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Abstract 

The class of recurrent networks known as attractor networks is 
known to exhibit behaviors relevant to modeling human memory 
processes – notably content -addressable memory, storage of 
repeated inputs as stable patterns (under Hebbian learning), and 
maintenance of information (as activity) over time. In addition, 
these networks provide a natural account of the effect of 
similarity on interference in recall. However when looked at in 
finer detail there are some ways in which traditional attractor 
networks fail as models of human short-term memory. In 
particular, information in human short-term memory decays over 
time unless it is rehearsed, rather than remaining indefinitely. 
Also, under Hebbian learning traditional attractor networks have 
particular trouble learning correlated patterns. Here we 
investigate some variations on the classic framework which make 
it more appropriate for modeling human STM. We show (1) how 
adjusting the threshold of continuously-valued units can lead to 
networks which maintain activity information temporarily, but 
decay over time, (2) how noise in learning and/or input leads the 
similarity structure of the set of stored patterns to be reflected in 
the distribution of recall errors, and (3) how adding a time-
delayed anti-correlative component to the learning rule provides 
robustness against highly correlated patterns and varying levels 
of input. These ideas have been incorporated in a model of serial 
recall that explains many aspects of human behavior on that task, 
and have also been used in newer simulations that learn temporal 
properties of the environment. 

Introduction 
In 1982, John Hopfield introduced the concept of attractor 
networks – fully and symmetrically connected  recurrent 
networks which he proved to have some remarkable 
computational properties. These networks, and their extension 
to continuous-valued units (Hopfield, 1984), have since 
spawned a considerable amount of research into their potential 
as associative memory devices.  

The main power of an attractor network, in this context, 
comes from its ability to simultaneously store multiple 
distributed patterns, termed attactors, in its connection weights. 
When placed into an arbitrary pattern and allowed to update its 
activity, the network will settle into that attractor which is most 
similar to the input. Once settled, the network will maintain its 
state indefinitely via reverberatory activity among the active 
units. Furthermore, when a fully recurrent network is trained 
under a Hebbian learning rule, the patterns on which it was 
trained tend to become attractors. Thus the network can be said 
to remember the patterns it has seen in the past.  

Together these properties make attractor networks natural 
candidates for models of human short-term memory. However, 
there are two important ways in which their behavior differs 
from that of humans. First there is considerable evidence (e.g., 
Reitman, 1974) that information in human short-term memory 
spontaneously decays rather than being held indefinitely. 
Second, while similarity between stored patterns leads to 
precisely the type of misclassification errors and interference 

effects observed in short-term memory, Hebbian learning is 
particularly bad at learning the highly similar patterns 
necessary to adequately achieve these effects. In fact, the 
mechanism which serves to limit the capacity of an attractor 
network, known as crosstalk, can be formulated entirely in 
terms of the correlations among the patterns to be stored.  

Here we present a modified version of the standard 
framework of attractor networks, which includes solutions to 
these problems in the form of a decay mechanism and a 
learning rule that can handle highly correlated patterns. We 
then present two demonstrations of the modified framework’s 
potential for modeling human short-term memory: a model of 
the serial recall task, and preliminary work exploring a 
network’s ability to adaptively adjust its decay time in response 
to its environment. 

A Mechanism for Decay 
In a standard attractor network, a stored attractor pattern is a 
fixed point of the network dynamics because once the network 
is put into that pattern, the ON units will (on average) all 
mutually excite each other, serving to maintain their collective 
activity. But more interesting behavior can emerge when this 
mutual excitation isn’t quite enough to maintain the original 
activity. With continuous valued units, it’s possible for 
successive updating to lead to slight incremental decreases in 
the activity levels of each unit, so that over time the 
information stored as the activation of a particular attractor (or 
pseudo-attractor) will decay to baseline.  

