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Abstract

We study the topological properties of aggregation maps combining individuals’ preferences over n alternatives, with preference

expressed by a real-valued, n-dimensional utility vector u defined on an interval scale. Since any such utility vector is specified only

up to arbitrary affine transformations, the space of utility vectors Rn may be partitioned into equivalence classes of the form

fauþ b1 j aARþ
0 ; bARg: The quotient space, denoted T ; is shown to be the union of the (n � 2)-dimensional sphere denoted S with

the singleton f0g; which corresponds to indifference or null preference. The topology of T is non-Hausdorff, placing it outside the

scope of most existing theory (e.g., J. Econom. Theory 31 (1983) 68–87.). We then investigate the existence and nature of continuous

aggregation maps under the four scenarios of allowing or disallowing null preference both in individual and in social choice, i.e.

maps f : P �?� P-Q with P;QAfT ;Sg: We show that there exist continuous, anonymous, unanimous aggregation maps iff the

outcome space includes the null point (i.e., Q ¼ T), and provide a simple well-behaved example for the case f : S �?� S-T :
Similar examples exist for f : T �?� T-T ; but these and all other maps have a property of always either over- or under-

allocating influence to each voter (in a specific manner). We conclude that there exist acceptable aggregation rules if and only if null

preference is allowed for the society but not for the individual.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The field of social choice theory is concerned with
methods for aggregating the preferences of individuals
in a population into a social preference or outcome. One
common example of such a problem is popular
elections, in which voters’ preferences over candidates
or political parties, given as favorites, approved subsets,
rankings, or scores, are used to determine the winner or
the relative power of the contenders. The field has been
largely motivated by impossibility results showing that
certain normatively desirable characteristics of the
procedure for preference aggregation turn out to be
incompatible. For instance Arrow (1963) showed that,
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whenever there are at least three alternatives (candi-
dates), the only aggregation rules simultaneously satis-
fying independence of irrelevant alternatives (IR) and
the Pareto principle are simple dictatorships. The
mathematical characterization of such impossibilities
has since been evolved from Arrow’s combinatorial
approach to a topological one where the space of
preferences is endowed with a topological structure (see
Lauwers, 2000 for a thorough review).

In topological choice theory, the additional structural
information associated with the set of preferences
enriches the mathematical content of the problem and
allows for definition of further desirable properties of
aggregation rules. For example, one often considers the
continuity of aggregation maps, which corresponds to
graceful dependence of the aggregated outcome on the
preferences of individuals, which are often assumed to
be noisy or imperfectly measured. This continuity
property plays a similar role to that of the IR axiom,
as a consistency requirement among the outcomes
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associated with different preference profiles (Lauwers,
2000). A further concept provided by the topological
approach is that of homotopy (continuous deformation)
between maps, which is a natural analog to continuous
social change (i.e., change of the voting system).

Following in the Arrovian spirit, the central focus in
the field of topological social choice is the question of
when there exist continuous aggregation functions that
satisfy certain desirable axioms. The most commonly
investigated axioms, respective analogs to non-dictator-
ship and Pareto, are anonymity and respect of
unanimity (to be defined below). In a now classic
theorem, Chichilnisky and Heal (1983; see also Chichil-
nisky, 1980, 1982a, 1996) showed that under certain
technical assumptions there exist continuous aggrega-
tion functions with these two properties if and only if the
topological space of preferences is contractible. A
contractible space is one that can be continuously
deformed through itself into a point; intuitively it has
no ‘holes’. Baryshnikov (1997) has since made progress
in unifying the topological and combinatorial ap-
proaches by deriving Arrow’s (1963) theorem as a
corollary to that of Chichilnisky and Heal (1983), as a
consequence of the non-contractibility of the space of
total orders of a finite set of alternatives under a suitable
topology.

In characterizing aggregation rules, social choice
theories have focused either on ordinal preferences,
i.e. without information regarding the magnitude or
intensity of preference for any alternative over another,
or on cardinal preferences, in which the utility asso-
ciated with each alternative is taken into account. In the
latter case, one standard approach is to represent
individual preferences by real-valued functions over
the alternatives, either deterministically (e.g., Harsanyi,
1955; Selinger, 1986; Coulhon & Mongin, 1989) or
probabilistically (Marley, 1992). For instance Coulhon
and Mongin (1989), in an extension of Harsanyi’s (1955)
original theorem, show that under this framework any
aggregation function satisfying the Pareto principle and
a strong version of IR must take the form of a linear
combination over individuals’ utilities. However, one
drawback of such an approach is that it fails to take into
account the affine invariance property of utility.
According to the axiomatization of von Neumann and
Morgenstern (1944), an individual’s utility function is
only inferrable from his or her preferences among pairs
of lotteries. Because such choice behavior is invariant
under any positive linear transformation of the utility
function, utility is properly defined on an interval scale.
That is, for any utility vector u over n alternatives, and
any aARþ

0 (the strictly positive reals) and bAR; the
utilities represented by u and by auþ b1 are one and the
same (here 1 represents the constant vector ½1;y; 1
).
This defines an equivalence relation among utility
functions, and significantly changes the structure of
the space of underlying utilities. This equivalence
relation renders meaningless such axioms as Coulhon
and Mongin’s (1989) version of IR, which states that the
societal utility of a particular outcome is dependent only
on the individuals’ utilities for that outcome. Proper
treatment of cardinal preference aggregation must take
the equivalence relation inherent in utilities into
account, either by requiring the aggregation function
to be invariant under positive linear transformations of
the inputs (D’Aspremont & Gevers, 1977) or by defining
preferences to be equivalence classes rather than
individual elements of Rn (Kalai & Schmeidler, 1977;
Chichilnisky, 1985).

Just as it is imperative to properly consider the
measurement scale of utility functions, it is also crucial
to carefully consider the role of null preference, i.e. total
indifference among the alternatives. In their founda-
tional work, Chichilnisky (1980) and Chichilnisky and
Heal (1983) explicitly ruled out the null preference from
consideration. Chichilnisky (1982a) treats the case of
vanishing ordinal preferences, but only as an isolated
component of the preference space. This topology,
which we will argue is an inadequate model of
preferences, in effect reduces the problem to the case
where the null point is excluded. In her analysis of
cardinal preference aggregation, Chichilnisky (1985)
follows the same approach taken here, and considers
utilities to be defined as equivalence classes of real-
valued functions under positive linear translations, with
null preference corresponding to the class of constant
functions. As in her treatment of ordinal utility
(Chichilnisky, 1982a), the topology Chichilnisky (1985)
derives for these equivalence classes is disconnected,
with the null point an isolated component. Under this
topology, the resolution theorem of Chichilnisky and
Heal (1983) implies that there do not exist continuous,
anonymous, unanimous aggregation functions for the
space of cardinal preferences. However, as we argue
below, Chichilnisky’s (1985) topology for utilities is
arbitrary and poorly motivated. We believe that the
correspondence between these two separate attempts to
topologize the null preference speaks to the complexity
inherent in the concept of perfect indifference, as will be
further illustrated by the subtlety of the topological
results to follow.

