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Abstract

Actions in a repeated game can in principle depend on all previous outcomes. Given this vast policy space, human players may

often be forced to use heuristics that base actions on incomplete information, such as the outcomes of only the most recent trials.

Here it is proven that such bounded rationality is often fully rational, in that the optimal policy based on some limited information

about the game’s history will be universally optimal (i.e., within the full policy space), provided that one’s opponents are restricted to

using this same information. It is then shown how this result allows explicit calculation of subgame-perfect equilibria (SPEs) for any

repeated or stochastic game. The technique is applied to the iterated Prisoner’s Dilemma for the case of 1-back memory. Two classes

of SPEs are derived, which exhibit varying degrees of (individually rational) cooperation as a result of repeated interaction.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It has long been known that repeated interaction can
have major significance for the set of rational outcomes
in a game theoretic scenario. For instance in the
Prisoner’s Dilemma, in which the Defect action is the
only rational choice for both players in the one-shot
game, the indefinitely repeated game has rational
outcomes involving sustained cooperation (Luce &
Raiffa, 1957). However, while determination of the set
of Nash equilibria (NEs) of a one-shot matrix game is
straightforward, much less is known about equilibria in
repeated games. Here we focus primarily on one well-
studied extension of NEs to repeated games, the
subgame-perfect equilibrium (SPE; Selten, 1965). There
are a number of strong results concerning the expected
e front matter r 2004 Elsevier Inc. All rights reserved.
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total rewards associated with the SPEs of a repeated
game (Aumann & Shapley, 1994; Fudenberg & Maskin,
1986, 1991; Rubinstein, 1979, 1994), including a full
characterization of the range of such payoffs in the
iterated Prisoner’s Dilemma (Stahl, 1991), but much less
is known about the specific behaviors or policies
involved. The difficulty is due to the fact that players
in a repeated game can base actions on the full history of
the game, so that the space of policies grows exponen-
tially with the number of trials and reaches uncountable
cardinality for a game of unbounded length, thus
making identification of specific SPEs often quite
complicated.
The multiplicity of SPEs in a repeated game also

poses a difficulty for descriptive theory. The set of
expected average payoffs achievable under SPEs in-
cludes all those from NEs of the one-shot game (because
repetition of an NE constitutes an SPE), but the
indeterminacy in the repeated game is far more severe
than this. In fact, for every enforceable mixed outcome
of the one-shot game (i.e., a reward vector in which

www.elsevier.com/locate/jmp
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every player receives more than his or her minmax
payoff), there is known to be an SPE of the repeated
game with the same average payoffs (Aumann &
Shapley, 1994; Fudenberg & Maskin, 1991). Thus the
set of SPE payoffs forms a continuous region in joint
reward space, spanning the full range of enforceable
payoffs of the stage game. This and other so-called folk
theorems would seem to render the SPE criterion
essentially useless as a tool for predicting outcomes of
real interactions.
From the cognitive perspective, there is the more

general issue of how a player determines the best reply
to arbitrary policies of his or her opponents. Given the
uncountable class of policies available, it may appear
that determination of the universally optimal solution is
often extremely difficult. Thus one might expect that
human players are forced to sacrifice optimality for
efficiency, by using heuristics that base actions on
incomplete or compressed information. However, it
turns out that such a sacrifice is often unnecessary. Here
we describe a broad class of situations in which
universally optimal (or unboundedly rational) behavior
can be achieved by an agent with incomplete informa-
tion, bounded memory, and finite computational
resources. Specifically, we consider situations in which
all players choose actions based on some restricted
subset of the information carried by the full history of
the game, given by the value of a function I (which must
satisfy two axioms, given below). For example, the
information could consist of the outcomes of the
previous n trials, or simply the total number of players
who performed a particular action (such as Cooperate)
on each trial without regard for who did what. A policy
based on the information I is one that prescribes action
probabilities based solely on the current value of I,
regardless of other information about the game’s
history. Importantly, for the cases we consider, the
value of I on each trial can be computed from the value
on the previous trial along with knowledge of the
outcome of that trial (see Definition 3.5). Therefore I

represents the only information that must be retained
from trial to trial.
It is proven here that whenever a player’s opponents

all use policies based on I, the player has a (universally)
best reply that is also based solely on I. The information
I can thus be thought of as a sufficient statistic, defined
on the full history of the game, for determining optimal
actions. Therefore any process by which the player can
optimize his or her policy with respect to reliance on I

(i.e., optimize within the class of I-based policies) will
yield universally optimal (i.e., rational) behavior. Con-
sequently, the restriction to finite memory and other
types of ‘‘bounded rationality’’ are seen often to be
unboundedly rational.
The main proof presented here relies on the concept

of stochastic games, a generalization of repeated games
in which the players’ actions determine not only
immediate payoffs but also the reward structure (i.e.,
the one-shot game to be played) on the next time step.
We show that for any repeated or stochastic game, and
any satisfactory choice of the function I, it is possible to
construct an expanded stochastic game whose states
correspond to the values of I. This construction also
yields a payoff-preserving isomorphism between policies
in the two games, under which I-based policies in the
original game correspond to stationary policies (i.e.,
policies that depend only on the current state) in the
expanded I-game. Furthermore, the preservation of
payoffs implies that best replies and SPEs in the I-game
correspond, respectively, to best replies and SPEs in the
original game.
The next step in the proof relies on a result of Filar

and Vrieze (1997, p. 173), stating that if all players in a
stochastic game use stationary policies then no one has
incentive to use a non-stationary policy. Applying this
result to the expanded I-game yields a pair of
‘‘universality’’ results for the class of I-based policies
in the original game. The first of these is the best-reply

universality theorem, which states that if a player’s
opponents use I-based policies then the best reply within
the class of I-based policies is a universally best reply. A
corollary to this theorem is the SPE universality

theorem, stating that restricted SPEs within the class of
I-based policies are true SPEs within the full policy
space. In other words, if all players are limited to I-
based policies, and if every player is using a best reply to
the others’ policies subject to this constraint, then each
player’s policy is optimal in the full policy space and the
SPE condition is satisfied. For example, if all players are
restricted to n-back memory, that is they act based only
on the outcomes of the previous n trials for some nX0;
then mutual optimization with respect to this constraint
implies that each player’s policy is universally optimal
(i.e., with respect to policies of possibly unbounded
memory). Thus from the perspective of each individual
the restriction to n-back memory is no restriction at all,
and determination of universally optimal behavior can
be made with finite resources. Although the assumption
that all players use exactly the same information, or
have exactly the same memory span, may seem
unrealistic, the critical point is that even if one player
does incorporate additional information into his or her
policy beyond that used by the opponents, that
information cannot convey an advantage. Thus there
is no incentive to expand one’s memory beyond that of
one’s opponents.
Following derivation of the universality results, we

present an analytical method for deriving all stationary
SPEs of a stochastic game. The multiplicity of states in a
stochastic game complicates the SPE criterion, even in
the case of stationary policies, as the dependence of
future states (and hence future rewards) on current
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actions can offset the equilibrium in immediate payoffs.
However, these delayed effects can be accounted for by
replacing the immediate payoffs in each state with the
corresponding outcome values (denoted here by U),
which include the expected value of all future rewards
conditioned upon the policies to be used thereafter. Filar
and Vrieze (1997, p. 220) show that a profile of
stationary policies forms an SPE if and only if the
strategies prescribed for each state form an NE of the
one-shot U-game for that state. However, future
rewards, and hence the values of U, depend on the
policies being used, creating a complex circularity. Thus,
although it is known that there exist SPEs consisting of
stationary policies in any stochastic game (Fink, 1964),
very little is known about the structure of these
stationary SPEs (Filar & Vrieze, 1997, p. 230).
Here we outline a technique for handling the bi-

directional dependence between policies and outcome
values, and thus for deriving the stationary SPEs of the
game, based on analysis of the qualitative form of the U-
game associated with each state. By fixing certain
inequalities among the components of U, the NEs of
the U-games can be qualitatively determined. Each
possible stationary SPE satisfying the assumptions
placed on U then corresponds to a choice of one U-
game NE for the strategy profile in every state. Once
such a set of assignments has been made, the policies and
U-values can be quantitatively determined. If the values
of U thus obtained are consistent with the original
qualitative assumptions (implying that the strategies in
each state do in fact constitute U-game NEs), then the
policy profile is an SPE. In summary, the set of
stationary SPEs can be exhaustively determined by
partitioning the possible values for U into a number of
qualitative forms, and for each form testing all assign-
ments of NEs to strategy profiles. This approach will
likely be computationally unfeasible for more complex
games, as the number of cases to be checked grows
exponentially with the numbers of states, players, and
actions, but as we show here in a case of four states and
two players, each with two actions per state, it is
reasonable for smaller games. When applied to the
expanded I-game defined above, the method allows
derivation of all SPEs in a repeated or stochastic game
whose constituent policies base actions on some given
compressed representation I of the game history. The
class of SPEs potentially obtainable via this method is
much broader than those based on stationary policies,
and in particular includes all equilibria whose constituent
policies can be implemented using finite-state automata.
The second half of this article applies the above results

to the iterated Prisoner’s Dilemma (IPD). One of the
most well known policies in the IPD, which has been
observed empirically both in humans (Rapoport &
Chammah, 1965) and in animals (Wilkinson, 1984;
Milinski, 1987) and has been successful in computer
simulations (Axelrod, 1984) is Tit-For-Tat (TFT). In its
idealized form, TFT bases actions only on the previous
trial, by copying the opponent’s last action. Because of
the prevalence of TFT, as well as the general human bias
towards recency effects in cognitive tasks (see Jones,
2003), we investigate here those policies in the IPD
characterized by 1-back memory, meaning that players
base their actions only on the outcome of the previous
trial. We calculate two sets of SPEs within this restricted
policy space: those that are deterministic (pure) and
those that are symmetric (i.e., both players use the same
policy relative to their roles in the game). The SPE
universality theorem implies that all of these pairs
constitute unrestricted SPEs, that is, individually fully
rational outcomes. We find that TFT vs. TFT is an SPE
but is unstable, in that it requires precise relationships
among the game parameters. In addition there are five
other pure SPEs (including all-defect). Two of these,
including the Grim strategy (Friedman, 1971), are robust
to variations in parameter values and will result in
sustained mutual cooperation. In the case of mixed
symmetric policy pairs there are ten SPEs (in addition to
the symmetric pure ones). These equilibria all have the
potential for manifesting varying degrees of cooperation.
2. Theoretical background

2.1. Matrix games

The basic element of our framework is the matrix
game of von Neumann and Morgenstern (1944). In this
game there are N players, with player k (kpN) having
nk actions. For ease of exposition we restrict to the
situation N ¼ 2; however, the central results (including
all theorems presented in Section 3) carry over to the
general case. The set of actions available to player k is
denoted Ak: Probabilistic mixtures of these actions will
be referred to as strategies, with the set of strategies for
player k given by Bk: For any b ¼ Saiai 2 Bk; bðaiÞ

denotes the probability ai assigned to action ai by
strategy b: To each pair of actions a1 2 A1; a2 2 A2 is
associated a reward for player k given by rkða1; a2Þ: For
ease of notation, the expected reward Eb1;b2 ½rkða1; a2Þ� ¼
Sa12A1 ;a22A2

b1ða1Þb2ða2Þrkða1; a2Þ is denoted rkðb1; b2Þ: All
rewards are assumed to be in units of players’ utilities,
and completely capture the players’ preferences among
outcomes (e.g., the opponent’s reward is irrelevant).
For example, the Prisoner’s Dilemma can be char-

acterized by the following payoffs:

ðr1ða1; a2Þ; r2ða1; a2ÞÞ½ �a12A1;a22A2
¼

C D

C

D

ð1; 1Þ ðx; yÞ

ðy;xÞ ð0; 0Þ

" #
:

(1)
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1Another commonly used criterion is the limiting average:

V limððr
tÞtX0Þ ¼ limt!1

1
t

Pt	1
t¼0

rt: The universality results presented in

the following section (Theorems 3.3 and 3.4, as well as Lemma 2.2 and

Corollary 3.1) hold for this criterion as well.
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Here C and D represent the Cooperate and Defect
actions. Thus for example when player 1 (row player)
cooperates and player 2 defects, their respective payoffs
are x and y (upper right entry on RHS of Eq. (1)). The
parameter y is the ‘‘temptation payoff’’ and is taken to
be greater than 1; the ‘‘sucker’s payoff’’ x is always
negative. Because utilities are only defined in terms of
their implications for preferences among lotteries (von
Neumann & Morgenstern, 1944), they are measured on
an interval scale, and thus the payoffs can be normalized
so that both players receive rewards of 1 when both
cooperate and 0 when both defect.
A key solution concept in matrix games is the Nash

equilibrium (NE; Nash, 1950). An NE consists of a pair
of strategies b�

1 and b�
2 that are best replies to each other,

in the sense that neither player can improve his or her
expected reward by a unilateral change in strategy:

8b1 2 B1 : r1ðb1; b
�
2Þpr1ðb

�
1; b

�
2Þ;

8b2 2 B2 : r2ðb
�
1; b2Þpr2ðb

�
1; b

�
2Þ:

(2)

Because of this definition, an NE is often considered an
individually rational outcome for both players. As can
be readily seen from the payoff matrix of the Prisoner’s
Dilemma (Eq. (1)), the only NE of that game is (D, D).
Indeed, D is the dominant action for both players, in the
sense that each player will fare better by defecting than
cooperating regardless of the opponent’s action.

2.2. Repeated games

A repeated game models the situation in which a (one-
shot) matrix game is played multiple times between the
same players. In such a game the players are able to
choose actions on each trial contingent on the outcomes
of earlier trials. Formally, a policy in a repeated game is
a function yielding a strategy (for the one-shot game) at
every stage as a function of the prior history. Thus if we
define the set of histories as

H ¼ ða01; a
0
2; a

1
1; a

1
2; . . . ; a

t	1
1 ; at	1

2 ÞjtX0;
�
8k8tot½at

k 2 Ak�
�

ð3Þ

(where t=0 corresponds to the initial history h ¼ ;)
then a policy for player k can be written as

f : H ! Bk: (4)

In what follows, the history h is written in square
brackets, with f [h](a) giving the probability assigned by
f to action a following history h.
With policies thus defined, the concept of NE can be

carried directly over to repeated games, as a pair of
policies that are optimal with respect to unilateral
deviation. However, this definition is deficient as a
criterion for rational outcomes because it places no
constraints on the strategies players would use following
histories that cannot occur under the given policies.
These strategies do affect the NE criterion, as they enter
into players’ evaluations of alternative policies (see, e.g.,
Osborne & Rubinstein, 1994, pp. 95–96). In order to
account for this concern, the NE is generalized to the
subgame-perfect equilibrium (SPE; Selten, 1965). Two
policies form an SPE if and only if they give rise to an
NE in the sub-game obtained by starting play at any
arbitrary history. Formally, for any policy f and any
history h, let f h denote the policy derived from f by
appending h to the beginning of any history:

f h
½h0

� ¼ f ½ðh; h0
Þ�; (5)

where (h, h0) is the concatenation of h and h0. Then f1
and f2 form an SPE iff ðf h

1; f
h
2Þ is an NE for every h.

In a fixed length repeated game, the constituent one-
shot game is played for T trials, with T a fixed value
known to both players in advance. In such a situation
the set of SPEs can be calculated straightforwardly via
the well-known backward induction technique, in which
optimal actions are determined first for the final trial (as
NEs of the one-shot game) and then for earlier trials by
adding to the immediate payoffs the expected future
payoffs determined in the previous steps of the induc-
tion (see, e.g., Osborne & Rubinstein, 1994, pp. 99–100).
In the case of the IPD, the backward induction
argument implies that the only SPE is the one in which
both players defect on every trial. This is because the
only NE for the final trial is (D, D), and on each
previous trial the effective payoffs are the same as in the
one-shot game (original payoffs plus 0), under the
inductive assumption that each player will defect on all
following trials (Luce & Raiffa, 1957).
When the game length is infinite (or finite but

stochastic) backward induction breaks down, as there
is no final trial on which to anchor the argument. In
order to analyze this situation, however, a criterion is
needed for evaluating a reward sequence of unbounded
length. The criterion considered here is the total

discounted reward:1

V ððrtÞtX0Þ ¼
X
tX0

rtgt: (6)

Here g is the discount factor, with 0pgo1: This sum is
guaranteed to exist, assuming a bounded range of
payoffs for the constituent game. Total discounted
reward is also a useful criterion because it corresponds
to the expected total (non-discounted) reward under a
finite stochastic-length game with constant continuation
probability g; that is a game of length T with P½TXt� ¼

gt	1: This correspondence allows the more realistic
stochastic-length game to be modeled using the math-
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ematically more convenient infinite-length discounted
game.
Given choices of policies f1 and f2 for the players, we

denote the expectation of the total discounted reward
for player k as

V kðf 1; f 2Þ ¼ E
X
tX0

rt
kg

tjf 1; f 2

" #
: (7)

Similarly, the expected total discounted reward starting
in some history h, with length t; is given by

V kðf 1; f 2; hÞ ¼ E
X
tXt

rt
kg

t	tjh; f 1; f 2

" #

¼ E
X
tX0

rt
kg

tjf h
1; f

h
2

" #
¼ V kðf

h
1; f

h
2Þ; ð8Þ

where the first expectation is conditioned upon the game
following h on trials 0 through t	 1 and evolving
according to f1 and f2 thereafter.
In keeping with the definition of SPE, we use the term

best reply, in the context of policies, to mean a policy
that is optimal, given that of the opponent(s), following
any history:

Definition 2.1. A policy f �
1 is a best reply to f2 iff

8h8f 1 : V 1ðf 1; f 2; hÞpV1ðf
�
1; f 2; hÞ: (9)
2Later, when we introduce games with constraints on the starting

state s0, H will be accordingly further restricted.
3The outcome values are nearly the same as the action values used in

Q-learning (Watkins, 1989), except that they depend on the joint

actions of both players (see, e.g., Hu & Wellman, 1998).
2.3. Stochastic games

An extension to the repeated game is the stochastic

game, in which the one-shot game differs from trial to
trial (see Filar & Vrieze, 1997, for a thorough introduc-
tion). Each one-shot game corresponds to a state of the
stochastic game, with transition probabilities among the
states dependent on the players’ actions. Thus a
stochastic game can be characterized by the set of states
S (assumed here to be countable), an initial state s0, the
set of actions Ak(s) available to player k in state s,
immediate rewards rk(s, a1, a2) for ajAAj(s) for any s,
and transition probabilities p(s0|s, a1, a2) giving the
probability that state s’ will follow s given actions a1 and
a2. As before, Bk(s) will denote the space of formal
convex mixtures of elements of Ak(s), that is, the set of
mixed strategies available to player k in state s. When S

consists of a single state, the stochastic game reduces to
a repeated game.
In a stochastic game policies can take as input

past states as well as actions, and thus the history
must be expanded to include the sequence of past
states, as well as the present state. For technical reasons,
the set H of histories is restricted to those that
are realizable given the transition probabilities of the
game, that is sequences ðs0; a01; a
0
2; . . . ; s

t	1; at	1
1 ; at	1

2 ; stÞ

satisfying pðstþ1jst; at
1; a

t
2Þ40 for all tot:2

An important class of policies in a stochastic game is
the class O of stationary policies. A stationary policy is
one in which strategies depend only on the present state.
Equivalently, a stationary policy f is one that can be
written as ~f � c; where ~f is a map from states to action
probabilities: s 7!b 2 BkðsÞ; and the function c: H-S

returns the terminal (i.e., current) state of any history.
Often a stationary policy f is identified with ~f ; in that f

[s](a) represents the probability of choosing action a in
state s (i.e., following any history ending in s).
When both players use stationary policies, the

expected future rewards for both players depend only
on the present state (rather than on the full history), and
we can define the state value:

V kðf 1; f 2; sÞ ¼ E
X
tXt

rt
kg

t	tjst ¼ s; f 1; f 2

" #

¼ Vkðf 1; f 2; hÞ 8h 3 cðhÞ ¼ s: ð10Þ

Further, in order to account for the delayed rewards
associated with actions due to their effects on subse-
quent states and strategies, define the outcome value:

Ukðf 1; f 2; s; a1; a2Þ ¼ E
X
tXt

rt
kg

t	tjst ¼ s; at
1 ¼ a1; a

t
2 ¼ a2; f 1; f 2

" #

¼ rkðs; a1; a2Þ þ g
X

s0

V kðf 1; f 2; s
0Þpðs0js; a1; a2Þ

� �
:

ð11Þ

The third expression here gives U explicitly as a sum
of immediate and delayed rewards, and shows its
dependence on V.3 Furthermore, the value V associated
with any state can readily be seen to equal the expected
outcome value, conditioned upon the strategies used in
that state:

V kðf 1; f 2; sÞ ¼
X
a1 ;a2

Ukðf 1; f 2; s; a1; a2Þf 1½s�ða1Þf 2½s�ða2Þ
� �

:

(12)

Often the policies are suppressed and we write Vk(s) and
Uk(s, a1, a2).
One interpretation of U is as the value of a (joint)

1-step deviation, that is, the expected total discounted
reward when the players choose arbitrary actions a1 and
a2 on the first (or current) trial and then follow their
policies thereafter. The concept of 1-step deviation is
especially useful as it provides a necessary and sufficient
criterion for SPE: A pair of policies forms an SPE if and
only if neither player can gain an advantage via
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unilateral 1-step deviation following any history (e.g.,
Osborne & Rubinstein, 1994, p. 153). Further, when
both players’ policies are stationary, it is sufficient to
check this condition in each state rather than following
every possible history. Therefore, in the case of
stationary policies, a necessary and sufficient condition
for SPE is that in every state each player uses a strategy
that maximizes the expected value of U, as conditioned
upon the opponent’s strategy in that state (Filar &
Vrieze, 1997, p. 220). This fact is formalized in the
following lemma. Later we demonstrate how this result
allows explicit calculation of stationary SPEs in a
stochastic game.

