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An attractor network model of serial recall
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Abstract

We present a neural network model of verbal working memory which attempts to illustrate how a few simple assumptions
about neural computation can shed light on cognitive phenomena associated with the serial recall of verbal material. We
assume that neural representations are distributed, that neural connectivity is massively recurrent, and that synaptic efficacy
is modified based on the correlation between pre- and post-synaptic activity (Hebbian learning). Together these assumptions
give rise to emergent computational properties that are relevant to working memory, including short-term maintenance of
information, time-based decay, and similarity-based interference. We instantiate these principles in a specific model of serial
recall and show how it can both simulate and explain a number of standard cognitive phenomena associated with the task,
including the effects of serial position, word length, articulatory suppression (and its interaction with word length), and
phonological similarity.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction instantiated in the brain is an open question (but see
Burgess & Hitch, 1999, for one recent proposal).

Working memory is among the most intensively Similarly, there is a substantial body of neurosci-
studied cognitive processes in both cognitive psy- entific research investigating the neural substrates of
chology and neuroscience, and yet results from the working memory in both animals (Fuster, 1973;
two fields have not made as much contact with each Funahashi, Bruce & Goldman-Rakic, 1989) and
other as one might hope. For example, cognitive humans (Smith & Jonides, 1999), but this work has
psychology has discovered a host of robust empirical typically only addressed a small subset of the rich
phenomena associated with verbal working memory behavioral data and theories available in cognitive
and has developed elegant theoretical models, such psychology.
as Baddeley’s phonological loop, that can explain the In this paper, we attempt to illustrate that a simple
empirical results (Baddeley, 1986). Nevertheless, the and independently motivated model of neural
details of how these psychological hypotheses are computation can make contact with, and even shed

light on, the cognitive psychology of verbal working
memory. We begin by describing a few widely*Corresponding author.
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Next, we discuss some of the emergent computation- retrieve an incorrect attractor pattern, but one which
al properties of these assumptions that are relevant to tends to be similar to the correct one.
verbal working memory (e.g., maintenance, decay, Finally, we have also found that attractor networks
interference). We then illustrate how these assump- can be easily extended to exhibit time-based decay.
tions can be instantiated in a specific computational In the original formulation of attractor networks,
model that simulates and explains many of the major each unit was binary (either ON or OFF) and
psychological phenomena associated with the serial activation patterns could be maintained for indefinite
recall task. periods of time (Hopfield, 1982). Hopfield (1984)

subsequently showed that networks using more
realistic continuous-valued units could also exhibit

2. A simple model of neural computation similar computational properties. Our investigations
have shown that by appropriately increasing the

We begin with three simple and widely accepted threshold of the individual units, continuous-valued
assumptions about neural computation. The first is attractor networks can be made to exhibit time-based

1that representations in the cortex are generally decay once external input is removed.
distributed across a population of neurons, rather
than being localized to individual cells. The second
is that there is massive connectivity among neurons 3. The serial recall task
within local areas of cortex and that this connectivity
is recurrent rather than unidirectional. The third In the standard serial recall task a subject is
assumption is that synaptic efficacy is modified presented, either visually or auditorially, with a
based on the correlation between pre- and post- sequence of items, most often words, letters, or
synaptic activity (Hebbian learning). digits. Once presentation of the list has been com-

Taken together, these assumptions give rise to pleted, the task of the subject is to repeat back the
networks with interesting emergent properties, many list in its original order, either by speaking or by
of which are relevant to working memory. For writing.
example, such networks are known to be capable of This task has been intensively studied and a large
maintaining an activation pattern via internal re- number of robust behavioral phenomena have been
verberatory activity even after the input to the identified. Below are some of the major phenomena
network has been removed (Hopfield, 1982). Those which we will address in this paper. For a more
patterns which the network can maintain in this way thorough review of the literature see Gathercole
are termed attractors (and hence the networks them- (1997).
selves are known as attractor networks), and under
the Hebbian learning rule they tend to emerge as 3.1. Serial position
those patterns to which the network is repeatedly
exposed. Furthermore, when presented with a noisy The effects of an item’s position within the
or incomplete version of a previously trained pattern, presented list are generally described as two separate
an attractor network will tend to converge its activity phenomena (see, e.g., Crowder, 1972):
upon that attractor state which is most similar to the
input, thereby retrieving the original pattern. Primacy. Items from the start of the list tend to