In the present article, we revisit the question of
topological aggregation of cardinal preferences (utili-
ties), with specific attention to the role of the null
preference. We begin by deriving the topology of the
space of utilities over a finite set of alternatives, defined
as a quotient space of the space of all real-valued
functions over these alternatives. The topology that
arises from our analysis is the same as one briefly
considered by Le Breton and Uriarte (1990), and differs
from that assumed in previous characterizations of both
cardinal preferences (Chichilnisky, 1985) and ordinal
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preferences (Chichilnisky, 1982a), specifically in terms of
the role of the null point. We then carry out a detailed
analysis of the role of the null preference in determining
the existence and nature of aggregation maps, by
studying the types of maps that can arise as a function
of whether indifference is allowed for individual
preferences, social outcomes, or both. Our central result
is a possibility result, complementary to previous
impossibility theorems, stating that there exist contin-
uous, anonymous aggregation maps that respect unani-
mity if and only if the null preference is allowed for the
society. We further find that, in the case of null
preference being allowed for both the society and
individuals, all continuous aggregation maps exhibit
the following pathology: For every voter x and every
profile of preferences for the remaining voters, either x’s
preference has no effect on the aggregated outcome, or
else a null preference for x causes the societal preference
to be null as well. However, when null preference is
allowed for the society but not for the individual, a
simple example can be given of an aggregation map
satisfying all of the desirable axioms we consider. We
conclude that there exist acceptable aggregation rules
only in this latter case.
2. Notation and background

Previous work (e.g., Chichilnisky, 1980, 1982a, 1982b,
1996; Chichilnisky & Heal, 1983), has considered
topological spaces P representing the set of preferences
applicable to a given choice situation. Though P is
generally taken to be a space of orderings over some
manifold of outcomes, much of the theory applies to an
arbitrary topological space. The primary goal in most
research of this type is to determine under what
circumstances individual preferences can be aggregated
in a manner satisfying a given set of axioms.

2.1. Definitions

We consider preferences among a fixed set of n

alternatives. The topological space of individual pre-
ferences is denoted P: When the space of social
preferences differs, it is denoted Q: A preference pAP

(or Q) induces a weak ordering %p on outcomes, where
x%py indicates that y is at least as preferred as x under
the preference p: We do not identify p with %p because
%p may not contain all of the information in p; e.g.,
under some interpretations p also contains information
about strength of preference. Null preference is denoted
as O.

A profile p ¼ ð p1;y; pkÞ of preferences for k indivi-
duals is an element of Pk; the k-fold Cartesian product
of P:
Aggregation functions are defined as maps f : Pk-Q;
assigning to each profile of individual preferences a
preference for the society as a whole.

An aggregation function f is anonymous iff it is
invariant under arbitrary permutations of its arguments
(voters). Thus for all bijections p : f1;y; kg-
f1;y; kg:

f ð p1;y; pkÞ ¼ f ð ppð1Þ;y; ppðkÞÞ:

This condition is strictly stronger than Arrow’s non-
dictatorship requirement; whereas non-dictatorship still
allows for strong imbalances in the roles of the voters,
anonymity implies perfect symmetry.

An aggregation function f respects unanimity

(or is unanimous) iff, whenever all voters have the
same preference, f returns that preference; i.e.,
8pAP ½ f ð p;y; pÞ ¼ p].

Chichilnisky functions are continuous aggregation
maps that are anonymous and respect unanimity.

An additional axiom that is desirable to require of
maps whose ranges include the null outcome is
efficiency. If the domain is equipped with a measure m
then we can define an efficient aggregation map to be
one for which mð f �1ð0ÞÞ ¼ 0; that is the set of profiles
sent to 0 has measure zero. Under reasonable assump-
tions about the preferences of the individual voters
(e.g., that their a priori distribution is absolutely
continuous with respect to m), the probability of a null
outcome under an efficient aggregation rule will be zero.
In the subsequent analyses wherein we treat individual
choice spaces P given by a sphere with the possible
inclusion of a null point, the measure assumed on
Pk is the product measure derived from the standard
(Lebesgue) measure l on the sphere, with lðf0gÞ90: It
should be noted though that the particular choice of
measure is largely inconsequential, as any two measures
that are absolutely continuous with respect to each other
will yield the same efficiency requirement.

The Pareto principle states that f respects unanimity
in any binary comparison. That is, for any pair of
outcomes x; y:

8i½x%pi
y
 ) x%f ðpÞy:

In the case of linear preferences, where P reduces either
to a sphere Sn�2 or to Sn�2,f0g (see below), the Pareto
principle is equivalent to the following constraint:

8qAS : 8i½ pi � qX0
 ) f ðpÞ � qX0;

where P is taken to be embedded in Rn; as described
below, for evaluation of inner products (denoted by
‘‘�’’). It is straightforward to verify that this principle
implies the respect of unanimity axiom.

Weak positive association (WPA) is a technical axiom
that does not play a major role in the present analyses,
but is relevant to past results (e.g., Chichilnisky, 1982b).
An aggregation function f satisfies WPA iff for all
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profiles p satisfying f ðpÞ ¼ �pi for some i; f ð�pi;y;
�pi; pi;�pi;y;�piÞapi: Here, �pi represents the point
antipodal to pi; when P ¼ S: Thus WPA states that
whenever the outcome is exactly opposite the preference
of one individual, a switch of everyone else’s preference
to that opposite outcome (with the ith voter remaining
unchanged) cannot change the result to match the will of
the given voter.

