect of the Item network is that it is 
competitive.  This means that whenever one item is 
represented by the network, representations of all other 
items are wiped out, so that as far as the Item network 
is concerned, all information about which items have 
been recently encountered is lost.  This property allows 
the network to select a response.  However the fact that 
competitive dynamics wipe out past information also 
implies that there must be some other source of item 
information in the system. This other source of item 
information is provided by the Association networks 
associated with each item. 

Each Association network has a single attractor 
whose constituent units share permanent excitatory 
connections with those comprising the corresponding 
attractor in the Item network.  Crucially though, the 
Association networks don’t interact with each other, 
allowing multiple Association networks to be active at 
the same time.  Consequently the item information in 
these networks is not erased by the representation of 
later items, but rather it remains and slowly decays. 
This residual activity provides another source of (non-
position-specific) information to the system to be used 
at the time of recall. 

The assumption then is that when a new item is 
represented, it partially overwrites the activation 
associated with other items, but that it does not do so 
completely.  For example, if presented with the list “K 
B”, the assumption is that presentation of “B” partially 
overwrites the representation of “K”, but that some 
aspects of the representation of “K” are preserved. In 
the model, this distinction is captured by the distinction 
between the Item network (in which previous activity is 
overwritten) and the Association networks (in which it 
is not). 

Model Operation 
Simulation of the serial recall task in the model consists 
of three phases: list presentation, rehearsal (which is 
interleaved with presentation), and recall. During 
presentation of each item, the Item, Association, and 
Position networks are put into the attractor patterns 
corresponding to the present item and list position. The 

source of the input that generates these patterns is not 
modeled but is presumed to be early sensory 
processing, as well as perhaps some executive input in 
the case of the Position network. Co-activation of units 
in the Position and Item networks now leads to 
formation of excitatory connections via a Hebbian 
learning rule, so that later activation of the same pattern 
in the Position network will under suitably favorable 
conditions lead to the corresponding pattern appearing 
in the Item network. 

Between presentations of each successive list item, 
the model rehearses already presented items in order to 
further strengthen the Position to Item connections that 
have been learned. This is accomplished by putting the 
Position network into the attractor pattern 
corresponding to a given position, and allowing the 
connections from there to the Item network, along with 
inputs coming from the Association networks, to 
generate a pattern in Item. After allowing activity to 
evolve for a short period of time (reflecting the time 
constraints during this portion of the task), the system 
uses the resultant pattern of activity to rehearse. 
Rehearsal is presumably accomplished via covert 
articulation generating a sensory-level input to the Item 
network of the same type as it receives at presentation, 
after which the same Hebbian learning rule as was used 
during presentation is applied to update the Position to 
Item connections. 

Because rehearsal is restricted to items that have 
already been presented, we have by the termination of 
presentation a gradient in number of rehearsals across 
serial positions which favors the earlier items. This 
gradient translates into an advantage for the earlier 
positions in two ways. First, the extra learning of 
associations between early position patterns and their 
corresponding item patterns leads to stronger 
connections and thus a stronger memory trace. Second, 
the additional learning has a significant effect on 
proactive interference: leftover connections from 
position patterns to item patterns from previous lists get 
attenuated with each application of the learning rule 
(because those old item patterns are not active when the 
rule is applied), thus leaving less potential for 
interference during recall. 

Also worth noting at this point is another positional 
gradient in the state of the system at the conclusion of 
presentation, this time in the level of activity in the 
Association networks. Because each Association 
network is activated at the time of presentation of its 
corresponding item and then decays after that, the 
networls for items most recently presented, i.e. those at 
the end of the list, will be most active at the start of 
recall. 

The process of recall is quite similar to the retrieval 
processes that operate in rehearsal. For each list 
position starting with the first, the Position network is 



placed into the attractor pattern corresponding to that 
position (presumably by some executive process). 
Activity in the Item network is then allowed to evolve 
until it stabilizes, with inputs from both the Position 
and Association networks tending (in ideal conditions) 
to drive that activity towards the pattern for the correct 
response. Once the network has stabilized the system 
probabilistically chooses an item for response based on 
the similarity of all known patterns to the actual pattern.  

Experiment 1: Simulation of Standard 
Phenomena 

The following set of simulations provides a 
demonstration of the model’s ability to predict many of 
the standard phenomena associated with the serial recall 
task. The data we attempted to simulate were taken 
from Baddeley et. al. (1984; Experiment 5), which 
explores the effects of serial position, word length, and 
articulatory suppression. 