Lemma 2.1. (Filar & Vrieze, 1997, p. 220). A pair of

stationary policies f1 and f2 forms an SPE if and only if

for every state s the strategies f1[s] and f2[s] constitute

an NE for the one-shot ‘‘U-game’’ with payoffs given by

U1ðf 1; f 2; s; a1; a2Þ;U2ðf 1; f 2; s; a1; a2Þ
	 
� �

a12A1ðsÞ; a22A2ðsÞ
:

(13)

In the case of a repeated game, the stationary policies
are just those that give the same strategy on every trial.
Because these policies give no dependence of future
events (states or strategies) upon present actions, the
components of U only differ from the immediate payoff
matrix by a constant, and thus the U-game and the
original one-shot game have the same NEs (see
Eq. (11)). Thus in this case Lemma 2.1 reduces to the
statement made earlier that repetition of a single-trial
NE constitutes an SPE. One contribution of the results
presented here (see Theorem 3.5) is to extend the
applicability of Lemma 2.1 beyond stationary policies
to policies that depend on past states and actions. This is
a particular improvement in the case of repeated games,
as it allows players’ behavior to depend on each other’s
past actions, which in turn forces players to consider the
effects of their actions on their opponents’ future
strategies. As is shown here in the case of the Prisoner’s
Dilemma, this dependence has significant consequences
for the types of rational behaviors that can arise.
4The set of policies in the stochastic game is strictly larger than that

for the MDP, because the former can take as input the opponents’

actions in addition to the states and rewards they resulted in. However,

when the opponents’ policies are stationary, this additional informa-

tion cannot be used to improve expected rewards (Filar & Vrieze, 1997,

p. 168).
2.4. Competitive Markov decision processes

A stochastic game can also be cast as a Markov
decision process (MDP) with multiple agents (Filar &
Vrieze, 1997). In a standard MDP, there is a single agent
interacting in an environment with a discrete set of
states. Associated with each state is a set of possible
actions, which determine the player’s immediate payoff
as well as the probability distribution over the state that
will obtain on the following time step. A stochastic game
is therefore a competitive MDP, in which rewards and
transition probabilities are jointly determined by the
simultaneous actions of multiple agents. Furthermore, a
stationary policy for all but one of the players induces a
(standard) MDP for the remaining player, with transi-
tion probabilities and expected rewards at each state
obtained by conditioning upon the action probabilities
dictated by the stationary policies of the opponent(s)
(Filar & Vrieze, 1997, p. 172). A best reply for the player
is therefore given by any optimal policy in the MDP.4

Now it is well known that the set of optimal policies in
an MDP includes a pure stationary policy (assuming a
finite and bounded number of actions per state; Black-
well, 1965). The conclusion is summarized in the
following lemma.

Lemma 2.2. (Filar & Vrieze, 1997, p. 173). If all of a

player’s opponents in a stochastic game use stationary

policies, then the set of best replies for the player includes

a pure stationary policy.
3. Universality of bounded policy classes

Lemma 2.2 implies that if a player’s opponents use
(possibly pure) stationary policies then the player has no
incentive but to do the same. Using a more complex
history-dependent policy cannot increase the player’s
expected payoff. This is summarized in the following
universality property as applied to the classes of
stationary and pure stationary policies.

Definition 3.1. A policy class R is best-reply universal if,
whenever all of a player’s opponents follow policies
from R, the player’s set of best replies includes a member
of R.

A further consequence of Lemma 2.2 is the following:

Corollary 3.1. If all players in a stochastic game use

(pure) stationary policies and each player’s policy is

optimal (in the sense of Definition 2.1) with respect to the

others’ policies subject to the (pure) stationarity con-

straint, then the policy profile forms an SPE.

Proof. Lemma 2.2 implies that each player has a
universal best reply that is pure and stationary. There-
fore optimizing subject to the (pure) stationarity
constraint yields a universal best reply. Since every
player is using a best reply to his or her opponents, the
SPE condition is satisfied. &

Corollary 3.1 states that any policy profile that
satisfies the SPE condition under the restriction to
(pure) stationary policies is a true SPE. This notion is
formalized with the following two definitions.
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Definition 3.2. A restricted SPE within a policy
class R is a profile of policies in R that are best
replies to each other from among the policies
of R. In the case of two players, f �

1; f
�
2 2 R form a

restricted SPE within R iff the following conditions
hold:

8h; 8f 1 2 R : V 1ðf 1; f
�
2; hÞpV 1ðf

�
1; f

�
2; hÞ;

8h; 8f 2 2 R : V 2ðf
�
1; f 2; hÞpV 2ðf

�
1; f

�
2; hÞ:

(14)

Definition 3.3. A policy class R is SPE universal if every
restricted SPE within R is an unrestricted SPE, that is an
SPE within the space of all (mixed, history-dependent)
policies.

Corollary 3.1 implies that the classes O of stationary
policies and Ō of pure stationary policies are both SPE
universal. As can be seen from the proof, any class that
is best-reply universal is also SPE universal. SPE
universality of a policy class R implies that boundedly
rational outcomes subject to the restriction to R are in
fact fully rational, as no player could benefit by
switching to a policy outside of R.
We now show that these universality properties apply

in a wide range of cases beyond the classes O and Ō:
Specifically, we address situations where all players
choose actions based on the same restricted subset of the
information carried by the full history of the game. This
information will be denoted I. More precisely, let I be
any function on histories, that is a mapping H ! X;
where X is an arbitrary set acting as the image space of I.
(It will be seen shortly that X also represents the set of
states in an expanded stochastic game determined by I.)
Now let FI be the class of policies that determine action
probabilities based solely on the value of I, and let F̄ I be
the subclass of pure policies within FI. Analogous to the
definition of stationary policies, f is a policy for player k

in FI if and only if there exists a map f̂ : X ! [sBkðsÞ

such that f ¼ f̂ � I : Often f is identified with f̂ ; with f [x]
representing f[h] for any h satisfying I(h)=x. This
formalizes the notion of acting based solely on the
information carried by I. Note that when I�h (the
identity function) we have FI=F, the full space of
policies; likewise Fc ¼ O and F̄ c ¼ Ō (recall that c

returns the current state of any history).
We show that FI and F̄ I are best-reply and SPE

universal provided I satisfies the following two axioms:

Definition 3.4. The function I is sufficient if it gives
unambiguous knowledge of the present state, that is I

determines a well-defined mapping F: X -S satisfying
F � I ¼ c:

Definition 3.5. The function I is deterministic if the
present value of I, the actions of the two players, and the
ensuing state are sufficient to determine the new value of
I. More precisely, there must exist a map

C : X� [sA1ðsÞ � [sA2ðsÞ � S ! X

satisfying

CðIðhÞ; a1; a2; sÞ ¼ Ið½h; a1; a2; s�Þ: (15)

for all h, s, a1AA1(c(h)), and a2AA2(c(h)) satisfying
p(s|c(h), a1, a2)40. Here [h, a1, a2, s] represents the new
history obtained from h by appending actions a1 and a2
and subsequent state s. (Note that the present definition
coincides with the definition of determinism in automata
theory, under the interpretation of I as an automaton
with states indexed by X and input given by the triple
½at

1; a
t
2; s

tþ1�:)
The identity function h and the current-state function

c both satisfy these two axioms. Other examples include
n-back memory, where I encodes the states and actions
of the previous n trials along with the current state, and
n-back state memory, which encodes only the states of
the last n trials (including the current one). Also, for
many-player games in which all players always have the
same set of actions, I can encode simply the number of
players who performed each action (e.g., Cooperate) on
each of the last n trials.
The significance of the sufficiency and determinism

axioms is that they allow the definition of an expanded
game in which each state of the original game is split
into substates corresponding to the possible values of I

compatible with that state.

Lemma 3.2. Let G be a stochastic game and let I: H ! X
be any sufficient and deterministic function on histories.

Define the stochastic process xt
¼ IðstÞ, where ðstÞtX0 is

the sequence of states arising in G (conditioned on the

policies f1 and f2). Then there exists a new stochastic game

GI with state-space X whose policies correspond one-to-one

with those of G in a manner that preserves expected

payoffs to both players, with the sequence of resulting

states and rewards given by the process ðxt; rt
1; r

t
2ÞtX0:

Proof. The proof proceeds constructively, by explicitly
defining the actions, rewards, and transition probabil-
ities for GI and then verifying that the resulting game
has the stated correspondences with G: Because I is
assumed to be sufficient, we can define GI by splitting
each state s of G into states x 2 F	1ðsÞ: Actions and
rewards can be carried directly over via AkðxÞ ¼
AkðFðxÞÞ and rkðx; a1; a2Þ ¼ rkðFðxÞ; a1; a2Þ: Using deter-
minism of I we can define transition probabilities by

pðx0jx; a1; a2Þ ¼

pðFðx0ÞjFðxÞ; a1; a2Þ; Cðx; a1; a2;Fðx
0
ÞÞ ¼ x0;

0; otherwise:

(
ð16Þ

Thus transition probabilities in GI are nearly the same as
in G; with the constraint that the succeeding X-state x0
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must correspond to the value of I dictated by the prior
X-state; the actions, and the succeeding S-state Fðx0Þ: In
addition, the set of valid starting states must be
restricted to the possible values of I evaluated on
length-0 histories (i.e., histories consisting of just a
starting state in G), or equivalently those x satisfying
IððFðxÞÞÞ ¼ x:
Observe now that there exists a bijection between

realizable histories in the two games, given by

Y : ðs0; a01; a
0
2; . . . ; s

t	1; at	1
1 ; at	1

2 ; stÞ

7!ðx0; a01; a
0
2; . . . ; x

t	1; at	1
1 ; at	1

2 ; xt
Þ ð17Þ

with xt ¼ Iðs0; a01; a
0
2; . . . ; s

t	1; at	1
1 ; at	1; stÞ: Sufficiency

of I guarantees that Y is injective, as F allows us to
define a left inverse to Y via

ðx0; a01; a
0
2; . . . ; x

t	1; at	1
1 ; at	1

2 ; xt
Þ

7!ðFðx0Þ; a01; a
0
2; . . . ;Fðx

t	1
Þ; at	1

1 ; at	1
2 ;Fðxt

ÞÞ: ð18Þ

Surjectivity of Y is a result of determinism of I, and
the fact that the transition probabilities defined for GI

make the set HGI
of realizable histories in the expanded

game correspond precisely to the image of Y. (Recall
that HGI

is defined as the set of histories that are
realizable given the game’s transition probabilities and
eligible starting states.) Indeed, the conditions

IððFðx0ÞÞÞ ¼ x and 8tot : Cðxt; at
1; a

t
2;Fðx

tþ1
ÞÞ ¼ xtþ1

(19)

are necessary and jointly sufficient both for the history
ðx0; a01; a

0
2; . . . ; x

t	1; at	1
1 ; at	1

2 ; xt
Þ to be realizable and for

it to be in the image of Y.
Finally, note that Y also implies a bijection between

policies of the two games, via f 7!f �Y	1 (where f is any
policy in G). It is now straightforward to verify (by
induction on t) that the probability distributions on the
sequences of I-values (I(st))tX0 and rewards ðrt

kÞtX0

implied by arbitrary policies f1 and f2 in G are identical
to those on X-states (xt)tX0 and rewards ðrt

kÞtX0 implied
by the corresponding policies f 1 �Y

	1 and f 2 �Y
	1

in GI : &

The expanded game GI allows the results of Lemmas
2.1 and 2.2 and Corollary 3.1 to be extended from
stationary policies to those based on the information I.
First, note that because the isomorphism between
policies in the two games preserves payoffs, it also
preserves both best replies and SPEs. Therefore applica-
tion of the earlier results to GI leads to novel conclusions
regarding best replies and SPEs in G:

Theorem 3.3. (Best-Reply Universality). If I is sufficient

and deterministic then FI and F̄ I are best-reply universal.