A dictatorship is a projection onto the preference of a
single voter, i.e. an aggregation function f for which
(i 8pAPk½ f ðpÞ ¼ pi
:

As previously mentioned, homotopy between aggre-
gation maps can be viewed as continuous social change,
thus providing a kind of equivalence between maps
(Chichilnisky, 1980). However, the concept of homo-
topy can be a quite broad one; for instance, if the image
space is contractible then all maps are homotopic to one
another. Baryshnikov (2000) refines the idea of homo-
topy to that of isotopy, which he defines as a homotopy
preserving certain properties of the boundary maps. For
instance, a Pareto-isotopy between Pareto maps is a
homotopy for which all intermediate maps are Pareto as
well. The restriction from homotopy to isotopy is
desirable because it recognizes the constitutional con-
straints that are already being assumed for the end-maps
in question.

2.2. Past results on aggregation

The question of when there exist Chichilnisky
aggregation functions, i.e. maps that are continuous
and anonymous and that respect unanimity, was
answered by the resolution theorem of Chichilnisky
and Heal (1983), so named because it provided a
necessary and sufficient condition for when the social
choice paradox can be resolved.

Resolution Theorem (Chichilnisky & Heal, 1983). As-

suming the preference space P is a parafinite CW

complex,1 there exist Chichilnisky functions f : Pk-P

for all kXN if and only if P is contractible.

A more direct analog to Arrow’s (1963) impossibility
theorem is the following:

Theorem (Chichilnisky, 1982b). Any continuous aggre-

gation function f that satisfies the WPA and Pareto

conditions is homotopic to a dictatorship.

Previous work by Chichilnisky (1980, 1982a) and
Chichilnisky and Heal (1983) has considered as choice
1 A CW complex is an extension of the notion of a simplicial

complex, and is composed of simplices of possibly unbounded

dimensionalities. See Chichilnisky and Heal (1983) or Maunder

(1970) for a complete definition.
space all ordinal preferences over some convex manifold
of outcomes, e.g. the m-dimensional ball Bm: Ordinal
preferences are viewed as equivalence classes of real-
valued continuous functions u on outcomes, with uBu0

iff 8x; yABm½uðxÞXuðyÞ3u0ðxÞXu0ðyÞ
 (Chichilnisky,
1980). This equivalence relation allows each preference
to be represented by its corresponding set of isoprefer-
ence classes within Bm: Under assumption of differ-
entiability and non-satiation of the preference, these
isopreference classes are co-dimension 1 submanifolds,
and thus they give a foliation of the outcome space that
can be represented by its unit normal vector field
(Chichilnisky, 1980). In other words, each preference
can be represented by the vector field of its normalized
gradient (the non-satiation assumption implies the
gradient is everywhere non-zero). When preferences
are restricted to be linear, gradients are constant, and P

is equal to the normalized (non-zero) tangent space of
Bm at any one point, i.e. the sphere Sm�1: Because the
sphere is not contractible, there exist no Chichilnisky
aggregation rules by the resolution theorem.

2.3. Past results on topologizing the null preference

Chichilnisky (1982a) extends the above treatment to
include vanishing preference gradients. In this case the
set of ordinal preferences has a local structure (at all
points of the outcome manifold) given by Sm�1,f0g:
The question of the existence of Chichilnisky functions
on this preference space thus reduces (after some careful
logic) to that of Chichilnisky functions
f : ðSm�1,f0gÞk-Sm�1,f0g: Under the closed conver-
gence topology used by Chichilnisky (1982a), Sm�1,f0g
inherits the Euclidean topology from its embedding in
Rm; and thus f0g is an open set. Under this topology the
outcome space is disconnected, which leads to little
flexibility of the aggregation function; one can simply
consider the restriction of the map to the connected
component ðSm�1Þk; infer by respect of unanimity that
its image must lie in Sm�1; and derive the impossibility
result in the standard fashion (Chichilnisky, 1982a).
However, Le Breton and Uriarte (1990) criticize the
closed convergence topology as unnatural, and state
that under an alternative topology, in which f0g is not
an open set, the impossibility result does not hold.

Another treatment of topological preference aggrega-
tion that addresses the null preference is Chichilnisky’s
(1985) analysis of cardinal (utility-based) preferences. As
described above, such preferences are defined as
equivalence classes of Rn; where the elements uARn

represent real-valued functions over a finite set of
alternatives. The equivalence relation is induced by the
set of all positive linear transformations, fu/auþ
b1 j aARþ

0 ; bARg: In evaluating the topological space of
equivalence classes, Chichilnisky (1985) follows Kalai
and Schmeidler (1977) in normalizing every utility
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function to have least and greatest components equal to
0 and 1, respectively. Those functions b1 that give equal
value to all alternatives are an exception and are
mapped to the constant function 0: The set of
equivalence classes (i.e., the set of distinguishable
utilities) can now be represented by a subset of Rn that
contains exactly one member of each class:

fuARn j 8i ½uiA½0; 1

 & (j; k ½uj ¼ 0; uk ¼ 1
g,f0g:

As a subset of Rn; this space is homeomorphic to
Sn�2,f0g; with the same topology as considered in
Chichilnisky (1982a). Thus Chichilnisky (1985) con-
cludes that there do not exist adequate aggregation
functions for the space of cardinal preferences over a
finite set of outcomes.

In our view, Chichilnisky’s (1985) and Kalai and
Schmeidler’s (1977)2 error was in inferring that the
(quotient) topology of the equivalence classes is the
same as that inherited by the embedding of the above
representative set in the original space. In general the
latter topology is in fact larger, i.e. it has more open
(and closed) sets, and can depend on the choice of
representative set. For example, the equivalence classes
of utilities can also be represented by:

fuARn j (j; k ½uj ¼ 0; uk ¼ k; 8iok ½uiA½0; k

;
8i4k ½uiA½0; kÞ


g,f0g:

This representation can be achieved from the earlier one
by multiplying each non-zero element u by maxfk j uk ¼
1g: As a subset of Rn this space is a disjoint union of
k ðn � 2Þ-dimensional partially closed disks and the
singleton f0g: As all components are contractible, the
space admits Chichilnisky aggregators. Thus, it is clear
that the representative-set approach gives inconsistent
results, and that in order to determine the proper
topological structure on the space of utilities we must
derive the quotient topology directly. We turn now to
such a derivation.
(C) u~ a·u + b·1  (D) T1 = R3 /~ I
3. Topological characterization of utility

3.1. Utility as cardinal preference

In general, the topological space of n-ary observations
on a given measurement scale can be derived as a
quotient space of Rn; with equivalence defined by the
characteristic automorphism group of the measurement
scale. That is, for any automorphism group G of the
2 In the proof of their central theorem, Kalai and Schmeidler (1977)

only use their topology to imply that certain sequences of profiles

converge (see their Lemma 3). Since weakening the topology of a space

can only increase the class of convergent sequences, their result still

holds in the topology we derive here.
reals, we can define an equivalence relation on Rn by

xBGy3(gAG; 8i ½gðxiÞ ¼ yi
:

If this condition is satisfied, then x and y are
indistinguishable as n-ary observations under the
measurement scale defined by G: Thus the space of
n-ary observations is given by Rn=BG:

In applying this analysis to the interval scale, the
relevant automorphism group is the set of affine
transformations I ¼ fu/auþ b1 j aARþ

0 ; bARg: Thus
we have uBI auþ b1 for all aARþ

0 ; bAR and uARn:
In order to see how Rn collapses under the equiva-

lence relation BI ; we first write I as the product (under
functional composition) of two subgroups:

I ¼ fu/au j aARþ
0 g � fu/uþ b1 j bARg:

The first of these subgroups, corresponding to scalar
invariance, defines the ratio scale. The second corre-
sponds to the additional translational invariance present
in the interval scale. The equivalence classes under each
of these two subgroups for the case n ¼ 3 are shown
graphically in Figs. 1A and B. The scalar subgroup
equates points lying on any ray from the origin, whereas
the translation subgroup equates points differing by any
multiple of the diagonal vector 1: When the full
automorphism group is considered, these two sets of
equivalence classes ‘‘merge’’ to yield the partition shown
in Fig. 1C. As is evident by the diagram, the structure of
these equivalence classes is that of a circle S1 with an
additional point to be denoted 0 (Fig. 1D). The 0 point
corresponds to the diagonal, i.e. the equivalence class of
functions that rate all three alternatives equally. (Note
that the operations of scalar multiplication and transla-
tion are redundant for this unique unidimensional class.)
Fig. 1. Equivalence classes in R3 under linear transformations. (A)

Equivalence under scalar multiplication, which gives the ratio scale of

measurement. (B) Equivalence under constant-vector (diagonal)

translation. (C) Equivalence under the full group I of linear

transformations, defining the interval scale. (D) The quotient space

T1 ¼ R3=BI :
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We refer to this space, endowed with the quotient
topology inherited from R3; as T1:

A crucial observation regarding the topology of T1

concerns the point 0 ¼ /0S; and can be illustrated with
reference to the equivalence class partition of R3 in Fig.
1C. Given an arbitrary point b1A/0S; any open
neighborhood of b1 will intersect all other equivalence
classes. In this way, /0S can be seen to be ‘‘arbitrarily
close’’ to every other class. However, the reverse
statement is false; in fact, any member of an equivalence
class other than /0S will be uniformly bounded away
from all elements of /0S: In the topology of T1; these
observations translate to the fact that f0g is closed but
not open, and in fact the only open neighborhood of 0 is
the entire space T1: As we show next, this fact
generalizes to Tm for all m:

Proposition 1 (Characterization of utility space). The

topological space of utilities over n alternatives, defined as

Rn=BI ; is homeomorphic to Tn�29Sn�2,f0g; with

topology in terms of open sets given by

TðTn�2Þ ¼ TðSn�2Þ,fTn�2g:

That is, the open sets of Tn�2 are precisely the open sets of

Sn�2; along with the entire space Tn�2: In particular, Sn�2

is open in Tn�2 (and hence f0g is closed), but the only

open neighborhood of 0 is Tn�2:

Proof. Our first step in characterizing the quotient space
will be to assign to each equivalence class a representa-
tive member. We will at times in this paper refer to
certain utilities by their representatives, thereby con-
sidering the space of utilities as embedded in Rn ( for
instance for convenience in defining certain aggregation
functions), although we will not equate the topology of
utility space with the topology implied by this embed-
ding.

Consider any uARn � R1; that is with uiauj for some
i and j: Define a representative #u of the equivalence class
/uS as follows: Define bu ¼ �1

n

P
ui and au ¼ ð

P
ðui þ

buÞ2Þ�1=2; and let û ¼ au uþ aubu1: Clearly #uBIu; so
#uA/uS: Furthermore, this normalizing operation can
be seen to be invariant under positive linear transforma-
tion, i.e. û ¼ dauþ b1auþ b1 for any aARþ

0 ; bAR: Therefore the
mapping /uS/#u is well defined. Next observe that for
all uARn � R1; #u lies in the intersection of the hyper-
plane fvARn j

P
vi ¼ 0g with the unit sphere

fvARn j
P

v2
i ¼ 1g: This intersection is an ðn � 2Þ-

dimensional sphere which we identify with the abstract
sphere Sn�2: Conversely, every member of this sphere is
the representative for its equivalence class, since uASn�2

leads to bu ¼ 0 and au ¼ 1; implying #u ¼ u: Therefore
the set of representatives f#u j uARn � R1g corresponds
precisely to the sphere Sn�2: If we now define cb1b1 ¼ 0 for
all bAR; and identify the origin 0 with the null
preference 0; we obtain a 1–1 correspondence between
Sn�2, and the elements of Rn=BI :

To complete the proof we must determine the
topology of the quotient space. Quotient topology is
defined as the weak topology induced by the quotient
map L; which sends points in Rn to their equivalence
classes in Tn�2: In other words, ACTn�2 is open (closed)
iff L�1ðAÞ is open (closed) in Rn: Consider first a closed
set A in the quotient space Tn�2: Since Sn�2, is closed
with a subset of Rn; so is ðSn�2,Þ-L�1ðAÞ ¼ A: Thus
the quotient topology is contained in the topology
induced by the embedding. The open sets of this latter
topology are B and B,f0g for all B open in Sn�2:
However, the sets B,f0g for all BD! Sn�2 (including
B ¼ |) are not open in Tn�2 by the following argument.
Take pASn�2 � B: The pre-image L�1ðB,f0gÞ contains
the point 0 but not Ep for any E40: The distance from 0

to Ep is equal to E; i.e. 0 is arbitrarily close to points
outside L�1ðB,f0gÞ: Therefore L�1ðB,f0gÞ cannot be
open.

