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Abstract

In [Topology Appl. 90 (1998) 135] Scharleman showed that a strongly irreducible Heegaard
splitting surfaceQ of a 3-manifoldM can, under reasonable side conditions, intersect a ball or a
solid torus inM in only a few possible ways. Here we extend those results to describahcan
intersect a handlebody i#7. O 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

A central problem in the century-old theory of Heegaard splittings is to understand how
different Heegaard splittings of the same 3-manifold might compare. Much progress on
this and other questions has followed the introduction, by Casson and Gordon, of the idea
of strongly irreducibleHeegaard splittings (see [1,8]). For example, in [4] it was shown that
two strongly irreducible Heegaard splittings of the same closed orientable 3-manifold can
be isotoped to intersect each other in a particularly helpful way. A more general question,
useful in the same endeavor, is to understand how a strongly irreducible splitting surface
intersects a handlebody lying in the interior of the 3-manifold. That is the goal of this paper.

In general the intersection of the splitting surface and a handlebody can be quite
complicated, even when the splitting is strongly irreducible. But, with reasonable side-
conditions on how the splitting surface intersects the handlebody boundary, the picture has
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been shown to simplify dramatically when the handlebody is either a ball or a torus [7].
Here we obtain similar results (but not as precise) when the handlebody is of arbitrary
genus. The core of our approach is to examine just the part of the splitting surface that lies
within the handlebody. It turns out that, under reasonable side conditions, this surface is
weakly incompressiblsee Definition 1.1). So the general problem translates directly into
the problem of classifying weakly incompressible surfaces embedded in a handlebody.

Although the results here are fairly technical, they may also prove useful. For example,
Theorem 2.1 is helpful in classifying how two genus two Heegaard splittings of the same
manifold intersect (cf. [6]).

All 3-manifolds will be orientable. A compression body is a 3-manifold obtained
from (surface x I by attaching 2-handles t¢surface x {1} and capping off any 2-
sphere boundary components that result with 3-ball¢{ is (surface x {0} andd_H =
dH — 94 H.(Mnemonic:d H is a more complicated surface thenH .)

The compression bod¥f is ahandlebodyf H is a compression body with_ H = 0.
A splitting surfacefor a Heegaard splittingof a 3-manifoldM is a properly embedded
closed orientable surfacewhich dividesM into compression bodied; and H» so that
M = H1 Ug Hy andd4 H1 = S = 94 H>. The splitting isweakly reduciblgf there is a
disjoint pair of compression disks f&; one inH1 and one inH,. Otherwise, it isstrongly
irreducible Here is a generalization of those ideas.

Definition 1.1. A properly imbedded oriented surfac@, 0 Q) c (M, dM) is asplitting
surfaceif M is the union of two 3-manifoldX andY along Q so thatd X induces the
given orientation oD andaY induces the opposite orientation. A compressing disk for
Q in X (respectivelyy) is called ameridian diskin X (respectively¥) and its boundary a
meridian curve forX (respectivelyy).

The splitting surfaceQ is bicompressibléf Q is compressible into botlX and Y.
Q is calledstrongly compressibl@ there are meridian disks iX and Y with disjoint
boundaries. If a splitting surface is not strongly compressible then it is caléakly
incompressible

Remarks. If Q is both bicompressible and weakly incompressible, there are compressing
disks in bothX andY, but any pair of such disks, one ki and the othel’, necessarily
have boundaries that intersect alofig= X N Y.