Another property of attractor networks that is have a higher probability of recall than those from
relevant to working memory is that they naturally the middle of the list.
exhibit similarity-based interference. Attractor net-
works are capable of storing multiple patterns as

1Because the stored patterns of our networks decay and are notattractor states, but if those patterns are similar to
fixed points of the network dynamics, they are not attractors in the

each other (overlap substantially) then there is a technical sense. However our networks still maintain all of the
greater likelihood of error. In particular, we have aforementioned properties of standard attractor networks, with the
found that with noisy input these networks can often additional feature of decay.
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Recency. Items from the end of the list tend to be confusable with each other (Conrad & Hull, 1964).
recalled better than those from the middle. Furthermore, when phonological similarity is limited

to a subset of the items, e.g. those in the even
3.2. Word length positions, performance on that set is selectively

impaired as compared to the non-confusable items
Lists composed of items which take a longer time (Baddeley, 1968).

to articulate tend to be associated with poorer recall
(Baddeley, Thompson & Buchanan, 1975).

4. An attractor-based model of serial recall
3.3. Articulatory suppression

The goal of the present model is to demonstrate
Requiring subjects to overtly articulate irrelevant that the basic assumptions about neural computation

verbal material during presentation of a list tends to outlined previously are relevant to our understanding
impair their performance (Murray, 1968). of some of the behavioral phenomena associated

with serial recall. To do so, we show how these
3.4. Word length 3 articulatory suppression computational principles can be instantiated in a

specific model of serial recall that exhibits many of
The effect of word length is significantly reduced these phenomena. The model is composed of a

under conditions of articulatory suppression, pro- number of separate yet interconnected attractor net-
vided that suppression continues throughout recall works of the type described previously (Fig. 1).
(Baddeley, Lewis & Vallar, 1984).

4.1. Position network
3.5. Phonological similarity

This network encodes position within an arbitrary
Recall of a list tends to be decreased when the list of items. As currently modeled, each position

items of the list are phonologically similar to or corresponds to an activity pattern in which 10 out of

Fig. 1. The architecture of the model. Circles represent individual units, rectangles represent individual attractor networks, arrows represent
connections between units in different networks. Units within each network are all interconnected (not shown). Both these connections and
connections between the Item and Association networks (thick arrows) are assumed to reflect long-term memory and do not change in the
simulation. Connections between Position and Item (dashed arrow) reflect short-term associations and are modified according to a Hebbian
learning rule as each item is presented or rehearsed.
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100 units are active. Patterns for different positions other items have been recently encountered is lost.
are pairwise disjoint, although this assumption could This property allows the network to select a re-
be changed to model more detailed data on positional sponse. However we assume that item representa-
confusions. Although the network itself does not tions also contain non-competitive components, cor-
draw a distinction, we interpret these patterns as responding to the fact that certain feature dimensions
encoding relative, rather than absolute, position in (e.g. semantic properties) can be relevant for some
the list. Note that the Position network itself encodes items and irrelevant for others. This non-competitive
no information about item identity; this knowledge portion of item representations is embodied in the
will be stored in connection weights between the Association networks associated with each item.
Position and Item networks, as learned during list Each Association network has a single attractor
presentation and rehearsal, as well as in the residual whose constituent units share permanent excitatory
activities of the Association networks. connections with those comprising the corresponding

attractor in the Item network. Crucially though, the
Association networks don’t interact with each other,

4.2. Item network
allowing multiple Association networks to be active
at the same time. Consequently the item information

The Item network provides the primary basis of
in these networks is not erased by the representation

representations of list items, again as distributed
of later items, but rather it remains and slowly

patterns comprising 10 active units each. Individual
decays. This residual activity provides another

units are meant to correspond to various phonologi-
source of (non-position-specific) information to the

cal or otherwise acoustic properties of the stimulus (a
system to be used at the time of recall.

word or letter), and the network is presumed to have
The assumption then is that when a new item is

learned these patterns over repeated exposure to each
represented, it partially overwrites the activation

of them, via a mechanism such as Hebbian learning.
associated with other items, but that it does not do so

The variant of Hebbian learning used in our simula-
completely. For example, if presented with the

tions is modified to include a time-delayed anti-
sequence ‘K, B’, the assumption is that presentation

correlative component which provides robustness
of ‘B’ partially overwrites the representation of ‘K’,

against correlations among stored patterns (see Ap-
but that some aspects of the representation of ‘K’ are

pendix A for details). This allows us to realize the
preserved. In the model, this distinction is captured

assumption of stable yet highly overlapping attractor
by the distinction between the Item network (in

patterns in the modeling of phonological similarity
which previous activity is overwritten) and the

effects (Experiment 2).
Association networks (in which it is not).