We have now proven one direction of the claim: The
topology given in the statement of the proposition
contains the true topology of Tn�2: Since L�1ðTn�2Þ ¼
Rn is open, it remains to show that L�1ðBÞ is open in Rn

for all B open in Sn�2: It is sufficient to prove this
statement for all elements of the sub-basis fq̌ j qASn�2g;
where q̌ ¼ fpASn�2 j p � q40g: For any q; L�1ðq̌Þ ¼
fuARn j u � q40g; which is an open half-space in Rn:
Thus the members of the sub-basis for the topology of
Sn�2 are all open in Tn�2: &

Two properties of the topology of Tn�2 should be
emphasized. First, Tn�2 is non-Hausdorff: Because the
only open neighborhood of 0 is all of Tn�2; 0 cannot
be ‘‘separated’’ from any other point. Second, Tn�2 is
contractible, as can be seen from the contraction of Rn

given by FtðuÞ ¼ ð1 � tÞu for tA½0; 1
: When projected
along the quotient map L; F induces the following
contraction of Tn�2:

Ctð pÞ ¼
p for to1;

0 for t ¼ 1:

�
This contraction looks like a sudden jump of all points
to 0, and is continuous because of the non-Hausdorff
topology of Tn�2:

Because the contributions of this article depend
crucially on the topological properties of indifference,
some additional comments are in order at this point.
The sole purpose of defining a topology on a preference
space is to determine what qualifies as a continuous map
(both for aggregation rules and for homotopies between
them). The purpose of the continuity requirement is, in
turn, to prevent hypersensitivities in the aggregation rule
by ensuring that small changes in the inputs do not
cause a large change in the output. This is the primary
guiding principle behind topological social choice
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3 To simplify notation, the superscript n � 2 indicating the cardin-

ality of the set of alternatives will often be suppressed. A superscript k

will indicate the Cartesian product of a space, indexed over the set of k

voters.
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theory. Therefore, in evaluating the descriptive rele-
vance of a particular topology, one must consider what
is meant by a ‘‘small change.’’ In the case of null
preference, it should be apparent that an arbitrarily
small change is sufficient to swing the voter’s preference
in any given direction. For example, an individual who
was perfectly indifferent between alternatives A, B, and
C could be induced to prefer A over the other two by
offering to pay her as little as 1b if A were the outcome.
Furthermore, probabilistically distributing the penny
between A and B (i.e., setting some probability that B
will bring the payoff instead of A) could achieve a
ranking of A over B over C with the ratio of the strength
of preference of A over B to that of B over C taking on
any value desired. Because arbitrarily small perturba-
tions of this type are able to induce a switch from
indifference to any other preference, such switches in
preference should be regarded as arbitrarily small as
well. This reasoning is captured in the present quotient-
space approach, and is formalized within the topology
of Tn�2:

3.2. Utilities as ordinal preferences in a probability

simplex

An alternative representation of the space of utilities
over n alternatives comes from the definition of utility as
ordinal preference over lotteries (von Neumann &
Morgenstern, 1944). Specifically, consider the ðn � 1Þ-
dimensional simplex M of probability distributions over
the alternatives and define a utility as a preference over
this space. The axioms of von Neumann and Morgen-
stern (1944) imply that these preferences must be linear.
As in Chichilnisky (1980, 1982a), preferences can thus
be identified with their normalized (constant) gradients,
implying a correspondence between the space of utilities
and Sn�2,f0g: This unifies the present treatment of
cardinal utilities with previous work on ordinal utilities
over continuous outcomes spaces (Chichilnisky, 1980,
1982a; Chichilnisky & Heal, 1983).

That this approach yields the same topological space
of preferences as was found above can be seen as
follows. Any utility function on M is determined by the
values it assigns to the n vertices corresponding to the
deterministic outcomes. Thus there is a natural corre-
spondence between such functions and utility vectors
uARn of the sort discussed in the previous section.
Taking the gradient of such a function and then
normalizing the result (when non-zero) corresponds to
imposing equivalence under diagonal translation and
positive scalar multiplication, respectively. Therefore the
probability simplex approach also yields Tn�2 as the
space of utilities over n alternatives.

The equivalence between the two approaches also
illustrates the dual nature of Tn�2 as both the space of
cardinal (i.e., interval scale) preferences over a finite set
of alternatives and the space of linear ordinal prefer-
ences over all probabilistic mixtures of those alterna-
tives. As Baryshnikov (2000) notes, ordinal linear
preferences on Rm can be defined as equivalence classes
in the dual of Rm; with equivalence defined by positive
scalar multiplication. Since this is the equivalence that
defines ratio scale information, and ðRmÞ0CRm; such
preferences can be identified with m-ary ratio scale
observations. As in the probability simplex construction
above (with m ¼ n � 1), when the null preference is
allowed in Baryshnikov’s framework the resulting space
of preferences is Tm�1: Thus in addition to being the
space of interval scale information, T can also be seen as
the space of ratio scale information (on one less
observation).
4. Consequences of null preference for aggregation

The present view of utilities, or cardinal preferences,
as equivalence classes of real-valued functions shows
that the null preference plays a unique role in the
preference space, and that its inclusion changes the
space’s global properties (by making it contractible).
A full treatment of preference aggregation must there-
fore consider all four possibilities according to whether
or not null preference is allowed for individuals and for
the social outcome. Therefore we now consider aggrega-
tion maps f : Pk-Q; with P;QAfSn�2;Tn�2g:3

An alternative, but equivalent, approach to this
problem that does not rely on quotient spaces would
be to impose an invariance property on aggregation
maps, following D’Aspremont and Gevers (1977).
Specifically, we could consider the original ( pre-
quotient) spaces Rn and Rn � R1 and require that an
aggregation map on these spaces be invariant under
separate positive linear transformations of the inputs, up
to positive linear transformation of the output. To that
end, an aggregation map g : Uk-V ; with U ; VAfRn �
R1;Rng; will be called I-invariant whenever gðuÞBI gðvÞ
for all u; vAUk satisfying 8j ½u jBIv

j
: (Here the super-
script indexes voters; BI was defined in Section 3.1.)
This requirement corresponds to the cardinal non-
comparable (CN) axiom of D’Aspremont and Gevers
(1977). We call g I-anonymous iff gðupð1Þ;y; upðkÞÞB
I gðuÞ for all uAUk and all bijections p : f1;y; kg-
f1;y; kg: Similarly, g is I-unanimous iff 8uAU

½gðu;y; uÞBIu
: Finally, the Pareto principle as applied
to g is defined with respect to all pairs of convex
combinations of the alternatives. We now show that,
under these definitions, the question of the existence and
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Fig. 2. Commutative diagram showing the equivalence between I-

invariant maps g : Uk-V and maps on the quotient spaces f : Pk-Q:

U and V are both taken from fRn � R1;Rng; with P and Q their

respective quotient spaces–Sn�2 or Tn�2–under BI : G and L are the

corresponding quotient maps.
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nature of aggregation maps g : Uk-V is equivalent to
that for maps f : Pk-Q via the commutative diagram
shown in Fig. 2.