A remark about surface compression: Supp@sis a surface in a 3-manifold/, and
(D,dD) C (M, Q) isadisk such thab N Q = d D, an essential simple closed curvedn
Consider the process by which we uBeo compresg), obtaining a surfac®’. Choose
a relative regular neighborhoad D) = D x [—1, 1] of D so thaty(D) N Q is the image
of 3D x [—1, 1]. Compression 0© along D means the replacement of this annulugin
with the image ofD x {£1}. There is an obvious dual process that begins @Witland ends
with Q: View the image of 0} x [—1,1] as an arcy, dy) C (M, Q'). We cally thedual
arc to the compression. Thep(D) can equally well be viewed as a regular neighborhood
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n(y) = D?x y of y. ObtainQ from Q' by removingD? x 8y and replacing wittd D? x y .
(The notatiom () will always mean regular neighborhood.)
The following is a slight adaptation of a lemma and proof originally given in [7].

Lemma 1.2.Let QO be a bicompressible, weakly incompressible properly imbedded
surface in a handlebod¥f, dividing H so thatH = X Uy Y. Let F be obtained fromQ

by a series of compressions into X, andllebe the set of arcs dual to these compressions.
Let D be a disk or collection of disks, in general position with respedt@and Q and
withaD c (0H U F) —n(I"). Assume that iriiD) N F contains no closed curves. Thén

can be made disjoint from» by a series of edge slides and isotopies.

Proof. Details of the proof, which we here sketch, can be found in [9, Proposition 2.2].
Choose a representation 6f which minimizes|D N I'|, and assume thad N I" # @.
Choose a compressing digk for Q in Y which minimizes|D N E|. Note that if there
were any closed curves @ N E which bounded disks i disjoint from I", we could
choose one innermost i and replace the disk it bounded fwith a copy of the one it
bounded inD to reduce D N E|.

Call an arc ofD N E which has both endpoints on the neighborhood of the same point
of DN I" aloop. If there were a loop oD N E which bounded inD a disk disjoint from
I', we could choose an innermost such loop antbmpressE with the disk bounded by
that loop. At least one of the two resulting disks would have to be essential, since their sum
is E, so choosing that disk instead Bfwould have given a lower value f¢p N E| (the
chosen loop is eliminated, if nothing else).

By considering a component & N E which is innermost inD among all closed curves
and loops (if there are any such components), and by considering the disbaunded
by that component, we see that there must be some poinD N I which is incident to
no loops. But sincey(w) N D is a compressing disk fof in X, it must intersectt. So
choose an ara which is outermost inE among all arcs o N E which are incident to
n(w). Thena cuts off fromE a disk E’ with E’ — « disjoint fromw. Let e be the edge
of I which containsw. Then the diskt’ gives instructions about how to isotope and slide
the edgee until it is disjoint from D, and these slides and isotopies ultimately decrease
IDNE|. O

Lemma 1.3. The only closed splitting surface that is bicompressible, weakly incompress-
ible and lies in a ball is an unknotted torus.

Proof. Suppos&) C B is a counterexample, dividing a ballinto two partsX andY, with

dB C X. SinceQ is weakly incompressible, all compressing disks must lie on the same
componentQg. Let Qx, Qy be the surfaces (possibly spheres) obtained by maximally
compressing)g into X andY, respectively andV c B be the 3-manifold, containin@o,

that lies betwee x and Qy. Then Qg is a Heegaard splitting surface féf and, since

Q is weakly incompressible, the splitting is strongly irreducible. It follows from [1] that
oW = Qx U Qy is incompressible irl¥. By constructiond W is also incompressible in
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the complement oW, since a further compression would either be disjoint from Qg

(which violates maximality in the construction) or it must inters@ct- Qg, forcing Q

to be compressible in the complement@®4, and so violating weak incompressibility of

Q. HencedW is a collection of spheres. It follows easily th@t= Qo and this surface

is a Heegaard splitting surface &f. By Waldhausen'’s theorem (see [9] for an updated
proof) any such splitting is standard. But any standard splitting of genus greater than one
is strongly compressible.

The next lemma is a variation of one originally given by Frohman in [2, Lemma 1.1].