Consider the simple case of a pattern consisting of n units 
with pairwise connections all of weight w, and assume for the 
moment (for ease of analysis) that units are updated 
synchronously. Figure 1 shows the relationship between input 
and output activities for these units. The sigmoid curve is the 
neural activation function O(I), giving each individual node’s 
output activity level as a function of its input. The straight line 
shows the I(O) function – each unit’s input (on the horizontal 
axis) as a function of average output activity of all other units 
(vertical axis). Using the cobweb diagram approach of dynamic 
systems theory we can trace the trajectory of the network until 
it reaches equilibrium. In part (a) we see the network 
converging on an equilibrium state of high activity, 
corresponding to the attractor status of the pattern in question. 

If, however, the situation is altered slightly by increasing 
the bias of all units, i.e. shifting the activation function to the 
right so that mo re input is required to achieve the same output 
(part b of Figure 1), then the relationship between the O(I) and 
I(O) curves can change in a crucial way. When the bias is just 
slightly above the bifurcation point where the two curves 
intersect, the equilibrium of the previous example is replaced 
by a temporary ‘bottleneck.’ The network eventually settles to a 
state of minimal activity, but it takes a long time to get there. 
Because of this we can think of the collection of units as 
forming a ‘pseudo-attractor’ which is maintained only 
temporarily rather than permanently. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Relationship between inputs and outputs in the 
network. Evolution of activity can be traced by moving 
horizontally from a given output level to the I(O) line to 
give the corresponding input to all nodes, and then moving 
vertically to the O(I) curve to find the output on the next 
time step. In (a) we see a standard attractor with a high-
activity equilibrium, whereas in (b) the pattern is no longer 
a true attractor, lingering through a bottleneck but 
eventually decaying. 

 
The main theoretical problem with this decay mechanism is 

the hypersensitivity of the decay time to the precise relationship 
between bias, weights, and number of units. Because the 
approach relies on being very near the bifurcation between 
decaying and non-decaying systems, deviations of magnitudes 
expected in a biological system would be more than enough to 
drastically alter the decay time or even cross over to the non-
decaying regime. Analytically it can be shown that the decay 
time is asymptotically proportional to (α-α*)-½, where α is the 
ratio of bias to synaptic weight and α* is the value at the 
bifurcation point. However changing to asynchronous updating 
and introducing noise into the dynamics can both be shown to 
reduce this problem. In the case of noise, the network 
eventually decays even when below the bifurcation point, as 
random fluctuations allow it to cross the wall in the energy 
landscape between the two basins of attraction. 

Similarity-based Interference 
One phenomenon that appears regularly in memory research is 
that of interference between similar stored pieces of 
information. The nature of attractor networks makes them well-
suited for modeling this phenomenon, because their 
classification behavior is based on similarity between input and 
stored patterns. Under noisy input, or with noisy dynamics, the 
probability of misclassification (or misrecall) of one item for 
another has a direct negative relationship to the similarity 
(Hamming distance) between the two representations. 

In modeling phonological confusion data in verbal working 
memory (Jones & Polk, 2001, in press), we have been able to 
show (see below) that equating phonological similarity with the 
degree of overlap among representations in a recurrent network 
can help to explain these patterns of confusion errors. However 

the assumption of Hebbian learning in this case is inadequate, 
as the level of crosstalk generated by the patterns makes them 
unstable. 

In order to counteract the unwanted influence of inactive 
patterns in making trained patterns unstable, we have added a 
second, anti-correlative term to the Hebbian updating equation 
for the weight from unit j to unit i: 
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Here the superscript indicates time, with the second term being 
derived after every unit has updated its activity once.  

While the first term (standard Hebbian learning) tends to 
make the strength of connection between two units approximate 
the (synchronized) correlation between their activities, the 
second term deducts based on the 1-step delayed correlation, 
effectively penalizing synapses for having a consistent effect on 
their postsynaptic unit. In equilibrium the two terms balance, 
and the average effect of unit j on unit i (2nd term) is exactly 
proportional to the correlation of the two units’ activities across 
the training set (1st term).  