Proposition 2. Let U ;VAfRn � R1;Rng with P ¼
U=BI and Q ¼ V=BI ; i.e. P;QAfSn�2;Tn�2g: Let

G : Uk-Pk and L : V-Q be the associated quotient

maps (G is the k-fold product of the quotient map from U

to P). For any continuous I-invariant g : Uk-V there

exists a unique f : Pk-Q such that f 3G ¼ L3g: The

converse is true except g is not unique. Furthermore, f is

anonymous, unanimous, and/or Pareto if and only

if g satisfies the corresponding combination of

I-anonymity, I-unanimity, and Pareto.

Proof. Given g; define f by f ðpÞ ¼ LðgðuÞÞ for any
uAG�1ðpÞ: This definition is consistent because g is
I-invariant. For any uAUk we have uAG�1ðGðuÞÞ and
thus f ðGðuÞÞ ¼ LðgðuÞÞ: Therefore f 3G ¼ L3g: If also
f 0
3G ¼ L3g for some f 0; then given any pAPk and some

uAG�1ðpÞ; f 0ðpÞ ¼ f 0ðGðuÞÞ ¼ LðgðuÞÞ ¼ f ðpÞ: Hence
f 0 ¼ f and f is unique. To see that f is continuous, let
A be an arbitrary open set in Q and note that
G�1ð f �1ðAÞÞ ¼ ð f 3GÞ�1ðAÞ ¼ ðL3gÞ�1ðAÞ: The latter
set is open by continuity of L and g; so f �1ðAÞ is open
by definition of the quotient topology on Pk: (Note that
the quotient topology on Pk is the same as the product
topology derived from the quotient topology on P:) For
the converse, observe that any continuous f : Pk-Q

induces a map f 3G : Uk-Q: By the covering map lifting
theorem as applied to L (see, e.g., Vick, 1994, Theorem
4.9), f 3G can be lifted to a continuous map g : Uk-V

with L3g ¼ f 3G provided that ð f 3GÞ
�
ðp1ðUkÞÞC

L�ðp1ðVÞÞ: This condition is trivially satisfied since in
all cases L

�
: p1ðVÞ-p1ðQÞ is surjective (in fact p1ðQÞ ¼
0 except when Q ¼ S1). Equivalence of anonymity,
unanimity, and Pareto between f and g whenever g is
I-invariant and L3g ¼ f 3G can be verified by straight-
forward calculations. &

4.1. T �?� T-T

In the case where null preference is allowed both for
individuals and for the society, there exist continuous,
anonymous aggregation maps that respect unanimity.
An example is the following map:

f ðpÞ ¼

P
pi

jj
P

pijj
if

P
pia0 & 8i½ pia0
;

0 otherwise:

8<
:

This map returns the normalized average of all
component preferences, where Tn�2 � f0g ¼ Sn�2 is
embedded in Rn for the purposes of summation and
scaling (see Section 3.1). The outcome is 0 whenever the
profiles sum to 0 or any individual preference is 0. This
function is easily seen to be anonymous, unanimous,
and Pareto. However, the rule is still problematic, as
indifference for any single voter nullifies the entire
election. In fact, it can be shown that a version of this
pathology will always arise, not just for Chichilnisky
rules but for any continuous map from Tk to T :

Proposition 3. Let f : Tk-T be continuous. Given any

individual j and any profile p�j for the remaining k � 1
voters, define the component map ij ¼ f ðp�j ; �Þ : T-T :
Either ijð0Þ ¼ 0 or else ij is constant. In other words either

the aggregated outcome is null if voter j has no strict

preference, or else j has no influence whatsoever.

Proof. Consider q ¼ f ð p�j; 0Þ and assume qa0: For all
E40 let BEðqÞ denote the open E-ball in S around q

(using the metric inherited from Sn�2CRn). The pre-
image ðijÞ�1ðBEðqÞÞ contains 0 and is open in T (by
continuity of ij), and thus must be equal to T : Therefore
ImðijÞDBEðqÞ: Taking the intersection over all E yields
ImðijÞ ¼ fqg: &

A better intuitive sense for this result can be achieved
by noting the inherent instability in the null preference.
An individual with such a preference can move to any
one of the strict preferences via an infinitesimal
perturbation; this fact is captured in the topology of
T : Since continuity implies that small changes in the
inputs yield small changes in the output, a voter’s switch
between 0 and any other preference must have an
arbitrarily small effect on the social outcome. If this
outcome lies in the sphere, whose topology is locally
Euclidean, then the effect must be zero. Therefore
whenever the rest of the society is able to come to a
definitive conclusion without a strict opinion from the
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voter in question ðijð0Þa0Þ; the preference of that voter
is irrelevant.

4.2. T �?� T-S
Proposition 4. Any continuous map f : Tk-S must be

constant.

Proof. The argument is analogous to that for the proof
of Proposition 3: Since in this case f ð0ÞAS; we have
8e40 ½Imð f ÞCBeð f ð0ÞÞ
 and thus Imð f Þ ¼ f f ð0Þg:
The only additional fact required for the proof to carry
through is that Tk is the only open neighborhood of 0 in
Tk: To see this, consider the basis for the topology on
Tk consisting of sets of the form A1 �?� Ak with Ai

open in T for all i: If PðAÞ denotes the property ‘‘0eA

or A ¼ Tk’’ then all members of the basis satisfy P:
Since P is clearly preserved by arbitrary unions and
finite intersections, all open sets of Tn satisfy P: &

Corollary. There does not exist a continuous map

f : Tk-S that respects unanimity (even ignoring the

profile where all voters are indifferent).

4.3. S �?� S-S

As reviewed already, the case where null preferences
are not admitted has been well studied. Chichilnisky
(1980) shows that there exist no Chichilnisky aggrega-
tors in this case. Chichilnisky (1982b) further shows that
any map satisfying the WPA and Pareto conditions is
homotopic to a dictatorship. Baryshnikov (2000) proves
that this homotopy can be made a Pareto-isotopy, but
that when WPA is dropped there exist Pareto aggrega-
tion functions that are not Pareto-isotopic to dictator-
ships.