Lemma 1.4. Let Q be a bicompressible, weakly incompressible splitting surface in a
handlebody, dividing H into X andY. Suppose there is an essential laopn Q which
intersects a compressing digkfor Q exactly once. l& U C is contained in the interior of

a ball properly embedded if , thenC is the meridian and the longitude of an unknotted
torus component of) that lies in a ball inH.

Proof. We may as well assume thét is connected. Suppose, ferand C as described,
thatoe U C is contained in a balB and thatX is the side that contain§. Among all
possible choices foB and choices of curve, disk paits C in Q, X that intersect in a
single point, chos&, «, C to minimized B N Q. We will show that in facoBN Q =¥ so
that Lemma 1.3 applies as required.

Indeed, we will show that ib B N Q # ¢ then this forces a contradiction. Suppose first
that there were a component®B N Q that is inessential i. Choose an innermost one
in O and letE be the disk inQ that it bounds, so that eithef ¢ B or E C H — B.
Furthermore E must be disjoint fronw U C, becausé E C 9B is disjoint froma U C
anda anddC are both essential i@. If E C H — B, the disk ind B which is bounded
by 9 E could be replaced by a copy éfto reducdd B N Q| (remember that handlebodies
are irreducible). But iff C B, then cuttingB on E produces two balls, and the one which
containsy U C would have a lower value fgd B N Q|, again a contradiction. We conclude
from these contradictions that each compone®®f) O must be essential iR.

If 9B N Q| =1 then the disk 0B B — Q which lies inY would be a compressing disk
for Q which is disjoint fromC, contradicting weak incompressibility @. So we can
assumddB N Q| > 1. Then there is a componefitof 9 B N Q which bounds a dislO in
d B with int(D) N Q a non-empty collection of loops which are all innermosbdiB. Let
P be the non-disk planar componentbf— Q. The disks ofD — P are all compressing
disks for Q and are disjoint fronC, so they must be iX, and thusP C Y. Let F be the
surface obtained fron® by simultaneous compression on all these disks, and le¢ the
set of arcs dual to these compressions. Now use Lemma 1.2 to isbtoffeof D. The
slides involved should be done without dragging al@dgor « (so, technicallyp C anda
may change as curves ). But the result of the slides would again violate the condition
thato B N Q had been minimized. O

Corollary 1.5. Suppose&? is a bicompressible, weakly incompressible splitting surface in
a handlebodyd and Q can be obtained from a surfadeby attaching tubes along a set of
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arcs . If there is a circuit inF U I" which is contained in the interior of a ball and which
passes over some arc bfexactly once, then a component@®@fis an unknotted torus in a
ballin H.

Such a circuit will be referred to as a cycle in a ball.

2. Characterizing bicompressible, weakly incompressible splitting surfaces

Theorem 2.1.Let Q be a properly embedded bicompressible weakly incompressible
splitting surface in a handlebodsf, dividing H into 3-manifoldsX and Y. Suppose no
component oD is an unknotted torus in a ball i/ . Let A be a complete set of meridian
disks forH . Then there is a properly imbedded incompressible surfaceH intersecting

A only in arcs and a sefi of pairwise disjoint arcs so thatt ¢ A, 94 = AN F andQ

is properly isotopic to the surface obtained frdirby attaching tubes along the arcs aAf

The side X or Y, containing the interiors of these tubes can be specified in advance.

Proof. According to Corollary 1.5, there is no cycle in a ball. Begin by maximally
compressing) into X, say. At the end of this we are left with a surfaEevhich divides

H into X_ andW, whereX_ is the boundary-reduced andW is Y with some 2-handles
attached. DuallyQ is obtained fromF by attaching tubes alonfy ¢ W, the set of arcs
dual to the compressions. We will vielv as a graph i whose valence one vertices all
lie on F. At this pointI” is just a union of arcs, but as edgedofre slid onto other edges,
higher valence vertices may appear.