Experimental Design 
As in the design of Baddeley et. al. (1984), we ran the 
model on lists of both short and long words, both with 
articulatory suppression and without. The short and 
long word lengths used allowed for 5 and 9 item 
rehearsals per presentation, respectively (note 
Baddeley’s presentation rate was 1.5 sec/word). 
Proportion of correct responses (or rather mean 
probability of responding correctly) were recorded for 
each serial position in each condition. 

Results 
The results of 150 runs on each condition are presented 
in Figure 2, along with  the empirical data.  Both 
empirical and simulated data exhibit the initial increase 
in error percentage over the first few serial positions 
(primacy effect), as well as a decrease on the final 
position (recency effect). In both cases performance is 
impaired for longer words and in conditions of 
articulatory suppression, with an interaction between 
these two effects indicated by a smaller effect of word 
length under the suppression conditions. 

Discussion 
Closer inspection of the model’s performance and inner 
workings during the task reveal the following 
explanations for the phenomena: 

Primacy Effect As described previously, increased 
rehearsals for earlier position-item pairs, and thus more 
applications of the Hebbian learning rule, lead to better 
quality of information encoded in the connections from 
the earlier position patterns to the Item network. This in 
turn lead to higher rates of correct recall for earlier 
items in the list. 

 

Recency Effect In keeping with the other positional 
gradient described previously, the Association networks 
for the final items on the list were more active at the 
time of recall. As a result the additional information 
encoded by their inputs to the Item network acted to 
increase rates of correct recall at the end of the list. 

Word Length Rehearsal was assumed to take place 
via covert articulation (which provides the source of the 
simulated sensory input to the Item network), and thus 
the time to rehearse should be dependent on the 
articulation time of the items in question. Lists of 
longer words were therefore allowed fewer rehearsals, 
and so were given less opportunity for learning 
associations between positions and items, thus leading 
to lower overall performance. 

Articulatory Suppression Articulatory suppression 
was modeled as reducing the probability that each 
attempt at rehearsal was successful, rather than being 
interrupted by the process of overt articulation. As with 
the word length effect, this reduction in rehearsals led 
to less learning and in turn lower performance. 

Word Length x Articulatory Suppression Under 
suppression rehearsals were less likely to be successful, 
and thus reducing the number of attempts at rehearsal 
by increasing word length had less of an effect on 
learning. Conversely, with longer words there were 
fewer rehearsals than with shorter ones, and thus 
interfering with them by imposing articulatory 
suppression made less of a difference. 
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Figure 2:  Mean percent error on the serial recall task in 
both empirical (Baddeley, et. al., 1968) and simulated 
studies.  Data in each graph are divided into condition 
according to word length and articulatory suppression. 



Experiment 2: Phonological Similarity 
The last effect we attempted to model was that of 
phonological similarity between list items.  

Experimental Design 
The experiment followed the design of Experiment V of 
Baddeley (1968). In that experiment, lists of length 6 
were taken from a pool of 12 letters, 6 of which were 
acoustically similar to each other (B,C,D,P,T,V) while 
the other 6 were all dissimilar (J,K,L,R,W,Y). In one 
condition only the even positions had confusable letters, 
and in another only the odd positions did. In both cases 
the resultant serial position curves had a characteristic 
sawtooth shape, with greater percentages of errors on 
confusion positions than on non-confusion positions. 

Our approach in modeling phonological similarity 
was to assume that it is reflected by increased similarity 
between representations in the Item network. Our 
hypothesis was that similarity-based interference would 
lead to conditions in which the network failed to 
retrieve a single item but rather retrieved a pattern that 
was a combination or superposition of multiple items. 
The main change made to the model in order to capture 
this idea was to include a set of units in the Item 
network that were shared by the representations of all 6 
acoustically similar items.  Other changes included 
reducing the level of inhibition in the network in order 
to facilitate superpositional patterns. 
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Figure 3: Mean error rates in the phonlogical similarity 
experiment in both empirical (Baddeley, et. al., 1968) 
and simulated studies.  Data in each graph are divided 
into condition according to which list positions (evens 
or odds) contain the phonologically similar items. 