Proof. Observe that FI and F̄ I correspond precisely to
the classes of stationary and pure stationary policies in
the expanded game GI : Indeed, a policy f for player k in
G is an element of FI if and only if there exists a map
f̂ : X ! [sBkðsÞ with f ¼ f̂ � I ; whereas the correspond-
ing policy f �Y	1 for GI is stationary if and only if there
exists a map ~f : X ! [xBkðxÞ with f �Y	1 ¼ ~f � c; or
equivalently, f ¼ ~f � c �Y: Using the equivalence
[sBkðsÞ ¼ [xBkðxÞ and the functional relation c �Y ¼

I ; the maps ~f and f̂ are seen to be identical, and thus the
existence of one implies that of the other. The argument
for pure policies is similar, with Bk replaced by Ak:

Now let f be any member of FI (respectively F̄ I ).
Because f �Y	1 is (pure) stationary in GI ; there exists a
(pure) stationary best reply for the opponent by Lemma
2.2. The policy in G that corresponds to this best reply
lies in F I ðF̄ I Þ and is a best reply to f. Therefore F I ðF̄ I Þ

is best-reply universal. &

Theorem 3.4. (SPE Universality). If I is sufficient and

deterministic then FI and F̄ I are SPE universal.

Proof. The correspondence between FI (respectively F̄ I )
and OGI

ðŌGI
Þ implies that for any strategy pair (f1, f2)

that forms a restricted SPE within FI ðF̄ I Þ; the
corresponding pair ðf 1 �Y

	1; f 2 �Y
	1Þ is an SPE

within OGI
ðŌGI

Þ: Now, OGI
ðŌGI

Þ is SPE universal in
GI by Lemma 3.1, and therefore ðf 1 �Y

	1; f 2 �Y
	1Þ is

an SPE within the full policy space FGI
: Using the

bijection Y once more we see that (f1, f2) is an
unrestricted SPE for G: Therefore FI and F̄ I are SPE
universal. &

Finally, the outcome-value criterion for stationary
SPEs given in Lemma 2.1 can be extended to SPEs in I-
based policies, using the outcome values UI of GI :

Theorem 3.5. Assume I is sufficient and deterministic. A

pair of policies f1, f2AFI forms an SPE if and only if for

every value x of I the strategies f1[x] and f2[x] constitute

an NE for the one-shot UI-game where payoffs are given

by

UI
1ðf 1 �Y

	1; f 2 �Y
	1; x; a1; a2Þ;

	�
UI

2ðf 1 �Y
	1; f 2 �Y

	1; x; a1; a2Þ

�

a12A1ðFðxÞÞ;a22A2ðFðxÞÞ
:

ð20Þ

Proof. Apply Lemma 2.1 to the policies f 1 �Y
	1 and

f 2 �Y
	1 in GI. Note that f 1½x� ¼ f 1 �Y

	1½x� and
f 2½x� ¼ f 2 �Y

	1½x�: &
4. Bounded memory in the iterated Prisoner’s Dilemma

The Prisoner’s Dilemma has been a focal point of
game theory research because it embodies a conflict
between individual and collective rationality—the out-
come that results from each player choosing what is best
for him or her leaves both players worse off. In other
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words, the game’s unique NE is Pareto inefficient. It has
long been known that a rational basis for cooperation
requires that the same players engage in the game
repeatedly with no predetermined final trial (Luce &
Raiffa, 1957). In this situation the full set of rational
outcomes, in terms of expected payoffs associated with
SPEs, is known, as a function of the discount factor
(Stahl, 1991). However, little is known about the SPE
policies themselves.
Here we apply the results of the previous section to

the indefinitely repeated Prisoner’s Dilemma for the case
of 1-back policies, that is policies that determine
strategies based only on the outcome of the previous
trial. Thus we consider the function I that can take on
four values, denoted CC, CD, DC, and DD (with player
1’s action given first), according to the most recent
action pair in any history.5 The information I is clearly
deterministic, as it is fully determined by the most recent
actions, and is trivially sufficient since the IPD is a
repeated game (i.e., there is only one state). We can
therefore define the expanded game GI ; which has four
states x corresponding to the values of I, with transition
probabilities dependent only on the actions: 8x p(CC|x,
C, C)=1, et cetera. Stationary policies in this game are
functions that specify a probability of cooperating in
each state (i.e., following each possible outcome), and

will be denoted f ¼
f ½CC� f ½CD�

f ½DC� f ½DD�

� 

; with f [x] indicat-

ing the probability of cooperating in state x.
The SPE universality theorem implies that any pair of

policies that base replies only on the outcome of the
previous trial (corresponding to stationary policies in
GI ), and that are best replies to each other with respect
to this constraint, form an SPE for the IPD. Here we
explicitly calculate all SPEs of this type from among two
classes: those involving pure policies and those that are
symmetric (in that both players use the same policies,
relative to their roles in the game). In the first case we
determine the set of best replies to all 16 pure stationary
policies, from among that same set, and check for pairs
that are mutual best replies. In the case of mixed
policies, the analysis relies on the result of Theorem 3.5
that any pair of I-based policies forming an SPE must
jointly prescribe a UI-game NE in every state. The
nature of the state transitions in GI implies that the
values of UI depend only on present actions and not on
5This definition does not determine the value of I(+), which can be

taken to be any of the four values. Because the SPE requirement

applies following all histories (or in every state, for stationary policies),

this choice is irrelevant. An alternative is to have I take on a fifth value

on the initial trial. Because this state only occurs prior to the other

four, its addition would not affect the analyses presented here.

Furthermore, the U-game for the fifth state would match that of the

other four states, and thus every SPE for the 5-state model is given by

an SPE for the 4-state model together with a choice of a U-game NE

for play on the initial trial.
the state, and thus there is only one U-game to consider.
(Henceforth the superscript I is omitted in writing U; U

will be understood to represent the outcome values in
GI :) Knowing the qualitative form of this U-game, and
thus the qualitative nature of its NEs, strongly
constrains the set of possible SPEs. Thus the approach
taken is to partition the (4-dimensional) space of
possible U values into a number of regions each
associated with a fixed ‘‘U-shape,’’ and to systematically
determine the set of symmetric SPEs for each region.
(Focusing on symmetric SPEs allows us to assume the
U-game is symmetric, thus simplifying the search
process. However, the general approach applies to
asymmetric SPEs as well.)
4.1. Pure policies

The approach to the case of pure policies is to
determine the best pure reply to each policy and to look
for matches (i.e., mutual best replies). The SPE
universality theorem as applied to pure policies ensures
that any such match will be an unrestricted SPE. These
deterministic SPEs form boundary points of the SPE
manifold in 8-dimensional joint 1-back policy space.
Because of the subgame-perfect criterion, a best reply

for player 1 to a policy of player 2 is one that
simultaneously maximizes V1(x) for all four values of x
(see Definition 2.1). An example calculation, for the case

f 2 ¼
1 0

0 1

� 

; is given in Appendix A. The results of all

16 calculations are displayed in Table 1, which shows
the set of best pure stationary replies to each of the 16
pure stationary policies in GI : Best-reply universality
implies that each of these is a universally best reply,
without restriction to 1-back memory. From Table 1 it
can be seen that, for sufficiently small g; the best reply to

any policy is the all-defect policy
0 0

0 0

� 

: This is

because when future rewards become sufficiently insig-
nificant, the immediate incentive to defect, due to
dominance of that action in the single-trial game,
overpowers any long-term considerations. Furthermore,
for the majority of policies, the best reply is all-defect
independent of the value of g: However, there are many
policies for which the best reply can involve coopera-
tion, implying that if the opponent were using such a
policy then it would be rationally justified to cooperate
in certain states.
The tabulation of best replies now allows determina-

tion of the set of pure stationary SPEs for GI

(equivalently the 1-back pure SPEs for the IPD). These
SPEs are pairs of policies (f, g) such that f is a best reply
to g and gT is a best reply to fT (where T denotes the
transpose operator, which corresponds to switching
between players under the matrix representation used
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Table 1

Best replies to all pure 1-back policies in the IPD

Policy (player 2) Best replies (player 1) Discounting range

0 0

0 0

� 

0 0

0 0

� 

All g

0 0

0 1

� 

0 0

0 0

� 

All g

0 0

1 0

� 

0 0

0 0

� 

All g

0 0

1 1

� 

0 0

0 0

� 

All g

0 1

0 0

� 

1 0

1 1

� 

	 x

y
pgo1

0 0

0 1

� 

0 0

1 0

� 

0 0

1 1

� 

1 0

0 0

� 

1 0

0 1

� 

1 0

1 0

� 

g ¼ 	 x

y

0 0

0 0

� 

0pgp	 x

y

0 1

0 1

� 

0 0

0 0

� 

All g

0 1

1 0

� 

1 0

0 1

� 

	 x

y	x
pgo1

0 0

0 1

� 

1 0

0 0

� 

g ¼ 	 x

y	x

0 0

0 0

� 

0pgp	 x

y	x

0 1

1 1

� 

0 0

0 0

� 

All g

1 0

0 0

� 

1 0

0 0

� 

1	 1

y
pgo1

0 0

0 0

� 

0pgp1	 1

y

1 0

0 1

� 

1 0

0 1

� 

y 	 1pgo1

0 0

0 1

� 

1 0

0 0

� 

g ¼ y 	 1

0 0

0 0

� 

0pgpy 	 1

1 0

1 0

� 

0 0

0 0

� 

All g

1 0

1 1

� 

0 0

0 0

� 

All g

1 1

0 0

� 

1 1

1 1

� 

max y	1

1	x
;	 x

1	x

� �
pgo1

1 1

0 1

� 

1 1

1 0

� 

g ¼ 	 x

1	x

0 1

1 1

� 

1 0

1 1

� 

g ¼ y	1

1	x

1 1

0 0

� 

1	 1

y
pgp	 x

1	x

0 1

0 1

� 

0 1

1 0

� 

1 0

0 1

� 

1 0

1 0

� 

g ¼ 	 x

y
; with x þ y ¼ 1

0 0

1 1

� 

	 x

y
pgp y	1

1	x
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Table 1 (continued )

Policy (player 2) Best replies (player 1) Discounting range

0 0

0 1

� 

0 0

1 0

� 

g ¼ 	 x

y

0 1

0 0

� 

1 0

0 0

� 

g ¼ 1	 1

y

0 0

0 0

� 

0pgpmin 1	 1

y
;	 x

y

n o

1 1

0 1

� 

1 1

0 1

� 

y 	 1pgo1

1 0

0 0

� 

1 0

0 1

� 

1 1

0 0

� 

0 0

0 1

� 

0 1

0 0

� 

0 1

0 1

� 

g ¼ y 	 1

0 0

0 0

� 

0pgpy 	 1

1 1

1 0

� 

0 0

0 1

� 

	 x

y	x
pgo1

0 0

0 0

� 

0pgp	 x

y	x

1 1

1 1

� 

0 0

0 0

� 

All g

Notes: Discounting range gives constraints on g for the given reply(s) to be optimal. The ranges for g depend on the payoff parameters x and y; not all

cases will occur for all values of these parameters.