We will show that F is incompressible. Assume, in contradiction, that there is a
compressing disk for F in W. Isotoped C off the disks ofp(I") N F, and use Lemma 1.2
to isotopel” off of C. Now C is a compression foQ in Y which is disjoint from a
meridian of any tube ofy(I"), contradicting weak incompressibility @. ThusF is not
compressible intdV. F is clearly not compressible int&_, sinceQ has been maximally
compressed int&, so F' is incompressible.

IsotopeA to minimize|A N F|. Note that if A N F contained any closed curves, then
each is inessential it and, by choosing one innermost in and replacing the disk it
bounds inA by a copy of the one it bounds iR (this could be done by an isotopy
becausé isirreducible so the two disks bound a bali,N F| could be reduced. Now any
compressing disk foF — A in the ballH — A must have a boundary which is inessential
in F. The disk it bounds irF’ cannot intersect\, sinceA N F contains no closed curves,
so the disk in fact lies iF — A ¢ H — A. We conclude that each componentfof- A is
incompressible in the ball — A and so each component 6f— A is a disk.

Now F, I", and A — F satisfy the hypothesis of Lemma 1.2, Socan be isotoped so
as to be disjoint fromA. Regardl™ as a disjoint union”_ U A, whereI"_ is a graph
disjoint from A, and A is a set of pairwise disjoint arcs containeddn\We have seen that
this can be done witthh empty. The goal is to be able to wrifé in this way so that™
is empty, i.e., the entire graph consists of arcst C A. So letA andI"_ be chosen to
maximize| A|. Then choose a compressing disKor Q in Y and further slide and isotope
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I’ _ so that the total number of times thak traverses edges df _ is minimized. If " _

is non-empty the@ E N n(I"_) is also non-empty, since, by weak incompressibilitygf
E must intersect the meridians of all tubes@f™). We will show that the assumption that
I'_ # ¢ leads inevitably to a contradiction.

Assume firstthaE' N A # ). Let X be the set of all arcs of N E such that the two disks
into which the arc divide& each intersec(I"-). If X' is non-empty, let- be outermost
in E among arcs ob’, and letEg be the disk ofE — A adjacent tar on the X' -outermost
side. If X is empty, then all arcs afE Nn(I"_) are contained in one disk & — A. Call
this disk Eg and leto be any component &fEg — d E. In either case, the following holds:
n(I"'-)NdEgN JE is non-empty, and Eg — (0E U o) is a possibly empty collection of
arcs each of which cuts off from a disk disjoint fromn(I"_). (See Fig. 1.) LetE’ be
the disk containingzp which is cut off fromE by o, so thatE’ is the union ofEq with a
(possibly empty) collection of disks & — A, each of which is disjoint fromy(1"_).

Now, if there were an edge of I' _ with |0 EgNn(y)| =1, thenE’ O Eg could be used
to slidey across untily becamer. After the slide, the place of in the decomposition
I' =T _U A can be changed from"_ to A, increasing A|. From this contradiction we
conclude that each tube pf " —) which intersect$ Eg intersects it multiple times. Choose
a pair of arcsyy andy» of 9 F N n(I"_) which lie on the same tube(y) of n(I"~) such
that no other arc on that same tube lies between theffor o and so that no other pair
coming from a different tube lies between themaf — o. Let 8 be the arc imWE’ — o
connectingy; andys. (See Fig. 2.)

We will now pause for a moment to discuss the case witere A = ¢. If there
were an edge of'_ whose neighborhood intersectéd only once, therd E would be
a cycle in the ballH — A. From this contradiction we can assume that intersects
the neighborhood of each edge 6f_ at least twice. So once again we can choose
y1,v2 € (0E Nn(y)) for some edge € I'_, with y1 andy, connected ird E by an arcs
such thaint(8) N n(y) = @ and that there is no edg€ € I" _ with |int(8) N n(y")| > 1.
If, for this case, we allowEy and E’ to be alternate names fd@t, the proof can proceed
simultaneously with that of the case whdfen A # ¢:

We claim that the interior of8 is disjoint fromn(I"_). For if it were not, then, by
constructionp traverses another edgée I" _ exactly once. Leg’ be an arc in the interior
of Eg whose ends coincide with those pf Then the subdisk of containingg that g’
cuts off in E can be used to slide and isotopeuntil it coincides withg’ C Eo. After the
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slide, and depending on the relative orientatio By of y1 andy», as identified through
y, eithery’ ory’ Uy forms a cycle in the balH — A, contradicting the Corollary 1.5.