When the two learning rate parameters, ε1 and ε2, are equal, 
the algorithm can be interpreted another way. Rearranging 
terms we get: 
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The δ-vector can be thought of as an error signal, where the 
desired value at time  t+1 is at. Thus the algorithm is equivalent 
to  1-step back-propagation through time (Minsky & Papert, 
1969; Rumelhart, Hinton, & Williams, 1986), where the 
network is learning to maintain the same training pattern into 
which it is placed. Since this task is linearly separable (there are 
no XOR type problems possible), the general robustness of the 
back-propagation algorithm can be expected to apply. 

Indeed, simple simulations show a clear advantage for the 
modified rule as compared to the original in terms of learning 
of correlated patterns, learning under varying levels of input 
(under the Hebbian rule, networks tend to fall into 
superpositional patterns when given too much input), and 
storage capacity for randomly selected sets of patterns. 

Application: Model of Serial Recall 
The ideas described thus far have been incorporated into an 
attractor-based model of the serial recall task (Jones & Polk, 
2001; in press). The serial recall task is a well-studied test of 
verbal short term memory, in which a subject is presented with 
a sequence of items (most commonly words, letters, or digits), 
and then asked to repeat them back in order. Of the many 
established phenomena associated with this task, two are 
especially relevant to this discussion. The recency effect (e.g., 
Crowder, 1972) refers to an advantage in recall probability for 
items at the end of the list as compared to those immediately 
before. The phonological similarity effect (Conrad & Hull, 
1964) is the fact that lists consisting of similar sounding items 
are associated with poorer recall, and furthermore that when 
only a subset of the items on a list are similar, errors are 
predominantly confusions between those particular items 
(Baddeley, 1968). 

Our approach in modeling these and other effects was to 
connect different attractor-type networks, separately 
representing item identity and position within a list. The 
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architecture of the model is shown in Figure 2. During 
presentation of items (and subsequent rehearsal), associations 
are learned from the Position network to the Item network. At 
recall, the Position network is sequentially set into each 
position pattern, and the resulting input to the Item network 
allows it to converge upon a response. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The architecture of the model. Circles represent 
nodes, rectangles represent individual attractor networks, 
and arrows represent connections between units in 
different networks. Nodes within each network are fully 
interconnected (not shown). 
 

Prior to simulation of the task itself, this Item network is 
trained under the modified Hebbian algorithm on 12 patterns, 6 
of which share a pool of common units (the confusable items), 
and 6 of which are disjoint (in terms of their ON units) from the 
first six and from each other. Similarity between the confusable 
items is expected to lead to interference effects, and specifically 
misclassification errors at the time of recall. 

In addition to the Item network, which is the source of 
competition between items in response selection, there is a set 
of Association networks, one for each pattern stored in Item. 
Each Association network has a single pseudo-attractor with 
positive associations to the corresponding Item pattern, thus 
serving as an additional (non-competitive) component to that 
item’s representation. These networks are tuned to decay over 
slightly less than the amount of time it takes for the system to 
recall the list. Because presentation takes longer than recall, the 
Associations for early list items have decayed by the time they 
are to be recalled, whereas recall of the final item is facilitated 
by extra input from its Association network. 

The model was tested on its ability to simulate data from an 
experiment by Baddeley (1968, expt. V), which tested subjects 
on lists of 6 letters. All letters were selected from a pool of 12, 
six of which were acoustically similar to each other 
(B,C,D,P,T,V) while the other six were all dissimilar 
(J,K,L,R,W,Y). Two types of lists were tested: Even lists, in 
which positions 2, 4, and 6 contained items from the similar 
group, and Odd lists, in which similar items appeared in 
positions 1, 3, and 5. Figure 3 shows the results of this 
experiment, along with data simulated from the model. In both 
cases we see selective impairment for the confusable items on 
all six serial positions (except perhaps the first). Superimposed 
on this similarity effect is a recency effect: By regrouping the 
data into separate serial position curves for confusable items 
and non-confusable items – combining the data from the Even 
lists for positions 2, 4, and 6 with that from the Odd lists for 
positions 1, 3, and 5, and vice versa – we see that in both 
curves, in both the empirical and simulated data, there is a drop 
in errors on the final position. 