Table 2

Pure 1-back SPEs for the IPD

Equilibrium policies

Player 1 Player 2 Discounting range

1 0

0 0

� 

1 0

0 0

� 

1	 1

y
pgo1

1 0

0 1

� 

1 0

0 1

� 

y 	 1pgo1

0 0

1 0

� 

0 1

0 0

� 

g ¼ 	 x

y

0 0

1 0

� 

1 1

0 0

� 

g ¼ 	 x

y

1 0

1 0

� 

1 1

0 0

� 

g ¼ 	 x

y
; with x þ y ¼ 1

0 0

0 0

� 

0 0

0 0

� 

All g
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here). In addition to the all-defect–all-defect pair, there
are five other such pairs, all of which include the
potential for cooperation (see Table 2). The first of these
is the Grim policy (Friedman, 1971), which can
cooperate indefinitely but responds to any deviation
with unending defection. Equilibrium #2 involves a
similar policy, with the crucial difference that both
players will reconcile following mutual defection, thus
ensuring that the pattern of behavior will always settle
quickly (i.e., within 2 trials) into sustained mutual
cooperation. Because the guarantee of reconciliation
reduces the punishment for defection, the discount
factor must be somewhat greater to support this
equilibrium than is required for Grim. Equilibrium #3
leads either to permanent mutual defection or to an
alternating sequence of one player cooperating and the
other defecting. (Note that the requirement go1 implies
this equilibrium can only occur if the joint reward
associated with the CD outcome is greater than that for
DD, i.e. x þ y40:) This is a very tenuous equilibrium, in
that it only occurs for a precise value of g; we will see,
however, that there is a family of SPEs in mixed policy
space that jointly exist for a full range of g-values, of
which the present SPE is a boundary point. SPE #4 is a
minor variation of #3, and is the only asymmetric
equilibrium of the group (only one version is displayed
in Table 2). In the final cooperative SPE, under the given
precise values of the payoffs and discount factor, the
TFT policy makes the other player’s entire policy
irrelevant to his or her aggregate reward (a general-
ization of this situation that is robust to parameter
values will be seen in the next section). This may be seen
as an analogue of the maxmin NE that occurs in certain
zero-sum one-shot games.

4.2. Symmetric SPEs

To deal with the general case of mixed strategies, we
make use of the relationship between SPEs and U-game
NEs implied by Lemma 2.1 and Theorem 3.5. The first
step is to determine the possible combinations of NEs
that can be present in the U-games for the four states. In
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0
0

1

1

p1

p2

U2

U1

Best  Replies

Player 1 

Player 2

(B)(A)

Fig. 1. Example graphical representations of the NEs of a 2� 2 game.

Circled points in either graph denote NEs. (A) Best-reply graph.

Probability of choosing the focal action for player k is denoted by pk.

The best reply curve for player 1 gives the optimal p1 as a function of p2
(dark line), and vice versa (light line). (B) Payoff shape. Axes

correspond to expected rewards for the two players (here denoted

U). Each dashed line indicates the set of outcomes corresponding to

the strategy of one player that makes the opponent’s payoff

independent of his or her action.

r1

r2

0
0

1

1

p1

p2

Best  Replies

Player 1 

Player 2

(A) (B)

Fig. 2. Best-reply graph (A) and payoff shape (B) for the one-shot

Prisoner’s Dilemma.
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general there is a different U-game associated with each
state, but because transition probabilities in GI are
independent of the present state, expected future
rewards and therefore the components of the U-game
are also independent of state (assuming stationary
policies). More formally, observe that U can be
expressed in a way that does not depend on the current
state. From Eq. (11):

Ukðf 1; f 2; x; a1; a2Þ ¼ rkða1; a2Þ

þg
X
x0

Vkðf 1; f 2; x
0
Þ � pðx0jx; a1; a2Þ

� �
¼ rkða1; a2Þ þ gV kðf 1; f 2; a1a2Þ; ð21Þ

where a1a2 represents the state following an outcome of
(a1, a2). Because of this invariance we drop the state x, as
well as the policies f1 and f2, from the notation and index
U solely by the actions. This reduction to a single U-
game considerably simplifies the problem of determining
SPEs.
As mentioned above, the restriction to symmetric

SPEs implies that the two players’ policies are trans-
poses of each other in the matrix representation used
here. This in turn leads the U-game to be symmetric as
well, that is

U1ðC;CÞ ¼ U2ðC;CÞ; U1ðC;DÞ ¼ U2ðD;CÞ;

U1ðD;CÞ ¼ U2ðC;DÞ; U1ðD;DÞ ¼ U2ðD;DÞ:
(22)

The next step is to characterize the possible NEs for
this U-game. In general, the NEs of a 2� 2 matrix game
can be determined by computing the best replies for each
player as a function of the other player’s strategy, as
shown in the best-reply graph in Fig. 1A. The graph
shows each player’s optimal probability of choosing the
focal action (e.g., Cooperate) as a function of the action
probability of the opponent. The points where the two
lines intersect are mutual best reply pairs, or NEs.
In the symmetric case, the qualitative form of the

best-reply graph is determined by the following two
comparisons:

U1ðC;DÞ‘U1ðD;DÞ;U1ðC;CÞ‘U1ðD;CÞ: (23)

Each of these can take truth values of ‘4’, ‘o’, or ‘=’.
Using Eq. (22), these comparisons determine corre-
sponding comparisons for U2. The best-reply graph in
Fig. 1A assumes U1(C, D)oU1(D, D) and U1(C,
C)4U1(D, C).
Another way to graphically represent the NEs of a

two-player game is through the ‘‘shape’’ of the possible
payoffs. Fig. 1B shows the range of expected joint
payoffs to the two players under all possible strategies,
for a reward matrix consistent with the example in
Fig. 1A. The vertices of the payoff shape correspond to
the four deterministic outcomes; circled points corre-
spond to NEs. Although the exact form of the payoff
shape depends on relations other than just those given
above, the relations in Eq. (23) are sufficient to fix those
aspects of the reward structure that are relevant here,
namely the best-reply graph and the qualitative set of
NEs.
For the one-shot Prisoner’s Dilemma, r1(C, D)or1(D,

D) and r1(C, C)or1(D, C), and the best-reply graph and
payoff shape are as in Figs. 2A and B, respectively.
These diagrams both illustrate how the dominance of
the defect action leads to (D, D) as the unique NE.
However, replacing r-values with U-values, correspond-
ing to a switch from the one-shot to the iterated game,
can change the payoff shape in a manner that
qualitatively alters the set of NEs. Using the following
relation, derived from Eq. (11), we see that each
component of U is offset from the corresponding
component of r by a scaled-down convex combination
of the Us themselves:

Uða1; a2Þ ¼ rða1; a2Þ þ g f 1½a1a2� f 2½a1a2�UðC;CÞ
	

þ f 1½a1a2�ð1	 f 2½a1a2�ÞUðC;DÞ

þ ð1	 f 1½a1a2�Þf 2½a1a2�UðD;CÞ

þð1	 f 1½a1a2�Þð1	 f 2½a1a2�ÞUðD;DÞ


: ð24Þ
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r2

r1

U(C,C)

U(D,D)

U(C,D)

U(D,C)

Fig. 3. Example relationship between U (heavy line) and r (medium

line) in the IPD. Dashed lines represent shrunken copies of the U-

shape. Each small U-shape has its origin aligned with a vertex of the r-

shape, and contains the corresponding vertex of the full-scale U-shape

(shown by a filled circle).
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Fig. 3 illustrates this relationship between r and U. In
this diagram, the origin of a shrunken U-graph is
aligned with each of the vertices of the r-shape. The
space spanned by the vertices of each shrunken U-graph
contains the corresponding vertex of the full-scale U-
shape. In this example U(C, C) has moved to the right of
U(D, C) and above U(C, D), altering the result of the
second comparison in Eq. (23) and thus changing the
best-reply graph and payoff shape to the forms shown in
Fig. 1, which include two new NEs not present in the
one-shot PD.
In general, because the manner in which the U-shape

deviates from the r-shape is a priori unconstrained, the
form of the associated best-reply graph is also uncon-
strained. Thus there are a total of nine qualitatively
different configurations according to the possible results
of the relations in Eq. (23), each with a qualitatively
different set of NEs, as shown in Table 3. In each of
these cases there are multiple potential SPEs, each
corresponding to selection of one U-game NE to be
played in each of the four states. However, because the
values of U are determined by the policies being used,
not every such set of assignments will yield the same U-
shape as was initially assumed. Thus what remains is to
determine which sets are self-consistent, such that the
strategy pairs assigned to each state are in fact U-game
NEs. This can be done by simultaneously solving
the equations giving U as a function of the policies
(Eq. (11)) and those giving the policies as functions of U

(i.e., those determining the NEs of the U-game, together
with the chosen assignments of NEs to strategy pairs), to
obtain quantitative values for both. When these
calculations are completed (see Appendix B for exam-
ples), 13 different SPEs are found, as listed in Table 4.
For those SPEs involving mixed strategies, denoted by
p, q, r, and s, the values of these action probabilities are
functions of the game parameters x, y, and g; the specific
relationships are given in Appendix C.
All of the first nine SPEs listed in Table 4 (including

the subsequent two duplicates) are repetitions or
generalizations of deterministic SPEs #1 and #2 from
Table 2, in that they can be put into the form of one of
these earlier two by considering the case of either p ¼ 0
or p ¼ 1: The next two are similarly extensions of
deterministic SPE #3. The equilibrium involving all

mixed strategies—
p q

r s

� 

vs:

p r

q s

� 

—is a general-

ization of deterministic SPE #5, TFT vs. TFT. Just as in
the deterministic case, these policies make the oppo-
nent’s policy irrelevant to his or her expected total
reward (see Appendix C for the constraints relating p, q,
r, and s). Finally, we have once again the all-defect
equilibrium, which is the analogue of the unique NE of
the single-trial game.

4.3. Connectedness of all-defect

A further question to ask regarding SPEs in the IPD is
whether and when cooperative policies can arise when
both players initially use the all-defect policy. Because
the iterated game is defined to go on indefinitely, and
policies are defined as determining actions at all
potential future stages, this question requires a dual
timescale perspective, in which players’ policies (or the
players themselves, under an evolutionary interpreta-
tion) change at an infinitesimal rate relative to the
progression of the game. In this framework one can also
consider the game parameters x, y, and g to vary along
the slow timescale. Thus the question becomes whether
the all-defect SPE is connected to any other (necessarily
semi-cooperative) SPEs within the 11-dimensional space
defined by the two players’ policies and the three game
parameters.
It can be shown that none of the mixed SPEs derived

here degenerates to all-defect under any values of the
payoff parameters satisfying the strict requirements
xo0 and y41 (even in the limit g ! 1). However, the
topological notion of connectedness requires that we
also consider the continuation of the solutions onto the
boundary of the parameter space, by allowing x !

0; y ! 1; or both. In the case of
0 0

p 0

� 

vs:

0 p

0 0

� 

; we

have limx-0 (p)=0 for any yX1 and g 2 ð0; 1Þ: Thus,
allowing x to approach 0 leads to semi-cooperative SPEs
arbitrarily close to all-defect (while still remaining
within the proper parameter space). A similar situation

arises for
p 0

0 0

� 

vs:

p 0

0 0

� 

and

p q

r s

� 

vs:

p r

q s

� 

;

which both continuously approach all-defect as (x, y)
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Table 3

Best-reply graphs and NEs for all nine symmetric configurations of U

Note: Variables p and q represent all values in [0,1].
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tend jointly to (0, 1).6 Therefore these three families of
SPEs all provide a potential explanation for the
emergence of cooperation, under the dual timescale
interpretation.
6The solution
p q

r s

� 

vs:

p r

q s

� 

represents a 2-dimensional set of

SPEs for any given values of the game parameters; the limit of this set

as (x, y)-(0, 1) includes the all-defect pair.
5. Discussion

Given the potential complexity of behavior that could
arise in a repeated or stochastic game, one might
suppose that people’s cognitive limitations would come
into play before they were able to attain a globally
optimal outcome, even at the individual level. Therefore
it would be reasonable to expect a tradeoff between the
payoffs that are achieved and the cost of implementing



ARTICLE IN PRESS

Table 4

Symmetric 1-back SPEs for the IPD

U-shape SPEs

U1ðC;DÞoU1ðD;DÞ

U1ðC;CÞ4U1ðD;CÞ

1 0

0 0

� 

vs.