We next claim that both ends @flie on the same end of y. For if they lie at opposite
ends ofy we could construct a cycle in the ball — A in exactly the same way, after
breakingy into two edges, adding a vertex at its midpoint.

It will now be useful to consider the circlin(y) C F. Letd andd’ be the two arcs into
which the ends op divide this circle. NowH — (F U A) is obtained from the balll — A
by cutting on the proper diskE — A, soH — (F U A) is a collection of balls, as is then
H — (F U AUn(A)). The closed curv@’ U@ is parallel (via a subdisk o) to a curve
on the surface of one such ball and thgisJ 6 bounds a diskD whose interior is disjoint
from F U A Un(A) (but which may interseat ).

Let K be the subdisk of: that bounded by’ and 8. Let F.. be the surface obtained
from F by attaching tubes along the arcsf

Casel. The simple closed cury@U6 C Fy is essential inF.. Then the surfacé., the
graphl” _, and the disk . = D Ug K satisfy the hypothesis of Lemma 1.2, so, after some
slides and isotopied; - can be made disjoint fromk,.. Sinced K, = g U6 is essential
in F and F; is obtained fromQ by compression K ;. is essential inQ. ThusK is a
compression disk fo@ in Y which is disjoint from a meridian disk of any tube ofI"_).
This contradicts weak incompressibility.

Case2. g U6 is inessential, i.e., bounds a digkin F.. (See Fig. 3.) lfy isin J then
we can switch fron® to 6’. So assume that is not in J. If J contains no endpoints of
I'_, then the ard E N K can be pulled acros$ to become&), and then the arc oJ E
which has now becomg U6 U y» can be pulled across;(y) to eliminatey; andy, from
dE Nn(I"-). This contradicts our assumption tia minimally intersects the meridian
of I'_.

So assume that contains some endpoints 6f_. ThenD U J U K is a sphere which
can be pushed off’;. It bounds a ballB whose interior is disjoint fronF,. since H is
irreducible andF is incompressible. Choose a small (e.g., disjoint fraincollar D x I
of D in B, restricting to a small collar af in J. UseB to sweep all ofB N (I"_ U E) into
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Fig. 3.

D x I (using most of/ to sweep the ends df _ into the small collar of). SinceD x I
is disjoint from A, after this movel”_ and A are still disjoint. Now pull the ends af
lyingin D x I NJ overn(y). This move happens entirely i — A, soI"_ andA remain
disjoint. We are now back to the case whéris disjoint fromI"_, and we can reduce the
number of times thad E intersects the meridians of the (newly sliff) just as before.
Thus we again encounter a contradiction.

The conclusion is thaf'_ = @, as required. O

Problem. It is shown in [7] that ifH is a solid torus, them consists of at most one arc.
It is a natural question whether there is in general a boundipthat depends only on the
genus ofH .

3. How splitting surfaces intersect handlebodies

We intend to use the results of the previous section to understand how a strongly
irreducible Heegaard splitting surfage for a 3-manifoldM can intersect a handlebody
HCM.

Definition 3.1. Suppos€P,dP) C (M,dM) is a properly imbedded surface M ando

is an arc ord M that intersect9 P in precisely an end point of «. Thenpiping P along
« is the ambient isotopy of in M obtained by dragging € P alonga, moving only a
small neighborhood of in P.
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Let X Up Y be a strongly irreducible Heegaard splitting of a 3-maniftfcand letH
be a handlebody i/ with complete collection of meridian disks.