4.4. S �?� S-T

The proof of the non-existence of Chichilnisky
aggregators f : Sk-S relies on the degree of the
aggregation map in the homotopy group pn�2ðSn�2Þ
(see Chichilnisky, 1980, 1996). Since T is contractible,
8m ½pmðTÞ ¼ 0
; and such impossibility proofs break
down. As it turns out, in the case of Sk-T there do
exist Chichilnisky aggregation maps. One example is the
averaging map:

fAðpÞ ¼

P
pi

jj
P

pijj
for

P
pia0;

0 for
P

pi ¼ 0:

8<
:

Here summation and scaling are based on the embed-
ding of Sn�2 into Rn as before. The map fA is easily seen
to satisfy every positive axiom defined here, namely
continuity, anonymity, unanimity, efficiency, Pareto,
and WPA. Chichilnisky (1982a) considers but rejects
this map because under her disconnected topology it is
not continuous. The map is also used by Le Breton and
Uriarte (1990) in the context of the T-topology in their
reply to Chichilnisky (1982a), as an example of how the
choice of topology can critically affect the existence of
aggregation maps. Le Breton and Uriarte (1990) also
erroneously provide the averaging map as an example of
an aggregator from Tk to T ; however, the map is not
continuous when 0 is included in the domain.

Contractibility of T implies that any two continuous
maps into T from the same domain must be homotopic.
In order to gain a more fine-grained picture of the space
of maps f : Sk-T we apply Baryshnikov’s (2000)
isotopy approach and investigate when, for any two
maps satisfying some combination of anonymity,
unanimity, Pareto, and efficiency, there exists an isotopy
that preserves that same set of properties. Equivalently,
we can consider the subspaces of maps satisfying each
possible combination of these axioms and ask which
subspaces are connected in the homotopy topology. As
the following proposition asserts, all such subspaces are
connected, implying that even under the stricter
requirements of isotopy all aggregation maps of any
given sub-type are equivalent.

Proposition 5. Let f0; f1 : Sk-T be aggregation maps

satisfying some combination of the axioms of anonymity,
unanimity, Pareto, and efficiency. Then there exists a

homotopy from f0 to f1 for which all intermediate maps

satisfy all of the axioms assumed for f0 and f1:

Proof. Define fðpÞ ¼
P

ði; j Þ jjpi � pjjj; as a measure of
the distance of any profile p from unanimity, and let
M ¼ maxpASk fðpÞ: Assume first that f0 and f1 both
respect unanimity, implying f0ðpÞ ¼ f1ðpÞ whenever
fðpÞ ¼ 0: This fact, together with continuity of f and
jj f0 � f1jj : Sk-R and compactness of Sk; implies
the existence of d40 satisfying 8p ½fðpÞod ) jj f0ðpÞ �
f1ðpÞjjo1
: Note that if fðpÞod then af0ðpÞ þ ð1 �
aÞf1ðpÞa0 for aA½0; 1
: Now define the following
homotopy from f0 to f1:

ftðpÞ ¼

f0ðpÞ; to1
4

or fðpÞ4max

fd; dþ ð4t � 2ÞðM � dÞg;
ð2�4tÞf0ðpÞþð4t�1Þf1ðpÞ

jjð2�4tÞf0ðpÞþð4t�1Þf1ðpÞjj;
1
4
ptp1

2
;fðpÞod;

0; fðpÞ ¼ d; 1
4
ptp1

2
;

0; fðpÞ ¼ dþ ð4t � 2Þ
�ðM � dÞ; 1

2
ptp3

4
;

f1ðpÞ; fðpÞodþ ð4t � 2Þ
�ðM � dÞ; tX1

2
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Fig. 3 gives a schematic description of this homotopy,
which consists of two major phases. First, for all points
p with fðpÞod; the outcome is moved directly from
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M

f0

f1

φ 
(p

)

δ

0 ¼ 1¾
t

½

Fig. 3. Schematic of the homotopy ftðpÞ; which is an anonymous-

unanimous-efficient-Pareto-isotopy whenever the boundary maps

satisfy all four of these axioms. The outcome is defined according to

f0 and f1 in the regions respectively labeled by these maps. The result is

null (0) along the solid line. The shaded region represents a continuous

linear deformation from f0 to f1 in which outcomes are normalized

convex combinations of the values of the two boundary functions.
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f0ðpÞ to f1ðpÞ along the geodesic in S connecting these
two outcomes. This deformation of the map is possible
because the choice of d ensures that all convex
combinations of f0 and f1 in the region fod will avoid
the center of the sphere. Second, a (measure-zero)
boundary dividing a region mapped according to f0

from one mapped according to f1 sweeps across the
profile space, starting at f�1ðdÞ: Points on the boundary
are mapped to 0. The intermediate maps, which are
gluings of f0 and f1 along this closed boundary,
are continuous due to the non-Hausdorff topology of
the outcome space T :

It is straightforward to verify that if both f0 and f1 are
anonymous then all intermediate maps ft are as well;
similar statements hold for efficiency and Pareto. If
either f0 or f1 fails to respect unanimity, an alternative
homotopy can be defined that skips the first phase of
the one described above; this can be achieved by taking
d ¼ 0 in the above homotopy formula. In this simplified
homotopy, the intermediate maps satisfy each of
anonymity, efficiency, and Pareto provided both f0

and f1 do. &
5. Discussion and conclusions

The choice of topology for the space of preferences
can be critical in determining the existence and nature of
aggregation functions, as argued by Le Breton and
Uriarte (1990). Here we have derived the quotient
topology on the space of utilities over a finite set of
alternatives, under the assumption that utilities are only
defined up to interval scale (von Neumann & Morgen-
stern, 1944). Under this topology, the null preference is
in the same connected component as the rest of the
space (as contrasted with previous approaches, e.g.,
Chichilnisky, 1985), and is in fact arbitrarily close to all
other preferences. As a consequence, this space admits
Chichilnisky aggregation functions. Our detailed analy-
sis of the role of the null point showed further that there
exist Chichilnisky functions if and only if null preference
is allowed for the society. However, when individuals
are allowed to be indifferent as well, a pathology arises
whereby for all profiles, every individual is given either
too much influence (the rest of society is unable to reach
a strict preference without a strict preference from that
voter) or else no influence at all. When null preference is
allowed only for the society, simple and well behaved
Chichilnisky rules exist; we therefore conclude that
acceptable aggregation can only be achieved in this
latter case.