The result of this training is that units which are
active in the same pattern(s) have mutual excitatory
connections between them while units which are

5. Model operation
active in different patterns tend to inhibit each other.
Therefore the network, when given external input,

Simulation of the serial recall task in the model
e.g. from the Position network, and then allowed to

consists of three phases: list presentation, rehearsal
evolve its activity over time, will settle into the

(which is interleaved with presentation), and recall.
learned pattern that most closely matches the pattern

During presentation of each item, the Item, Associa-
of the input.

tion, and Position networks are put into the attractor
patterns corresponding to the present item and list

4.3. Association networks position. The source of the input that generates these
patterns is not modeled but is presumed to be early

One crucial aspect of the Item network is that it is sensory processing, as well as perhaps some execu-
competitive. This means that whenever one item is tive input in the case of the Position network. Co-
represented by the network, representations of all activation of units in the Position and Item networks
other items are wiped out, so that as far as the Item now leads to formation of excitatory connections via
network is concerned all information about which a (noisy) Hebbian learning rule, so that later activa-



M. Jones, T.A. Polk / Cognitive Systems Research 3 (2002) 45 –55 49

tion of the same pattern in the Position network will network is placed into the attractor pattern corre-
under suitably favorable conditions lead to the sponding to that position (presumably by some
corresponding pattern appearing in the Item network. executive process). Activity in the Item network is

Between presentations of each successive list item, then allowed to evolve until it stabilizes, with inputs
the model rehearses already presented items in order from both the Position and Association networks
to further strengthen the Position to Item connections tending (in ideal conditions) to drive that activity
that have been learned. This is accomplished by towards the pattern for the correct response. Once
putting the Position network into the attractor pattern the network has stabilized the system probabilistical-
corresponding to a given position, and allowing the ly chooses an item for response based on the
connections from there to the Item network, along similarity of all known patterns to the actual pattern.
with inputs coming from the Association networks,
to generate a pattern in Item. After allowing activity
to evolve for a short period of time (reflecting the 6. Experiment 1: Simulation of standard
time constraints during this portion of the task), the phenomena
system uses the resultant pattern of activity to
rehearse. Rehearsal is presumably accomplished via The following set of simulations provides a de-
covert articulation generating a sensory-level input to monstration of the model’s ability to predict many of
the Item network of the same type as it receives at the standard phenomena associated with the serial
presentation, after which the same Hebbian learning recall task. The data we attempted to simulate were
rule as was used during presentation is applied to taken from Baddeley et al. (1984; Experiment 5),
update the Position to Item connections. which explores the effects of serial position, word

Because rehearsal is restricted to items that have length, and articulatory suppression.
already been presented, we have by the termination
of presentation a gradient in number of rehearsals

6.1. Experimental designacross serial positions which favors the earlier items.
This gradient translates into an advantage for the

As in the design of Baddeley et al. (1984), we ranearlier positions in two ways. First, the extra learning
the model on lists of both short and long words, bothof associations between early position patterns and
with articulatory suppression and without. The shorttheir corresponding item patterns leads to stronger
and long word lengths used allowed for 5 and 9 itemconnections and thus a stronger memory trace.
rehearsals per presentation, respectively (note Bad-Second, the additional learning has a significant
deley’s presentation rate was 1.5 s /word). Proportioneffect on proactive interference: leftover connections
of correct responses (or rather mean probability offrom position patterns to item patterns from previous
responding correctly) was recorded for each seriallists get attenuated with each application of the
position in each condition.learning rule (because those old item patterns are not

active when the rule is applied), thus leaving less
potential for interference during recall. 6.2. Results

Also worth noting at this point is another position-
al gradient in the state of the system at the conclu- The results of 150 runs on each condition are
sion of presentation, this time in the level of activity presented in Fig. 2, along with the empirical data.
in the Association networks. Because each Associa- Both empirical and simulated data exhibit the initial
tion network is activated at the time of presentation increase in error percentage over the first few serial
of its corresponding item and then decays after that, positions (primacy effect), as well as a decrease on
the networks for items most recently presented, i.e. the final position (recency effect). In both cases
those at the end of the list, will be most active at the performance is impaired for longer words and in
start of recall. conditions of articulatory suppression, with an inter-

The process of recall is quite similar to the action between these two effects indicated by a
retrieval processes that operate in rehearsal. For each smaller effect of word length under the suppression
list position starting with the first, the Position conditions.
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Fig. 2. Mean percent error on the serial recall task in both empirical (Baddeley, 1968) and simulated studies. Data in each graph are divided
into condition according to word length and articulatory suppression.