Results  

The model was run for 100 lists in both the Odd-Similar 
and Even-Similar conditions. Mean probability of a 
correct response was calculated for each serial position 
in each condition and is shown in Figure 3 along with 
the empirical data from Baddeley (1968). Both graphs 
clearly show the effects of phonological similarity, with 
greater error rates on the acoustically confusable items. 

Discussion 
As hypothesized, the model produced phonological 
similarity effects by often falling into spurious attractor 
states representing the combination of two or more 
similar items. When this happened, the system was left 
with only partial information about the identity of the 
correct item, and had to guess based on similarity 
between the actual and idealized patterns.  This 
explanation differs from classical theories about 
acoustic confusion among items, but may be better seen 
as a theory of redintegration (Schweickert, 1993). 

General Discussion 
Psychological theories of verbal working memory, such 
as Baddeley’s (1986) phonological loop model, have 
had great success in explaining serial recall at a 
cognitive level. These models have identified a core set 
of cognitive constructs (e.g., similarity-based 
interference, information maintenance with time-based 
decay, reactivation by articulatory rehearsal, etc.) that 
have proven extremely useful in explaining human 
behavior in this task. Nevertheless, these models do not 
typically address how those cognitive constructs are 
realized computationally in the brain. Conversely, 
research on neural computation has shown how many 
of these same cognitive constructs can arise as 
emergent properties in neural networks inspired by 
properties of the brain. However, these findings have 
not previously been exploited to explain detailed 
behavioral data regarding verbal working memory. In 
this paper, we have tried to show that ideas from 
cognitive psychology and neural computation can be 
fruitfully combined to produce an integrated model of 
verbal working memory that begins to bridge the gap 
between the cognitive and neural levels. 

Most of the assumptions incorporated in the model 
are already well supported and widely accepted. For 
example, in keeping with many other models of verbal 
working memory, we assume that participants rehearse 
the items in an effort to keep their representations 
active (and that early items are rehearsed more), that 
rehearsal is related to covert articulation, that 
articulation suppresses the ability to rehearse, that 
similar-sounding items interfere with each other, etc. 
Similarly, the simple assumptions about neural 
computation that are incorporated in the model are well 



established and their emergent computational properties 
are well known. 

Incorporating assumptions from both psychology 
and neural computation in a single, integrated model 
has a number of benefits. For example, most 
psychological theories have little to say about some 
fundamental issues regarding the mechanisms 
underlying verbal working memory.  For example, how 
is information actually maintained, why does it decay 
over time if not rehearsed (and how does rehearsal 
refresh it), and how do similar items interfere with 
other?  Indeed, even computational models of verbal 
working memory often build in these assumptions 
rather than simulating them (e.g., by explicitly 
weakening memory traces as a function of time or by 
assuming that similar-sounding items are occasionally 
confused with each other). By exploiting a few 
independently motivated assumptions about neural 
computation, the current model is able to provide 
computationally explicit answers to these kinds of 
questions. 

Considering constraints from both fields also led to 
a model with a number of novel theoretical features. 
For example, assuming that the neural representation of 
a stimulus/concept corresponds to a specific distributed 
activity pattern suggests that different instances of the 
same item involve the same units. This contrasts with 
model such as the Phonological Loop which allow for 
multiple independent instances of a repeated item.  

Learning also plays a much more important role in 
the attractor model than it does in the phonological loop 
model and its variants. With each presentation of the 
item, the attractor model learns an association between 
a position representation and an item representation. 
These associations interfere with the learning of new 
position-item associations and therefore allow the 
model to predict intrusion errors from similar positions 
on previous lists and, more generally, substantial 
proactive interference (learning previous lists impairs 
the model’s ability to learn subsequent lists).  
Furthermore, Hebbian  learning within the Item 
network can provide a natural account of long-term 
learning of new vocabulary. 

There are a number of aspects of serial recall that 
the model has not yet accounted for.  Among some of 
the most important of these are the effects of visual 
presentation (articulatory suppression reduces the 
phonological similarity effect with visual presentation, 
unlike with auditory presentation) lexicality (memory 
for words is better than nonwords), temporal grouping 
(presenting items in groups that can be chunked 
improves performance), and positional similarity (errors 
often involve transposing items that are nearby in the 
list). The lack of coverage for these phenomena is 
among the most important limitations of the current 
model and work is underway investigating whether it 

can be extended to address them. 
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