1 0

0 0

� 

1 0

0 1

� 

vs.

1 0

0 1

� 

p 0

0 0

� 

vs.

p 0

0 0

� 

p 0

0 p

� 

vs.

p 0

0 p

� 

1 p

p 0

� 

vs.

1 p

p 0

� 

1 p

p 1

� 

vs.

1 p

p 1

� 

1 p

p p

� 

vs.

1 p

p p

� 

1 0

0 p

� 

vs.

1 0

0 p

� 

p 0

0 1

� 

vs.

p 0

0 1

� 


U1ðC;DÞoU1ðD;DÞ

U1ðC;CÞ ¼ U1ðD;CÞ

1 0

0 0

� 

vs.

1 0

0 0

� 

1 0

0 1

� 

vs.

1 0

0 1

� 


U1ðC;DÞ ¼ U1ðD;DÞ

U1ðC;CÞoU1ðD;CÞ

0 0

p 0

� 

vs.

0 p

0 0

� 


U1ðC;DÞ4U1ðD;DÞ

U1ðC;CÞoU1ðD;CÞ

p 0

1 p

� 

vs.

p 1

0 p

� 


U1ðC;DÞ ¼ U1ðD;DÞ

U1ðC;CÞ ¼ U1ðD;CÞ

p q

r s

� 

vs.

p r

q s

� 


U1ðC;DÞoU1ðD;DÞ

U1ðC;CÞoU1ðD;CÞ

0 0

0 0

� 

vs.

0 0

0 0

� 


Notes: Equilibria are categorized according to the U-shape they induce

(note that two are repeated). Here p, q, r, and s each represent some

cooperation probability between 0 and 1. See Appendix C for the

equations relating these values to the game parameters x, y, and g.
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the policies necessary to achieve them (Aumann, 1981).
The present results indicate that this need not be the
case, in that mutual restriction to the use of bounded
information can be individually rational, thus relieving
both players of the incentive to process more complex
policies.
This is certainly not to say that computational

complexity, in terms of the amount of information or
trial-to-trial memory required to implement a policy, is
not a factor in people’s decisions. Rather, our results
simply suggest that this factor will not force players
outside the SPE solution set. This is because, even in a
case where players might be motivated to sacrifice
optimal payoffs for the sake of simpler policies, best-
reply universality implies that neither player will choose
a more complex policy than the other; that is, both
players will restrict themselves to the same complexity
class. Applying SPE universality to this class then
implies that the outcome is a true SPE.7 Thus the
universality results suggest a way around the primary
complications introduced by issues of cognitive econo-
7A complexity class is given by [I2In F I ; where In is the set of

sufficient and deterministic I that take on no more than n values for a

given n. In general, it can be easily shown that any class that is a union

of best-reply universal classes is itself best-reply and SPE universal.
my, including exactly how players compromise between
complexity and payoffs, and whether such tradeoffs
might lead to non-equilibrium outcomes.
Cognitive economic considerations of the present

results may even salvage the SPE as a useful tool for
descriptive theory. Specifically, we conjecture that the
majority of real human interactions take place at those
SPEs involving the least complex policies. Furthermore,
these low-information SPEs will in general be the least
numerous, because they correspond to the I-games with
the fewest numbers of states. Thus the universality
theorems turn the previously weak concept of SPE into
one with real predictive power.
With regard to analysis of particular games, the

universality theorems provide a powerful tool for
evaluating the best-reply and SPE criteria, by reducing
both optimality requirements to ones that must hold
with respect to a much smaller set of deviations (i.e.,
those following any value of I, rather than following any
history). Further, the method shown here allows for the
discovery of novel SPEs, often composed of simple and
interpretable policies, through various (perhaps inde-
pendently motivated) choices of the function I. An
example is our investigation of mutually optimal 1-back
policies in the IPD. The set of SPEs derived includes
some well-known policies, such as Grim and TFT, and a
number of novel ones that manifest various patterns of
semi-cooperative behaviors.
Some particularly interesting results arose in this

investigation regarding TFT. This policy was found to
be effective in that best replies to it tend to be highly
cooperative, yet it is rarely a best reply itself (and then
only in cases where player 1’s policy is largely irrelevant;
see Table 1). The reason for this seeming contradiction
is that the power of TFT is restricted to situations in
which the opponent is able to assess the contingency
between his or her actions and TFT’s subsequent
responses. This is the case when we consider the best
replies to TFT, because the concept of best reply
implicitly assumes that the opponent knows the player’s
policy. However, in the case of the focal player
determining the best reply to a fixed policy of the
opponent, the situation is quite different. Here, TFT is
only effective if the opponent’s policy has some intrinsic
ability to learn the future effects of its own actions.
Of course, any process by which one player identifies

the other’s policy during play and learns to respond
optimally can be formalized as a policy within the game.
In particular, a learning algorithm based on trial-by-trial
updating of parameters (e.g., Q-values or association
weights) is equivalent to a highly history-dependent
policy, for which actions typically depend on all past
outcomes via the memory contained in the learned
parameters (this is the case even though the updating
procedure is based only on recent information). A
consequence of the best-reply universality theorem is
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that if the opponent’s policy is temporally bounded, then
the unbounded memory implied by most learning
algorithms is unnecessary, as there will always exist a
best reply that is itself temporally bounded. This fact
highlights a shortcoming of the equilibrium-based
approach to rationality in iterated games, in that it
denies the need for online learning by essentially
assuming that players have foreknowledge of each
other’s policy. Under this assumption, powerful algo-
rithms for learning and adapting to an unknown policy
of the opponent will fare worse than a simple program
that happens to ‘‘know’’ in advance what it is up against.
Therefore the SPE approach to rationality potentially
ignores some of the more interesting dynamics that could
arise as a consequence of online learning.8
5.1. Universality and machine games

The concepts of restricted SPEs and informationally
bounded policies discussed here have close connections to
previous investigations of behavioral complexity in re-
peated games. In particular, the I-game as described here is
very similar to the machine game that has been studied by
Rubinstein and colleagues (Rubinstein, 1986; Abreu &
Rubinstein, 1988; Osborne & Rubinstein, 1994, Chap. 9).
A machine game is a repeated game in which each player
chooses actions based on the state of some automaton
whose updating process depends on the outcomes of
previous trials. Typically, the automaton’s transition
function is defined using only the action of the opponent,
ignoring the focal player’s action (exceptions can be found
in Kalai & Stanford, 1988; Osborne & Rubinstein, 1994).
A policy based on the automaton is a function specifying
an action (typically not a mixed strategy) in the one-shot
game for each state of the machine.
It is easy to see how any function I satisfying the

determinism axiom is equivalent to an automaton, and
therefore the policies and SPEs falling under the
approach presented here are precisely those that can
arise in machine games.9 In the case of pure policies this
implies a great deal of scope for the present framework,
as for any deterministic SPE in a repeated game there
8The difficulty still arises even when both players use learning

algorithms. Because such an algorithm updates its parameters trial by

trial, the information contained in these parameters satisfies the

determinism axiom, placing the class of policies that can be founded on

the algorithm within the scope of the universality results. Best-reply

universality thus implies that a player cannot gain an advantage by

using a more complex learning algorithm than that used by the

opponent. However, this analysis again assumes that the player has

foreknowledge of the opponent’s algorithm. In the absence of this

assumption more complex algorithms could well fare better.
9Technically, all SPEs considered here must be implemented with all

players using the same automaton (i.e., same information I), whereas

this restriction is not present in machine games. However, given any

two policies based on different automata, one can construct the

product automaton and base both policies on that machine.
exists a machine-based deterministic SPE that produces
the same sequence of outcomes (Osborne & Rubinstein,
1994, p. 154; see also Abreu & Rubinstein, 1988).
The most relevant result from the theory of machine

games is that of Abreu and Rubinstein (1988), who
prove that if one player uses a pure policy based on a
finite-state automaton, then the opponent has a pure
best reply that is also based on an automaton, and
furthermore this automaton can be made to have no
more states than that of the first player. This is
equivalent to the statement that the class M̄n of pure
policies implementable using an automaton of n or fewer
states is best-reply universal. The result can also be seen
as a corollary of our best-reply universality theorem,
which implies that given a machine for player 2’s policy,
player 1 has a best reply based on the same machine. In
fact, Abreu and Rubinstein’s (1988) proof follows
essentially these lines, in that they construct a best-reply
automaton for player 1 that mimics the dynamics of
player 2’s machine.
The present results can therefore be viewed as an

extension of Abreu & Rubinstein’s (1988) theorem,
generalizing it in a number of ways. First, the present
approach allows mixed policies, and thus implies that
Mn (the class of mixed policies based on automata with
n or fewer states) is also universal. Because pure SPEs do
not necessarily exist at all in an arbitrary repeated game
(consider the repetition of a 0-sum game in which there
is no NE in pure strategies), the restriction to pure
policies can be quite a severe one.
One interesting set of results relating to the issue of

pure versus mixed policies concerns the situation in
which players use pure policies, but choose them
stochastically. Under this scenario, in the case of 0-sum
games, Ben-Porath (1993) proves that if one player’s
policy is sufficiently more complex than the other’s, as
measured by the number of states required for imple-
mentation with an automaton, then the first player can
achieve a better outcome than (s)he would obtain if both
were limited to the same complexity. (Lehrer, 1988,
proves a similar result based on the length of memory of
players’ policies.) Therefore the universality theorems do
not apply to this type of game. Interestingly, the proof
uses the construction of an automaton that first discerns
the policy being used by the opponent and then selects
the best reply to it. Thus this model may be useful in
addressing the shortcomings mentioned above regarding
modeling of learning processes.
A second contribution of the present approach is that

it allows players’ strategies to depend on their own past
actions. In the case of pure policies this actually makes
no difference for the machine model, as the player’s past
actions are fully determined by the past states of the
automaton. Thus any reliance on one’s own past actions
can be absorbed into the transition function, specifically
the dependence of each state on the previous state (this
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is the approach used in the aforementioned proof of
Abreu & Rubinstein, 1988). However, in the case of
mixed policies, the outcomes of one’s own stochastically
determined past actions can provide useful additional
information (note that using stochastic machine-state
transitions is not sufficient, as they will be uncorrelated
with the randomness in the actions). All of the SPEs that
arose in our IPD analysis that contain mixed strategies
serve as examples of how dependence upon one’s own
previous actions can allow for optimal behaviors not
otherwise achievable.
A third manner in which the present results extend

previous work is the application to stochastic games,
and the provision of a condition under which the
universality properties hold, namely the sufficiency
axiom. This axiom qualifies the universality results by
stating that information can only be safely ignored if it is
ignored by one’s opponents and it is irrelevant to the
current state of the game. This latter condition is trivial
in a repeated game, but in a stochastic game it is critical
for ensuring that the best-reply and SPE criteria are
met.10 The sufficiency axiom also plays an important
role in finite-length games. For example, in the finitely
repeated Prisoner’s Dilemma the only SPE is all-defect,
but if players are restricted to the complexity class Mn

for n sufficiently small relative to the length of the game
then there exist stable outcomes (restricted SPEs)
involving cooperation (Neyman, 1985). Thus Mn

is not SPE universal for this game. This discrepancy
with the infinite game can be understood in terms
of the sufficiency axiom as follows: Because the
game has a definite ending point, all trials must be
treated as different states in order for the game to be
Markov. Under this interpretation the SPE universality
theorem would hold, but the sufficiency axiom
implies that the machine must have at least as many
states as there are steps in the game. Therefore
limiting the complexity to a value less than the
length of the game prevents the assumptions of the
universality theorems from being met. Thus the present
framework provides a natural explanation for the
critical role of complexity limitations in finite-length
games.
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Appendix A. Calculation of the best reply to a

deterministic policy

The following is a representative example of the
calculation of player 1’s optimal pure 1-back reply to

f 2 ¼
1 0

0 1

� 

; as a function of the game parameters x, y,

and g: Optimality is defined in terms of the requirement
given in Definition 2.1, which for stationary policies is
equivalent to simultaneous maximization of all four
state values V1(x).
First consider what will happen if player 1 uses the all-

defect strategy: If the game starts in state CC or DD,
player 2 will cooperate on the first trial while player 1
defects, giving player 1 a reward of y and putting the
players in state DC. Both players will now defect,
yielding a reward of 0 and putting the game into state
DD. The game will then continue to alternate between
DC and DD, implying