6.3. Discussion networks for the final items on the list were more
active at the time of recall. As a result the additional

Closer inspection of the model’s performance and information encoded by their inputs to the Item
inner workings during the task reveal the following network acted to increase rates of correct recall at the
explanations for the phenomena: end of the list.

Primacy effect. As described previously, increased Word length. Rehearsal was assumed to take place
rehearsals for earlier position–item pairs, and thus via covert articulation (which provides the source of
more applications of the Hebbian learning rule, lead the simulated sensory input to the Item network), and
to better quality of information encoded in the thus the time to rehearse should be dependent on the
connections from the earlier position patterns to the articulation time of the items in question. Lists of
Item network. This in turn leads to higher rates of longer words were therefore allowed fewer rehear-
correct recall for earlier items in the list. sals, and so were given less opportunity for learning

Recency effect. In keeping with the other position- associations between positions and items, thus lead-
al gradient described previously, the Association ing to lower overall performance.
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Articulatory suppression. Articulatory suppression 7.2. Results
was modeled as reducing the probability that each
attempt at rehearsal was successful, rather than being The model was run for 100 lists in both the
interrupted by the process of overt articulation. As Odd–Similar and Even–Similar conditions. Mean
with the word length effect, this reduction in rehear- probability of a correct response was calculated for
sals led to less learning and in turn lower per- each serial position in each condition and is shown in
formance. Fig. 3 along with the empirical data from Baddeley

Word length 3 articulatory suppression. Under (1968). Both graphs clearly show the effects of
suppression rehearsals were less likely to be success- phonological similarity, with greater error rates on
ful, and thus reducing the number of attempts at the acoustically confusable items.
rehearsal by increasing word length had less of an
effect on learning. Conversely, with longer words 7.3. Discussion
there were fewer rehearsals than with shorter ones,
and thus interfering with them by imposing articulat- As hypothesized, the model performed poorly on
ory suppression made less of a difference. confusion positions by often responding with the

wrong item from the confusable set. Because of
noise in learning of connections, and the additional
noise due to proactive interference, the input to the

7. Experiment 2: Phonological similarity Item network at the time of recall corresponded to a
degraded version of the correct item. This sort of

The last effect we attempted to model was that of degradation of input leads to misclassification be-
phonological similarity between list items. tween items, with higher probability of occurrence

when those items’ representations are similar. Thus
the model was more likely to make errors of

7.1. Experimental design confusion between the acoustically similar items,
leading to a phonological similarity effect.

The experiment followed the design of Experiment
V of Baddeley (1968). In that experiment, lists of
length 6 were taken from a pool of 12 letters, 6 of 8. General discussion
which were acoustically similar to each other
(B,C,D,P,T,V) while the other 6 were all dissimilar Psychological theories of verbal working memory,
(J,K,L,R,W,Y). In one condition only the even posi- such as Baddeley’s (1986) phonological loop model,
tions had confusable letters, and in another only the have had great success in explaining serial recall at a
odd positions did. In both cases the resultant serial cognitive level. These models have identified a core
position curves had a characteristic sawtooth shape, set of cognitive constructs (e.g., similarity-based
with greater percentages of errors on confusion interference, information maintenance with time-
positions than on non-confusion positions (see Fig. based decay, reactivation by articulatory rehearsal,
3). etc.) that have proven extremely useful in explaining

