
Contributions

• General framework for learning/memory in nonstationary domains
• Parallel systems with different characteristic timescales

• Multiscale Optimizer (NN implementation)
• Subweights with different learning and decay rates

• Model equivalence results
• Eliminate extraneous coupling between timescales

• New perspective on momentum
• Equivalent to fast weight with negative learning rate

Model Equivalence: 
Eliminating Coupling between Timescales
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Multiscale Optimizer

Fast Weights

Benna-Fusi Model Synapse [BF16]

• Adopted in continual reinforcement learning [KSC18, KSC19]

• Coupled biochemical processes at different timescales
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Reparameterization

• Linear dynamics:  + , + 1 = .+(,) + 1(,)

• Eigenvector coordinate change: . = 234%!,  5 ∶= 2%'+

• Simplified dynamics: 5 , + 1 = 35(,) + 2%!1(,)

• Instance of multiscale optimizer: 7( , + 1 = 8(7((,) + '((,)
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• Standard momentum learning [RHW86, Qia99]
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• Multiscale optimizer with negative fast learning rate
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• Explanation: decay of 56728 leads 9 to continue learning toward 52345

• Opposing rationales of momentum and fast weights
• Momentum: smooths endogenous negative autocorrelation
• Fast weights: leverage exogenous positive autocorrelation 

[JSE+22]
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Momentum as Negative Fast Weight
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is proportional to N , and as a consequence a t−1/2 decay would imply 
that the memory capacity scales linearly with N.

This abstract model reveals what kind of decay of the memory 
signal is desirable, but it does not explain how this behavior is achiev-
able by synaptic dynamics. The next step is to construct a model that 
implements the desired power-law decay. One simple way would be 
to endow each synapse with a timer and introduce a mechanism to 
decrease the relative weight of each synaptic modification on the basis 
of the age of the modification18, but this would just move the prob-
lem to the encoding and preservation of the memory age, which is 
potentially as difficult as the original memory problem we intend to 
solve. Fortunately, there is no need for a timer, as there are synaptic 
models in which the 1 t  decay emerges naturally from the interac-
tion of multiple processes.

We will start with the construction of a simple chain model that 
captures and illustrates all the relevant scaling properties of more 
complex models. Then we will show how to generalize the model to 
incorporate less orderly interactions more similar to those observed 
in biological synapses. The simple chain model is characterized by 
multiple dynamical variables, each representing a different biochemi-
cal process (Fig. 1a). The first variable, which is the most plastic one, 
represents the strength of the synaptic weight. It is rapidly modi-
fied every time the conditions for synaptic potentiation or depres-
sion are met. The other dynamical variables represent biochemical 
processes that are affected by changes in the first variable. In the 
simplest configuration, these variables are arranged in a linear chain, 
and each variable interacts with its two nearest neighbors. These hid-
den variables tend to equilibrate around the weighted average of the 
neighboring variables. When the first variable is modified, the second 
variable tends to follow it. In this way a potentiation or depression is  

propagated downstream, through the chain of all variables. 
Importantly, the downstream variables also affect the upstream vari-
ables as the interactions are bidirectional.

To gain insight into the way this type of synapse works, it is useful 
to resort to an analogy with a set of communicating vessels, a more 
intuitive physical system (Fig. 1b). Each synaptic variable is repre-
sented by the level of liquid in a beaker. The interactions between 
variables are mediated by tubes that connect the beakers. The first 
beaker represents the synaptic weight. Potentiation of the synapse is 
implemented by pouring liquid into it, whereas depression is imple-
mented by removing liquid. As the liquid level deviates from equilib-
rium, the fluid flow through the tubes will tend to balance the levels 
in all beakers. The balancing dynamics is fast when the beakers are 
small and the tubes large, but slow when the beakers are large and the 
tubes small. A single synaptic modification is remembered as long as 
the liquid levels remain significantly different from equilibrium.

We can construct the desired synaptic memory model by consid-
ering the analogous system of communicating vessels. An efficient 
memory system should have both long memory lifetimes (i.e., long 
relaxation times) and a large initial memory strength, obtained with 
a relatively small number m of variables (i.e., beakers). In a homoge-
neous chain (Fig. 2a), perturbations already decay with the desired 
1 t  power law, but it requires a large m that grows as the square 
root of the memory lifetime. This problem can be circumvented by 
merging exponentially growing groups of beakers into larger ones of 
equivalent total area (Fig. 2b) and in addition reducing the sizes of 
the connecting tubes by exponentially increasing factors (Fig. 2c), 
which implies that the variables describing the system operate on dif-
ferent timescales that increase exponentially as one moves along the 
chain. This leads to a model with an approximately 1 t  decay of the 
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Figure 2 Model construction. (a) Relaxation dynamics in a set of 31 identical beakers connected by tubes of equal size (Ck = 1, gk,k+1 = 1/8). A 
perturbation of the liquid level of the first beaker diffuses to the others, slowly disappearing. The 31 uk variables are shown in the middle at three 
different times. The decay of u1, which approximates the desired 1 t  power law, is plotted on the right on a log–log scale. The number of beakers 
required in such a homogeneous system, however, grows as the square root of the number of stored memories. (b) A smaller set of beakers of 
progressively increasing sizes is obtained by merging those of a. The first beaker remains unchanged. The next two are merged into a larger beaker that 
contains the same volume of liquid as the two original ones. Then the next four beakers are combined, and so on, leading to successively larger ones 
(Ck = 2k−1). The cross-sections of the tubes are still identical (indicated by blue ovals). While this merging procedure dramatically reduces the number 
of beakers, the convergence to equilibrium is now much faster than before (~1/t). (c) We can recover the slow decay, without increasing the number of 
beakers, by tuning the cross-sections of the tubes connecting the communicating vessels. Their sizes are progressively reduced (by powers of two) to 
slow the decay (gk,k+1 = 2−k−2), which now follows the desired 1 t  behavior over a time period that grows exponentially with the number of beakers.

A = #! #?#@#A#B#C#"

 

')*+,

'+-./

consolidation rapid
recovery

• Contrast with fast weights in recurrent networks [BHM+16, HP87]

• Special case of multiscale optimizer
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• Fast weights adapt quickly, protects from catastrophic forgetting
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