From the perspective of our model, the phonological 
similarity effect is caused by similarity-based interference in 
the Item network, i.e., an increased probability of misrecall of 
one similar item for another. The recency effect is due to the 
decay of information in the Association networks leading to an 
advantage for the most recently presented item. 

Empirical Data
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Figure 3: Mean error rates in the phonlogical similarity 
experiment in both empirical (Baddeley, et. al., 1968) and 
simulated studies.  Data in each graph are divided into 
condition according to which list positions (evens or odds) 
contain the phonologically similar items. 

Learning of Decay Rates 
One further idea that comes out of the framework laid out here 
is that under the modified Hebbian rule and with the proper 
feedback, informational decay rates should be adaptable. In this 
way a system or organism may be able to learn the 
characteristic time -scale of certain types of information in its 
environment. 

The simplest unsupervised learning paradigm involves a 
network in continuous contact with its environment, learning 
associations among the various stimuli to which it is exposed. 
However it may be more realistic to assume that information 
about the environment (or at least individual aspects of it) is 
only intermittently available via sensory channels. In this case 
one desired function of a recurrent network could be to 
maintain an accurate representation of the state of the 
environment even when the sensory channel is closed. In order 
to do this such a network must be able to learn the temporal 
dynamics of that aspect of the environment which it is to 
represent, so that it can mimic those dynamics even when 
deprived of input.  

Consider a simple case with only two possible 
environmental states – object present and object absent. 
Furthermore assume that the representation of the object 
involves all nodes being active (otherwise we can just ignore 
non-participating nodes), and that absence of the object is 
represented by all units inactive. When the sensory channel is 
active, the network receives information about the status of the 
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object and is clamped to the correct representation; however 
when the channel is closed the network evolves its internal 
activity freely. Finally assume that learning takes place only 
when input is available, and not when the network is evolving 
freely. 
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Figure 4: Mean network decay times as a function of trial, for two 
different average lifetimes of the object in the environment. 
 

To test what would happen in this situation, simulations 
were run using exponential distributions for both the lifetime of 
the object and the spacing of contact between the network and 
its environment. On each trial, the network was presented at 
time 0 with input representing object present, and then the 
sensory channel was closed (i.e. the network was isolated from 
further input). Some time later the  network again received 
information on the status of the environment, depending on 
whether the object was still present, and learned based on the 
discrepancy of its prediction (using the modified Hebbian rule).  

After each training trial the network was tested,  without 
learning, for its average decay time. The results (see Figure 4) 
show that the network was indeed able to adjust its decay time 
in response to feedback from its environment, to a value that 
roughly approximated the average lifetime of the object. 

Conclusions  
Attractor networks clearly have a lot to offer cognitive 
modelers, but the classical framework needs to be extended to 
capture some of the core phenomena associated with human 
short-term memory. Here we have discussed two ways in which 
the standard framework departs from human behavior – 
indefinite maintenance of activity, and lack of robustness to 
highly correlated patterns. The proposed mechanism for decay 
of activity, along with the modification to the Hebbian learning 
rule, help to address these shortcomings, as demonstrated by 
our model of the serial recall task. In this model the decay 
mechanism provides an explanation for the decay of 
information often simply built in to other models of short-term 
memory, while the modified learning rule allows the system to 

store correlated patterns, which in turn provide the basis for 
similarity-based interference effects. 

While it’s easy to see the trouble with correlated patterns as 
a deficiency of the standard model relative to human memory, 
indefinite storage of information may in fact be one as well 
(rather than a superiority as it could seem at first glance). Much 
recent speculation (Schacter, 1999; J.R. Anderson & Schooler, 
2000) has centered on the idea that decay of information in 
short term memory is in fact functional, and there is evidence 
that the rate of this decay is adaptable to statistics of the 
environment (R.B. Anderson, 1997; Jones & Sieck, 2001). The 
final demonstration given here provides one possible 
explanation of how that adaptation may take place, and may 
provide a starting point for a theory on the learning of more 
complex temporal dynamics. 
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