Proposition 3.2. Suppose&? N d H consists of curves which are essential in bath and
0, the surfaceQ N H compresses int& N H anddH NY is incompressible irY. Let
F be the closed surface obtained fragfhby maximally compressin@ N H into X N H,
so, dually,Q is obtained byl-surgery on a grapi™ C (H — F). ThenI” may be slid and
isotoped inM, A piped in H so that afterwards’ N A contains no closed curve and
consists of arcs entirely im\ or in 9 H — A. Moreover, ifQ N H also compresses into
Y N H, the sliding and isotopy af takes place entirely it .

Proof. SinceX Uy Y is strongly irreducible and H NY is incompressible il NY, it
follows thatQ N H is weakly incompressible. Indeed, an essential closed cur@eind
cannot bound a disk in Q unlessD intersects) H. Choose such @, to minimize
|[Do N3 H]|. Consider an innermost (i) such curve of intersection. It must be essential
in 0H, so nearby is a compressing disk fof N Y, contradicting the hypothesis.

The surfaceF splits M into two 3-manifoldsX™ c X andY™ > Y. FN H is
incompressible ind . Indeed, a compression inf6_ N H is impossible by construction.
SinceX Ug Y is strongly irreducible, the same argument used in the proof of Theorem 2.1
could be used to push off of a compressing disk foF in Y (the isotopies possibly
pushing parts of” out of H). The compressing disk far then becomes a a compressing
disk for Q lying in Y, contradicting strong irreducibility. SincE N H is incompressible
in H it follows as in Theorem 2.1 that can be isotoped so that N F consists only of
arcs and each componentbf— A is a disk.

The proof is by induction on the pai—yx (Y N dH),|dH N QJ), lexicographically
ordered.Y N d H contains no disk components, since curves of intersection are assumed
to be essential i H. Hence—x (Y NdH) > 0. Let E be a meridian disk fot’, chosen
so that|E N 9 H| is minimized. IfE is disjoint froma H then it cannot lie outsidé/, by
strong irreducibility, so it must lie insidé/. In that case the result follows immediately
from Theorem 2.1.

Ifany componentoE Nd H is a simple closed curve, then the hypothesis guarantees that
an innermost such curve is inessentiabil N Y and indeed bounds there a disk disjoint
from Q. An innermost such disk i H, could be swapped with the disk its boundary
boundsinE to reduceE Nd H. So we may as well assume that each componehtod H
is an arc.

Each arc component ¢fE N (Q — dH) is essential in the bounded surfage— 0 H .
For if not, then an outermost (i@ — d H) arc of intersection could be slid to the other
side ofd H, either connecting two arc componentsfof d H or creating a single closed
component which can then be eliminated as above.

Consider anE-outermost arcs of E N dH, cutting off of a diskE’ from E. If
E’ C M — H then useE’ to isotope an essential arc ¢f — H into Q. This move cuts
Y NdH along an arc, and so decreases(Y N9 H) by one. Any closed curve ifH NY
that is essential after the cut was essential befor@d, /80 Y remains incompressible in
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Y. If the 9-compression creates an inessential curvefih (necessarily bounding a disk
in 9 H NY) then that curve must also be inessentiabinby strong irreducibility, so can
be isotoped intd7. The net result is to isotope an annulus comporeof Q — H across

a parallel annulus component 8fnN d H and into H. In any case, this reduces the pair
(—=x(YNaH),|d0H N Q). MoreoverF N H remains incompressible ik~ N H. To see
that this is true even in the case when an anndliss pushed across, note that the isotopy
of A can be undone by pushing the coretdfo 3 H and across along an annulBsc X~
that has one end anH and the othero®@ N H. If F N H compressed iX~ N H then the
compressing disk would necessarily intersBand all components of intersection would
be arcs inB with both ends onF N H. An outermost (inB) such arc could be used to
alter the compressing disk, eventually creating a compressing digkfoH in H that is
disjoint from B, a contradiction. So ultimately, all the inductive hypotheses still apply,
may now be slid and isotoped into place, either in a collection of meridian disisin
dH — A. Then push the annulusback acrosd H. Since the push is acro&s N d H this
move does not affect the positioning of arcsfafwhich lie in Y *.