Our approach in modeling phonological similarity human behavior in this task. Nevertheless, these
was to assume that it is reflected by increased models do not typically address how those cognitive
similarity between representations in the Item net- constructs are realized computationally in the brain.
work. We incorporated this idea into the model by Conversely, research on neural computation has
including a set of units in the Item network that were shown how many of these same cognitive constructs
shared by the representations of all 6 acoustically can arise as emergent properties in neural networks
similar items. Our hypothesis was that similarity- inspired by properties of the brain. However, these
based interference would lead the network to mistake findings have not previously been exploited to
one item from this group for another at the time of explain detailed behavioral data regarding verbal
recall. working memory. In this paper, we have tried to
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Fig. 3. Mean error rates in the phonological similarity experiment in both empirical (Baddeley, 1968) and simulated studies. Data in each
graph are divided into condition according to which list positions (evens or odds) contain the phonologically similar items.

show that ideas from cognitive psychology and that similar-sounding items interfere with each other,
neural computation can be fruitfully combined to etc. Similarly, the simple assumptions about neural
produce an integrated model of verbal working computation that are incorporated in the model are
memory that begins to bridge the gap between the well established and their emergent computational
cognitive and neural levels. properties are well known.

Most of the assumptions incorporated in the model Incorporating assumptions from both psychology
are already well supported and widely accepted. For and neural computation in a single, integrated model
example, in keeping with many other models of has a number of benefits. For example, most psycho-
verbal working memory, we assume that participants logical theories have little to say about some fun-
rehearse the items in an effort to keep their repre- damental issues regarding the mechanisms underly-
sentations active (and that early items are rehearsed ing verbal working memory. For example, how is
more), that rehearsal is related to covert articulation, information actually maintained, why does it decay
that articulation suppresses the ability to rehearse, over time if not rehearsed (and how does rehearsal



M. Jones, T.A. Polk / Cognitive Systems Research 3 (2002) 45 –55 53

refresh it), and how do similar items interfere with Acknowledgements
each other? Indeed, even computational models of
verbal working memory often build in these assump- We wish to thank Scott Wallace and Brahm
tions rather than simulating them (e.g., by explicitly Windeler for their work in coding the program for
weakening memory traces as a function of time or by the model, and Acar Altinsel for his assistance in
assuming that similar-sounding items are occasion- running simulations and compiling data.
ally confused with each other). By exploiting a few
independently motivated assumptions about neural
computation, the current model is able to provide Appendix A. Model details
computationally explicit answers to these kinds of
questions. A.1. Architecture

Considering constraints from both fields also led
to a model with a number of novel theoretical All networks in the model have 12 attractor (or
features. For example, assuming that the neural pseudo-attractor) states, each associated with precise-
representation of a stimulus /concept corresponds to ly 10 active units. In the Position and each of the
a specific distributed activity pattern suggests that Association networks, these groups of 10 units are
different instances of the same item involve the same all disjoint. In the Item network, patterns 7 through
units. This contrasts with model such as the 12 are all disjoint while patterns 1 through 6 all share
Phonological Loop which allow for multiple in- a pool of s common units, where s is the overlap
dependent instances of a repeated item. parameter, 0<s < 10. (See Table A.1 for the values

Learning also plays a much more important role in of s and all other parameters as used for the results
the attractor model than it does in the phonological presented here.) The total number of units in each
loop model and its variants. With each presentation network, therefore, is 120 for Position and each
of the item, the attractor model learns an association Association, and 12025?s for Item.
between a position representation and an item repre- Connections between the Position and Item net-
sentation. These associations interfere with the learn- work are initially zero and are modified based on
ing of new position–item associations and therefore presentation and rehearsal of items. Within each
allow the model to predict intrusion errors from Association network, nodes of the same attractor
similar positions on previous lists and, more general- pattern have fixed, mutually excitatory connections
ly, substantial proactive interference (learning previ- of strength 1. All units in attractor 1 of the kth
ous lists impairs the model’s ability to learn sub- Association network have fixed, excitatory connect-
sequent lists). Furthermore, Hebbian learning within ions to all units in attractor k of the Item network
the Item network can provide a natural account of (attractors 2 through 12 in each Association network
long-term learning of new vocabulary. play no role in the model other than to maintain

There are a number of aspects of serial recall for
Table A.1which the model has not yet accounted. Among
Parameters of the model, with values used for present simulations

some of the most important of these are the effects of
Valuevisual presentation (articulatory suppression reduces

the phonological similarity effect with visual pre- Parameter name Expt. 1 Expt. 2

sentation, unlike with auditory presentation), lexicali- Overlap (s) 0 5
ty (memory for words is better than nonwords), Assoc–Item influence 0.5 0.5