V 1ðCCÞ ¼ V1ðDDÞ ¼
y

1	 g2
: (A.1)

Similar direct calculations yield

V 1ðCDÞ ¼ V 1ðDCÞ ¼
gy

1	 g2
: (A.2)

These values can now be used as lower bounds on the
V-values for the optimal policy. Next consider player 1’s
action in state CD: If (s)he were to cooperate, (s)he
would receive a reward of x (as the opponent would be
defecting), and the game would remain in CD indefi-
nitely. Thus we would have

V 1ðCDÞ ¼
x

1	 g
o

gy

1	 g2
(A.3)

which would be inferior to all-defect. Therefore the
optimal policy for the present case has f1[CD]=0. Now
consider f1[DC]: If f1[DC]=1, then DC would always
lead to CD followed by DD, whereas if f1[DC]=0 then
DC would lead directly to DD. Thus

f 1½DC� ¼ 1 ) V1ðDCÞ ¼ x þ g2V1ðDDÞ;

f 1½DC� ¼ 0 ) V1ðDCÞ ¼ gV 1ðDDÞ: ðA:4Þ

By Eq. (A.1), the optimal policy satisfies V1(DD)40,
and this along with xo0 and 0pgo1 implies that the
second expression for V1(DC) in Eq. (A.4) is strictly
greater than the first. Therefore f 1½DC� ¼ 0: This also
implies V1(DC)=gV1(DD), so maximization of V1(DD)
will ensure that of V1(DC). It can be similarly shown
that maximizing V1(DD) also leads to maximization of
V1(CD).
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With only two components of the optimal policy left
undetermined (and thus only four possible policies
remaining), and only two V-values to consider, we
now proceed with direct calculations:

f 1½CC� ¼ 0; f 1½DD� ¼ 0 ) V 1ðCCÞ ¼
y

1	 g2
; V1ðDDÞ ¼

y

1	 g2
;

f 1½CC� ¼ 0; f 1½DD� ¼ 1 ) V 1ðCCÞ ¼
y þ g2

1	 g3
; V1ðDDÞ ¼

1þ gy
1	 g3

;

f 1½CC� ¼ 1; f 1½DD� ¼ 0 ) V 1ðCCÞ ¼
1

1	 g
; V1ðDDÞ ¼

y

1	 g2
;

f 1½CC� ¼ 1; f 1½DD� ¼ 1 ) V 1ðCCÞ ¼
1

1	 g
; V 1ðDDÞ ¼

1

1	 g
:

ðA:5Þ

When goy21; the potential state values in Eq. (A.5)
are ordered as follows:

y

1	 g2
4

y þ g2

1	 g3
4

1þ gy

1	 g3
4

1

1	 g
: (A.6)

If g4y21 then these inequalities are reversed. Therefore

if goy21 then the optimal policy is
0 0

0 0

� 

; and if

g4y21 (which is only possible if yo2) then the best

reply is
1 0

0 1

� 

: Finally, if g ¼ y21 then all four policies

considered above—
0 0

0 0

� 

;

0 0

0 1

� 

;

1 0

0 0

� 

and

1 0

0 1

� 

—lead to the same set of expected payoffs, and

thus all four are optimal.
The dynamics behind the transition from
0 0

0 0

� 

to

1 0

0 1

� 

can also be understood through a

consideration of the U-values. Calculation of U1 for the
above four policies yields:

f ¼
0 0

0 0

" #
) U1 ¼

1þ gy
1	g2

x þ
g2y

1	g2

y

1	g2
gy

1	g2

2
4

3
5;

f ¼
0 0

0 1

" #
) U1 ¼

1þgy

1	g3
x þ

g2þg3y

1	g3

yþg2

1	g3
gþg2y

1	g3

2
64

3
75;

f ¼
1 0

0 0

" #
) U1 ¼

1
1	g x þ

g2y

1	g2

y

1	g2
gy

1	g2

2
4

3
5;

f ¼
1 0

0 1

" #
) U1 ¼

1
1	g x þ

g2

1	g

y þ
g2

1	g
g

1	g

2
64

3
75:

ðA:7Þ

For all of these policies we have U1(D, D)4U1(C, D),
corresponding to the fact that the best reply to an
upcoming defection by player 2 is to defect as well,
regardless of x, y, or g (this is consistent with
f1[CD]=f1[DC]=0, since f2[CD]=f2[DC]=0). Further-
more, all four cases satisfy U1(C, C)4U1(D, C) if and
only if g4y21: This is consistent with the fact that the
best reply matches cooperation with cooperation
( f1[CC]=f1[DD]=1) if g4y21; and counters coopera-
tion with defection ( f1[CC]=f1[DD]=0) if goy21:
When g ¼ y21; and U1(C, C)=U1(D, C) for the policies
under consideration, the response to the opponent’s
cooperation is irrelevant, which is why all four policies
are optimal.
Appendix B. Determination of symmetric mixed SPEs

The following is a sketch of the calculations involved
in determining the set of symmetric SPEs associated
with the U-configuration defined by U1(C, C)4U1(D, C)
and U1(D, D)4U1(C, D). The NEs associated with this
type of payoff matrix are (0, 0), (1, 1), and (p, p) for a
unique pA(0, 1), given by

p ¼
U1ðD;DÞ 	 U1ðC;DÞ

U1ðC;CÞ 	 U1ðD;CÞ 	 U1ðC;DÞ þ U1ðD;DÞ
:

(B.1)

Therefore we need to search through all policy pairs
( f, f T) satisfying (f [x], f T[x])=(0, 0), (1, 1), or (p, p) for
every state x. Note that the symmetry present in all three
NEs, along with the symmetry assumed between the
players’ policies, implies f [CD]=fT[CD]=f[DC]. Thus
there are three assignments to be made, each with three
choices, yielding 27 policy pairs that are potential SPEs.
The relations assumed among the components of U

also have implications for V, via the following simpli-
fication of Eq. (11):

U1ða1; a2Þ ¼ r1ða1; a2Þ þ gV1ða1a2Þ: (B.2)

In particular, given that r1(C, C)or1(D, C), the
assumption U1(C, C)4U1(D, C) implies

V 1ðCCÞ4V1ðDCÞ: (B.3)

Furthermore, the symmetry assumed for U and for the
policies implies both V1(x)=V2(x) for every x and
Vk(CD)=Vk(DC) (see Eq. (12)). Therefore for the
remainder of this appendix the subscript on V will be
dropped and V(CD) and V(DC) will be used inter-
changeably.
The number of policy pairs under consideration can

be reduced by an initial analysis of the state values
associated with the three NE strategy pairs, in the
following manner. For each U-game NE (b, b), with
b ¼ 0; 1; or p, define the equilibrium value W(b,b) by

W ðb;bÞ ¼ E
X
tXt

gt	trt
1jP½a

t
1 ¼ C� ¼ P½at

2 ¼ C� ¼ b

" #
:

(B.4)
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Note that W(b,b) is equal to the state value V(x) for
any x for which (f [x], f T[x])=(b, b) (see Eq. (10)).
Therefore constraints on the correspondences between
state values V and equilibrium values W can
provide constraints on the policy f (e.g., V(x) 6¼W(b,b)

implies f [x]6¼b).
From Eq. (12) and the relationship between V and W,

W(b,b) is equal to the expected payoff to player 1 (and to
player 2) for the one-shot U-game NE corresponding to
the strategy pair (b,b):

W ð1;1Þ ¼ U1ðC;CÞ;

W ð0;0Þ ¼ U1ðD;DÞ;

W ðp;pÞ ¼ p2U1ðC;CÞ þ pð1	 pÞU1ðC;DÞ

þ pð1	 pÞU1ðD;CÞ þ ð1	 pÞ2U1ðD;DÞ: ðB:5Þ

Because (p,p) is a mixed-strategy NE, player 1 gets the
same expected payoff regardless of his or her strategy,
and therefore in particular the expected NE payoff is
equal to the expected payoff under either pure action:

W ðp;pÞ ¼ pU1ðC;CÞ þ ð1	 pÞU1ðC;DÞ

¼ pU1ðD;CÞ þ ð1	 pÞU1ðD;DÞ: ðB:6Þ

Here player 2 is still assumed to cooperate with
probability p, whereas player 1 either cooperates (middle
expression) or defects (RHS) with certainty.
Assume for the moment that W(p,p)

XU1(C, C). By the
first equality in Eq. (B.6), this implies U1(C, C)pU1(C,
D). Using the initial assumptions U1(C, C)4U1(D, C)
and U1(C, D)oU1(D, D), this implies that the
components of U are ordered as U1(D, D)4U1(C,
D)XU1(C, C)4U1(D, C). The second equality in
Eq. (B.6) (LHS=RHS) now yields W(p,p)oU1(D, D).
Therefore, referring back to the hypothetical assump-
tion W(p,p)

XU1(C, C), we can conclude that either
W(p,p)oU1(C, C) or W(p,p)oU1(D, D). By Eq. (B.5) this
is equivalent to:

W ðp;pÞoW ð0;0Þ or W ðp;pÞoW ð1;1Þ: (B.7)

The possible orderings of the Ws consistent with
Eq. (B.7) are broken into three cases:
W(1,1)4W(p,p)

XW(0,0); W(1,1)4W(0,0)4W(p,p); and
W(0,0)4W(p,p), W(0,0)

XW(1,1).
Case 1: W(1,1)4W(p,p)

XW(0,0). In this case, Eq. (B.3)
rules out all but three choices for the pair (V(CC),
V(DC)): (W(1,1), W(0,0)), (W(1,1), W(p,p)), and (W(p,p),
W(0,0)). This implies that (f [CC], f[DC]) must be equal to
(1, 0), (1, p), or (p, 0). Crossing these options with the
three choices for f [DD] yields 9 policy pairs that must be

considered:
1 0

0 0

� 

vs:

1 0

0 0

� 

;

1 0

0 p

� 

vs:

1 0

0 p

� 

;

1 0

0 1

� 

vs:

1 0

0 1

� 

;

1 p

p 0

� 

vs.