The hard case is wheli’ C H, since therd E’ may run along parts of". (See Fig. 4.)
The idea is to mimic the proof of Theorem 2.1, usiAginstead ofE. There are two
important differences: The subascC 9E’ lies ondH (so components of’ N A may
have boundary points ohc d H). And there is no guarantee th&E’ passes over all (or
indeed any) of the arcs df.

First mimic the proof of Lemma 1.2 to slide and isotope edgeis tiroughM (perhaps
temporarily leavingH) in order to minimize transverse intersections I6f0 A. The
situation is complicated by the fact that arcsfN A may have ends o8. Just as in
the proof of Lemma 1.2, there is a poiate A N I" so that any arc of intersection &f
with A that is incident tav (and there must be at least two, by strong irreducibility) has its
other end either o8 H or on F' or on another pointofA N I".
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Consider an arc oft N E which has an end at. The other end either also lies 6 or
on an arc componertof 9 H N E. In either case, it, and possibly a subaraptut off a
sector fromk that is disjoint frome. Choose an outermost such sectoEinThis is a disk
whose boundary consists of a subarc@ whose interior is disjoint fromw (since the
sector is outermost of those that intersegt an arc componentof £ N A, and possibly
a subaracg of a component 0 H N E. If both ends ok lie ond E, soxg is not used, then
the sector can be used to slide and isotope a segment of the edge contasorifat it
lies on A (the first case) and so can be isotoped off\gfreducingA N I" by at least one.
In the other case, first usg to sequentially pipe the disk4 across the end ofp at o E.
After this maneuver, the ends ofie on 9 E and we are done as before.

Now proceed much as in the proof of Theorem 2.1: Consldeass the union of a graph
I’ _ disjoint from A and a collection of arcst which lie entirely in A or entirely in
dH — A. We start withA = ¢ and the goal is to isotope and slide to achidve = @.
First maximizel A|. Let E/ C H be an outermost sector cut off By from E as above.

Casel. dE’ traverses (i.e., intersects the meridian) of every edgé.in

In this case, apply a variant of the argument in Theorem 2.1, with minor changes made
at the beginning of the argument: After piping the disksalong subarcs of the arc
8 =0E’ N oH, we can assume thd’ N A consists entirely of arcs with both ends on
ONH.

Let X be those arcs imt N E” which have the property that each cuts off a subsector
which does not contai, but does intersedt _. If X' is non-empty, let- be outermost in
E’ among arcs o, and letEg be the disk ofE’ — A adjacent tar on the X' -outermost
side. If ¥ is empty, then all arcs 0§ E’ N n(I'~) are contained in the component of
E’ — A that containg. Call this diskEg and leto = §. In either case, the following holds:
n(I'_) N 3dEg N JE is non-empty, andEg — (0E’ U o) is a possibly empty collection
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of arcs each of which cuts off from” a disk disjoint fromn(I"_). Let E” be the disk
containingEg which is cut off fromE by o, so thatE” is the union ofEg with a (possibly
empty) collection of disks o’ — A, each of which is disjoint fromy (1" ).

Now, if there were an edge of I" _ with |0 EoNn(y)| =1, thenE” > Eq could be used
to slidey across untily becames. After the slide, the place of in the decomposition
I' =T _U A can be changed from"_ to A, increasing A|. From this contradiction we
conclude that each tube gfI"_) which intersects$ Eg intersects it multiple times. Now
the proof in this case concludes exactly as in Theorem 2.1.