The relationship among the results for the four
scenarios considered here can be elucidated by noting
that, in general, extending the range space of a class of
maps (e.g., those defined by certain axioms) will relax
the constraints on those maps and will thus enlarge the
class. Similarly, extending the domain will add more
constraint, as each map must be defined over a larger
space. Therefore, it is not surprising that the only
case that allows for well-behaved aggregation rules is
the one ðSk-TÞ that includes the null preference in the
outcome space but not in the input space. Likewise,
allowing indifference at the individual level but not the
societal level (case Tk-S) leads to the most restricted
class of aggregation rules; only constant maps are
possible. The two intermediate scenarios (Sk-S and
Tk-T), in which the choice and outcome spaces are
equal, both lead to mixed results. For the case Sk-S

there are no Chichilnisky rules, but there do exist maps
more interesting than constant ones (e.g., dictatorships).
For the case Tk-T there do exist Chichilnisky rules,
but these (and all other maps) have the undesirable
property of always over- or under-allocating power to
any individual in any situation.

One might argue that our possibility results are
trivially foreshadowed by Chichilnisky and Heal’s
(1983) resolution theorem, which maintains that Chi-
chilnisky aggregation maps exist if and only if the
preference space P is contractible. However, our results
fall outside the scope of their theorem for two reasons.
First, the resolution theorem only directly applies to
situations in which the individual and social preference
spaces are equal, and not to scenarios such as f : Sk-T :
Second, the space T ; while contractible, does not have
the structure of a parafinite CW complex (because it is
not Hausdorff) and hence the resolution theorem, which
depends on this technical assumption, does not apply.
Thus our demonstration of a Chichilnisky aggregator



ARTICLE IN PRESS
M. Jones et al. / Journal of Mathematical Psychology 47 (2003) 545–556 555
for the case of f : Tk-T ; albeit an undesirable one, also
constitutes a substantively new result. Nevertheless, the
fact that our conclusion in this case coincides with the
conclusion of Chichilnisky and Heal’s theorem speaks to
the power and generality of their result and suggests that
the technical assumption required in their proof may be
relaxable.

The approach taken here nearly fits into the frame-
work that forms the conceptual basis of Chichilnisky
and Heal’s (1983) theorem, as the choice simplex is a
special case of the outcome manifolds they consider. The
critical difference concerns allowance of the null
preference. When this option is removed, the space of
linear ordinal preferences is homotopic to a sphere,
which is non-contractible and thus does not admit a
continuous, anonymous, unanimous aggregation func-
tion Chichilnisky (1980). Other work which has
considered the null preference (Chichilnisky, 1982a,
1985) has used the Euclidean topology of S,f0g; i.e.
with f0g as an open set. Under this topology, inclusion
of the indifference point has little effect, and the
impossibility result holds. By contrast, the present
derivations demonstrate that the proper topology (at
least from the standpoint of utility theory) on the space
of preferences including 0 is that given here in the
definition of the topological space T : Here we have
closed the gap resulting from this discrepancy by
investigating T as preference space and presenting
classification results concerning the aggregation maps
that can arise depending upon when the null preference
is allowed.

As mentioned previously, Le Breton and Uriarte
(1990) describe the space T ; with the same topology as
derived here, in their demonstration of the dependence
of impossibility results on the choice of preference
topology. However, they go on to reject this topology
as unsatisfactory because it is non-Hausdorff. They
state the Hausdorff separation axiom as one of two
requirements for any topology to be considered in
analysis of social choice (the other requirement being
meaningfulness), but give no specific reason for this
statement. By way of reply, since the null preference is
inherently unstable, requiring by definition perfect
balance among all of the alternatives, any meaningful
structure on preferences must place the 0 point
arbitrarily close to all other preferences. This is
precisely the result that arises here, when the
topology is derived as above from the Euclidean
topology on Rn in combination with the assumption of
affine invariance. Therefore the non-Hausdorff topology
is not only reasonable but natural for characterizing
utility.

Our results touch upon a fundamental dilemma in
social choice theory, namely the allowance of null social
preferences as an acceptable outcome under certain
symmetric voter profiles. Chichilnisky (1985) argues that
it is unacceptable for any aggregation procedure to
assign a null outcome in a situation where all voters
have non-null preferences. The basis for her argument is
that such a system allows for resolution of a Condorcet
triple, i.e. a case of three voters with respective orderings
of three alternatives given by ðx; y; zÞ; ðy; z; xÞ; and
ðz; x; yÞ: The irresolvability of Condorcet triples is at the
core of Arrow’s (1963) proof, and without this fact his
impossibility theorem would not hold. Similarly,
Lauwers (2000) shows how difficulties with the Pareto
principle in the topological framework reduce to cases
where the voters are divided into two perfectly opposed
factions, i.e. (q8i ½ piAfq;�qg
: Continuity considera-
tions imply that if the map is Pareto then the outcome
must also come from fq;�q; 0g: Disallowing null
outcomes forces an all-or-none choice between the wills
of the two groups, which becomes the seed for
dictatorship, as can be most easily seen in the case of
two voters. In situations such as these (Condorcet triples
and diametrical opposition), where the opinions of the
voters as a group are perfectly symmetric with respect to
the alternatives, common sense tells us that the only
‘‘fair’’ resolution is to declare a tie (or else to determine
the outcome based on some stochastic mechanism such
as the roll of a die). To the extent that ties present the
danger of trivializing the problem, both the Arrovian
and Chichilniskian social choice theories can be
characterized as investigations into the existence of
non-trivial, symmetry-breaking, yet socially acceptable
solutions that completely avoid null outcomes. The
negative results of these endeavors imply that insisting
on a decisive choice in all cases will inevitably lead to
inconsistencies. Hence both Arrow’s (1963) impossibility
theorem and the resolution theorem of Chichilnisky and
Heal (1983) can be restated as that the requirement of a
decisive outcome on all possible profiles is in direct
conflict with our desire for well-behaved aggregation
rules (i.e., anonymous and respecting unanimity, or
following IR and non-dictatorship).

Viewed from this perspective our possibility result
offers a nice compromise between competing goals,
by allowing social preference to be fully indifferent
only on a negligibly small subset of all possible
voter profiles (including the outcome-symmetric
ones discussed above). Our result on f : Tk-T further
indicates that merely allowing for the possibility of
null outcomes is insufficient to enable aggregation;
the only way to achieve acceptable aggregation rules
is to incorporate indifferent preferences at the social
level but not at the individual level. The present results
thus provide a complement to the impossibility theo-
rems of Arrow (1963) and Chichilnisky (1980) by
showing precisely when relaxing the constraint of a
decisive outcome on a (zero measure) set of profiles can
lead to successful resolution of the social choice
paradox.
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