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Fast Weights

» General framework for learning/memory in nonstationary domains
« Parallel systems with different characteristic timescales

+ Multiscale Optimizer (NN implementation)
» Subweights with different learning and decay rates

* Model equivalence results
» Eliminate extraneous coupling between timescales

* New perspective on momentum

» Equivalent to fast weight with negative learning rate

Multiscale Optimizer

Decompose each weight w; as a sum of subweights w;;
w, slow:smalla,y =~ 1
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Gradient descent with decay:
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Timescale i decay learning loss
Weight j factor rate gradient

Model Equivalence:
Eliminating Coupling between Timescales

Benna-Fusi Model Synapse [BF16]

« Adopted in continual reinforcement learning [KSC18, KSC19]
« Coupled biochemical processes at different timescales
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Reparameterization

 Linear dynamics: u(t + 1) = Tu(t) + d(t)

- Eigenvector coordinate change: T = VAV™!, w :=V"lu

« Simplified dynamics: @(t + 1) = Aw(t) + V1d(t)

« Instance of multiscale optimizer: w;(t + 1) = 4;w;(t) + a;(t)

Arbitrary Initial State Eigen-decomposition
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» Contrast with fast weights in recurrent networks [BHM+16, HP87]
+ Special case of multiscale optimizer
Wslow(t + 1) = W10 (t) + As1owOw L ()
Weast(t + 1) = Veast@rast(t) + Apast O L(E)
+ Fast weights adapt quickly, protects from catastrophic forgetting
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Momentum as Negative Fast Weight

» Standard momentum learning [RHW86, Qia99]
w(t+1)=w()—nm(t+1)
m(t +1) = fm(t) + (1 - By L(D)

» Same eigenvector trick:
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» Multiscale optimizer with negative fast learning rate
Wslow 1 0] Wslow n
= - 0, L(t
wfast](t+1) [0 B [wfast](t) [—ﬂﬁ} W L(t)

« Explanation: decay of w¢,; leads w to continue learning toward wg,.,

" Wslow
Initial update: -
Wfast
W = Wsjow + Wrast
Wslow
After decay:
Weast

» Opposing rationales of momentum and fast weights
*  Momentum: smooths endogenous negative autocorrelation

« Fast weights: leverage exogenous positive autocorrelation
[JSE+22]

Gradient descent on Nonstationarity in latent

curved loss surface task parameters
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