1 p

p 0

� 

;

1 p

p p

� 

vs:
1 p

p p

� 

;

1 p

p 1

� 

vs:

1 p

p 1

� 

;

p 0

0 0

� 

vs.

p 0

0 0

� 

;

p 0

0 p

� 

vs:

p 0

0 p

� 

; and

p 0

0 1

� 

vs:

p 0

0 1

� 

:

Case 2: W (1,1)4W (0,0)4W (p,p) In this case the only
way to satisfy Eq. (B.3) that was not listed in Case 1 is
with (f [CC], f [DC])=(0, p) and hence (V(CC),
V(DC))=(W (0,0), W (p,p)). Furthermore, the assumption
W (0,0)4W (p,p), or equivalently U1(D, D)4W (p,p), im-
plies via Eq. (B.6) that U1(D, D)4U1(D, C). This along
with r1(D, D)or1(C, D) implies V(DD)4V(DC) by Eq.
(B.2). Therefore V(DD) 6¼W (p,p), implying f [DD]6¼p.

This leaves two new possibilities:
0 p

p 0

� 

vs.

0 p

p 0

� 


and
0 p

p 1

� 

vs.

0 p

p 1

� 

:

Case 3: W (0,0)4W (p,p), W (0,0)
XW (1,1). The assump-

tion W (0,0)
XW (1,1) is equivalent to U(D, D)XU(C, C)

by Eq. (B.5). Using r1(D, D)or1(C, C), Eq. (B.2) implies
V(DD)4V(CC). Taking into account Eq. (B.3) gives the
full ordering V(DD)4V(CC)4V(DC). The only two
possibilities for ((V(DD), V(CC), V(DC)) are thus
(W (0,0), W (1,1), W (p,p)) and (W (0,0), W (p,p), W (1,1)),
implying that (f [DD], f [CC], f [DC])=(0, 1, p) or (0, p,
1). The first of these was listed in Case 1, so the final

candidate is
p 1

1 0

� 

vs:

p 1

1 0

� 

:

The final step is to check directly which of the reduced
set of 12 candidates are true SPEs, by determining
whether the U-game generated by each policy pair has
all four constituent strategy pairs as NEs. Two examples
are shown here.

Example A:

1 p

p p

� 

vs:

1 p

p p

� 


With this policy pair mutual cooperation perpetuates
itself indefinitely, so we see readily that

U1ðC;CÞ ¼
1

1	 g
: (B.8)

Using Eqs. (B.2) and (B.8) to substitute for the
components of U in Eq. (B.6), and then replacing
V(CD), V(DC), and V(DD) with W(p,p), yields the
following condition for (p, p) to be a U-game NE:

W ðp;pÞ ¼
p

1	 g
þ ð1	 pÞðx þ gW ðp;pÞÞ

¼ pðy þ gW ðp;pÞÞ þ ð1	 pÞgW ðp;pÞ ðB:9Þ

) W ðp; pÞ ¼
p þ ð1	 pÞð1	 gÞx
ð1	 gÞð1	 gþ gpÞ

and W ðp; pÞ ¼
py

ð1	 gÞ
(B.10)
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) gyp2 þ ðð1	 gÞðx þ yÞ 	 1Þp 	 ð1	 gÞx ¼ 0: (B.11)

Under the restriction to 0ppp1 and 0pgo1; there is
one solution curve, given by

p ¼
1	 ð1	 gÞðx þ yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 gÞ2ðx2 þ y2Þ þ 2ð1	 g2Þxy 	 2ð1	 gÞðx þ yÞ þ 1

q
2gy

;

(B.12)

with boundary points at (g, p)=(1, 0) and (1, 1/y). This
curve represents the set of pairs (g, p) for which (p, p) is a
U-game NE.
The other thing that needs to be checked is that the (1,

1) strategy pair associated with state CC is also an NE,
which is equivalent to U1(C, C)XU1(D, C). On the
solution curve given by Eq. (B.12), where (p, p) is an
NE, this is equivalent to the requirement U1(C,
D)pU1(D, D) by Eq. (B.6). Using Eq. (B.2), we have

U1ðC;DÞ ¼ x þ gV ðCDÞ ¼ x þ gW ðp; pÞ (B.13)

and

U1ðD;DÞ ¼ 0þ gV ðDDÞ ¼ gW ðp;pÞ: (B.14)

Since xo0, this implies U1(C, D)oU1(D, D), and thus
(1, 1) is an NE everywhere on the curve of Eq. (B.12).

Therefore
1 p

p p

� 

vs:

1 p

p p

� 

is an SPE for all g such

that the values of p given by Eq. (B.12) are real and at
least one lies in [0, 1]. It can be shown algebraically that
this condition is satisfied whenever gXg�; with the
critical value g� 2 ð0; 1Þ given by

g� ¼
xðx 	 1Þ þ yðy 	 1Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xyðx 	 1Þðy 	 1Þ

p
ðx 	 yÞ2

(B.15)

Example B:

0 p

p 0

� 

vs:

0 p

p 0

� 

:

In order for (0, 0) to be an NE for the U-game,
we must have U1(C, D)pU1(D, D). This along with
Eq. (B.6) (the criterion for (p, p) to be an NE)
implies U1(D, C)pU1(C, C). Since state CC is followed
by eternal defection, U1(C, C)=1. Therefore by
Eq. (B.2):

V ðDCÞ ¼
1

g
ðUðD;CÞ 	 yÞp

1

g
ðUðC;CÞ 	 yÞ ¼

1

g
ð1	 yÞo0:

(B.16)

However, by choosing f1[x] � 0 player 1 can always
guarantee every state value to be nonnegative (for any
policy of player 2). This contradiction negates the
assumption that (0, 0) and (p, p) are both U-game
NEs, and implies that there is no SPE of this type.
Appendix C. Characterization of all symmetric SPEs

1 0

0 0

� 

vs:

1 0

0 0

� 


Exists 8x,y. Requires gX121=y:

1 0

0 1

� 

vs:

1 0

0 1

� 


Exists iff yo2: Requires gXg21:

p 0

0 0

� 

vs:

p 0

0 0

� 


p ¼
x þ y 	 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ 2ð1	 2gÞxy 	 2x 	 2y þ 1

p
2gy

:

Exists 8x,y. Requires gX121=y:

1 p

p 0

� 

vs:

1 p

p 0

� 


p ¼ 2gð1	 ð1	 gÞx þ ð1	 gÞyÞ½ �
	1

� 1	 ð1	 g2Þx 	 ð1	 gÞ2y
h

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 gÞ4ðx2 þ y2Þ þ 2ð1	 gÞ2ð1þ 2g	 g2Þxy 	 2ð1	 gÞ2ðx þ yÞ þ 1

q 


and pp 	x
y	x	1

:
Exists 8x,y.

1 p

p p

� 

vs:

1 p

p p

� 


p ¼
1	 ð1	 gÞðx þ yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 gÞ2ðx2 þ y2Þ þ 2ð1	 g2Þxy 	 2ð1	 gÞðx þ yÞ þ 1

q
2gy

:

Exists 8x; y: Requires gX
xðx	1Þþyðy	1Þþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xyðx	1Þðy	1Þ

p

ðx	yÞ2
:

1 p

p 1

� 

vs:

1 p

p 1

� 


p ¼ gðy 	 x þ 1Þ½ �
	1

� 1þ 2g	 ð1þ gÞx 	 ð1	 gÞy
h

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 gÞ2ðx2 þ y2Þ þ 2ð1þ 2g	 g2Þxy 	 2ð1þ gÞðx þ yÞ þ 1þ 4g

q 

:

Exists iff yp1þ 1=ð4ð1	 xÞÞ:

1 0

0 p

� 

vs:

1 0

0 p

� 


p ¼ 2gð1	 ð1	 gÞx 	 gyÞ½ �
	1

� ð1	 gÞ2x þ ð1	 g2Þy 	 1
h

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 g2Þ2ðx2 þ y2Þ þ 2ð1	 gÞð1	 gþ g2 þ g3Þxy 	 2ð1	 g2Þðx þ yÞ þ 1

q 


Exists 8x,y.

p 0

0 p

� 

vs:

p 0

0 p

� 
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p ¼ 2gð1	 x þ yÞ½ �
	1

� ð1	 gÞx þ ð1þ gÞy 	 1
h

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞ2ðx2 þ y2Þ þ 2ð1	 2g	 g2Þxy 	 2ð1þ gÞðx þ yÞ þ 1

q 

:

Exists iff yo2: Requires gXy21:

p 0

0 1

� 

vs:

p 0

0 1

� 


p ¼ ½2gð	gx þ ð1þ gÞyÞ�	1 � ðð1þ g	 g2Þx þ ð1þ gþ g2Þy 	 1	 2g

þ ½ð1þ gþ g2Þ2ðx2 þ y2Þ þ 2ð1	 5g2 	 2g3 	 g4Þxy

	 2ð1þ 3gþ g2Þðx þ yÞ þ ð1þ 2gÞ2�1=2Þ:

Exists iff yo2: Requires gXy21:

0 0

p 0

� 

vs:

0 p

0 0

� 


p ¼ 	
x

gy
:

Exists iff x þ y40: Requires gX2x=y:

p 0

1 p

� 

vs:

p 1

0 p

� 


p ¼ 2gð1þ g	 x þ yÞ½ �
	1 x þ ð1þ 2gÞy 	 1þ g2
h

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4gÞðx2 þ y2Þ þ 2ð1þ 2g2Þxy 	 2ð1þ gÞ2ðx þ yÞ þ ð1	 g2Þ2

q 

:

Exists iff x þ y40: Requires gX2x=y:

p q

r s

� 

vs:

p r

q s

� 


p ¼
ð1þ gsÞy þ gq 	 gs 	 1

gy
; r ¼

ðgq 	 gs 	 1Þx þ gsy

gy
:

Requires

ðgs þ 1Þx þ gð1	 sÞy

gx
pqp

ð	gs 	 1þ gÞy þ 1þ gs

g
;

which requires gXmax f1	 1=y; 1	 1=ð1	 xÞg: Exist
solutions 8x,y.

0 0

0 0

� 

vs:

0 0

0 0

� 


Exists 8x; y; g:
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mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswis-

senschaft, 121, 301–324 & 667–689.

Stahl, D. O. (1991). The graph of Prisoner’s Dilemma supergame

payoffs as a function of the discount factor. Games and Economic

Behavior, 3, 368–384.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D.

thesis, Cambridge University.

Wilkinson, G. S. (1984). Reciprocal food sharing in the vampire bat.

Nature, 308(5955), 181–184.


	Rationality and bounded information in repeated games, with application to the iterated Prisoneraposs Dilemma
	Introduction
	Theoretical background
	Matrix games
	Repeated games
	Stochastic games
	Competitive Markov decision processes

	Universality of bounded policy classes
	Bounded memory in the iterated Prisoneraposs Dilemma
	Pure policies
	Symmetric SPEs
	Connectedness of all-defect

	Discussion
	Universality and machine games

	Acknowledgments
	Calculation of the best reply to a deterministic policy
	Determination of symmetric mixed SPEs
	Characterization of all symmetric SPEs
	References