Bias 5.9194 5.9194temporal grouping (presenting items in groups that
Long term learning rate (´) 0.05 0.05can be chunked improves performance), and posi-
Tolerance 20 20tional similarity (errors often involve transposing
Short term learning rate (g ) 0.75 0.75

items that are nearby in the list). The lack of Noise 4 4
coverage for these phenomena is among the most Rehearsal attenuation 0.3 0.3

Word length 10, 20 10important limitations of the current model and work
Suppression factor 0, 0.5 0is underway investigating whether it can be extended
Choice temperature (T ) 1 /30 1/30to address them.
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parallelism between the networks). The strengths of a learning rate parameter. This training procedure is
these Association-to-Item connections are all equal performed both in the absence of external input and
and are given by the Assoc–Item Influence parame- with a high level of input (determined by the
ter. tolerance parameter) to all nodes in order to simulate

Updating of activities is synchronized across all the conditions under which the network will operate.
units in the Item and Association networks. Position Training is repeated on all 12 patterns until the
nodes are not updated in this manner as their maximum component of any d-signal is <0.01.
activities are assumed to be maintained by some This algorithm can be seen in two ways. As
external (executive) process. described above it is a 1-step error-based learning

procedure, similar to back-propagation on a 2-layer
feed-forward network. Seen another way, the algo-A.2. Nodes
rithm is a combination of Hebbian and anti-Hebbian
learning. Combining terms from above we getNodes are continuous-valued, with activities rang-

ing from 0 to 1. The input–output transfer function is t t t t11
Dw 5 ´ ? a ? a 2 ´ ? a ? a .ij j i j isigmoidal in form, with equation:

The first term here is standard Hebbian learning,1
]]]]output 5 while the second is an anti-correlative componentbias2input1 1 e

¨ ´(cf. Barlow & Foldiak, 1989) which incorporates a
The bias parameter, representing the amount of 1-step delay.

input required for a node to achieve activity of 0.5 or
greater, currently requires extreme precision due to A.4. Simulation of serial recall
hyper-sensitivity of the informational decay rate.
However, this sensitivity can be shown to diminish The serial recall task is simulated in our model in
when noise is added to the updating process. 2 stages: presentation / rehearsal and recall.

Presentation and rehearsal. Presentation of a list
A.3. Training of item network of items to be remembered goes in sequence, from

the first item to the last. For each item, the Position
At the start of each simulation, the Item network is and Item networks are put into the appropriate

trained on the 12 item patterns using a variant of patterns, attractor 1 of the corresponding Association
Hebbian learning which provides robustness against network is activated, and Hebbian learning is applied
the highly correlated patterns used in Experiment 2 to the connections between Position and Item. For
as well as the varying levels of external input to the every active unit j in the Position network, the
network. This training takes place as follows. First connections from j to all units i in Item are updated
the network is placed into one of the patterns to be according to
learned, with ON units set to 0.99 and OFF units set

Dw 5 g(a ? a 2 w 1 f),to 0.01, and allowed to update its activity once. Then ij j i ij

a d-signal is calculated as the discrepancy from the
where g is the short term learning rate and f is aoriginal pattern,
Gaussian random variable with mean 0 and standard

t t11 deviation given by a noise parameter.d 5 a 2 a ,i i i
After presentation of each item, the system is

where i indexes node, t is time, and a is activity. given time to rehearse some of the associations that
Synapses are then updated based on the product of it has learned thus far. Rehearsal of a previously
the post-synaptic d-signal with the pre-synaptic presented position–item pair is accomplished by
activity placing the Position network into the corresponding

t pattern, clearing the Item network, and updating allDw 5 ´ ? d ? a .ij i j
nodes once. The resulting pattern in the Item net-
work is compared to all stored patterns and the oneHere w is the weight from node j to node i, and ´ isij



M. Jones, T.A. Polk / Cognitive Systems Research 3 (2002) 45 –55 55

which is most similar, in terms of mean absolute shared by the first 6 items (including the overlap
error, is selected as the item for rehearsal. From here units in the calculation would lead to an additional,
rehearsal is similar to presentation, with the Position though purely artifactual, phonological similarity
and Item networks placed in appropriate patterns and effect). These response probabilities are averaged
Hebbian learning applied. The learning rate g in this across lists to give the output of the simulation.
case is reduced by a factor equal to the rehearsal
attenuation, reflecting the assumption that rehearsal
may not be as effective as overt presentation.
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