Case2. 9 E’ fails to traverse some edge in_. Let I’ be the subgraph of _ whose
edges are disjoint froME’. Firstd-compresg) to d H via E’. This decreases x (YNNI H)
but leaved™ untouched. The inductive hypothesis then allawWdo be slid into place. We
need to ascertain that after this process, one can unda-toenpression in a way that
returns A to its former position, so thatl is, in the end, augmented hy’, completing
the inductive step. In order to accomplish this convincingly, we will add a further level of
induction, on the number of arcs ifY N A.

If E'’N A = then firstd-compressD N H along E’, decreasing-x (Y N dH). Then
apply the inductive step to isotog@ until it consists of arcs i N Y+ andoH NY+.
The d-compression viak’ can then be undone via &compressing disk that lies in
X~ N (M — H). Since thed-compression only crosses~ N dH it has no effect on
I'noHCY™T.

If E'N A # @, begin with two technical simplifications. Pip& along end segments of
the arcs so that afterwards, each arc Bf N A has both ends o. Then an outermost
sector ofE’ cut off by A can be used to isotog2N H to reducg E' N A|. After this move,
the inductive assumption allows us to isotadpeuntil it liesin ANY T or (0H — A)NY ™.
Then the first move 0O N H acrossY N A can be undone by a push acrdggs N A, and
this has no effect on the arcs Bf that have been moved 6t N A or (0H — A)NYT. O

4. Intersections as unknotted surfaces

Definition 4.1. A spine of a surface is a 1-complex®’ properly imbedded irP so that
each componenta? — (X' U d P) is an open disk.

Definition 4.2. A surfaceP, d P properly imbedded in a handlebodf, d H is unknotted
if for some spineX of P, H — X' is also a handlebody.

The notion of unknotted surface in a compression body was introduced (without the
terminology) in [5, Section 4]. It is shown there that in fact the choice of spine is irrelevant;
if P is unknotted using one spine, it is unknotted for all spines. Furthermore it is shown
that incompressible surfaces i are always unknotted, as are weakly incompressible
bicompressible surfaces without closed component. Indeed, the entire discussion there is
generalized to surfaces in compression bodies.
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The terminology allows us to incorporate Theorem 2.1 and Proposition 3.2 into a general
statement about how a splitting surface of a strongly irreducible splittingk Ug Y
intersects a handlebody c M.

Theorem 4.3. Let X Up Y be a strongly irreducible Heegaard splitting of3amanifold
M containing a handlebod¥l . Suppose each curve @ N 9 H is essential in bottp and
dH and the surface8 H N X anddH NY are incompressible i’k and Y respectively.
ThenQ N H is unknotted inA .

Proof. If Q N H is incompressible inH, this follows immediately from [5, Proposi-
tion 4.2]. If Q N H compresses int& N H, say, the result follows from Proposition 3.2, as
follows.

Choose a complete meridian systenof H with the property that each ball i — A is
incident to each disk iml on at most one side. An early step in the proof of Proposition 3.2
is to isotope so that each componentfof A is a disk (so in particulaf’ N A is a spine
of F), and this property is not affected by the piping 4f The addition toF of those
tubes ofA that lie in A has the effect of banding together these disk&ir A, and, by
[2, Lemma 1.1] (the precursor to Lemma 1.5) this banding of disks cannot create a more
complicated surface than a disk. So even after these tubes are attached the inteEsection
of the surface withA is still a spine of the surface. The remaining tubes that need to be
attached to obtai® N H are tubes parallel to arcs if — A. For each such tube, augment
X by an arc running once through the tube and dowh#bat each end. The result in the
complement ofY is again to band two disks together to get another disk. At the end of
the processy remains a spine of the surface, which is now allofi H. Moreover, each
arc of X is parallel to an arc i H, either because it lies i or by construction. Hence
H —n(X) is a handlebody. O
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