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Cortical substrates for exploratory decisions in
humans
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Decision making in an uncertain environment poses a conflict
between the opposing demands of gathering and exploiting infor-
mation. In a classic illustration of this ‘exploration–exploitation’
dilemma1, a gambler choosing between multiple slot machines
balances the desire to select what seems, on the basis of accumu-
lated experience, the richest option, against the desire to choose a
less familiar option that might turn out more advantageous (and
thereby provide information for improving future decisions). Far
from representing idle curiosity, such exploration is often critical
for organisms to discover how best to harvest resources such as
food and water. In appetitive choice, substantial experimental
evidence, underpinned by computational reinforcement learning2

(RL) theory, indicates that a dopaminergic3,4, striatal5–9 andmedial
prefrontal network mediates learning to exploit. In contrast,
although exploration has been well studied from both theoretical1

and ethological10 perspectives, its neural substrates are much less
clear. Here we show, in a gambling task, that human subjects’
choices can be characterized by a computationally well-regarded
strategy for addressing the explore/exploit dilemma. Furthermore,
using this characterization to classify decisions as exploratory
or exploitative, we employ functional magnetic resonance
imaging to show that the frontopolar cortex and intraparietal
sulcus are preferentially active during exploratory decisions. In
contrast, regions of striatum and ventromedial prefrontal cortex
exhibit activity characteristic of an involvement in value-based
exploitative decision making. The results suggest a model of
action selection under uncertainty that involves switching
between exploratory and exploitative behavioural modes, and
provide a computationally precise characterization of the contri-
bution of key decision-related brain systems to each of these
functions.

Exploration is a computationally refined capacity, demanding
careful regulation. Two possibilities for this regulation arise. On
the one hand, we might expect the involvement of cognitive,
prefrontal control systems11 that can supervene12 over simpler
dopaminergic/striatal habitual mechanisms. On the other hand,
theoretical work on optimal exploration1,13 indicates a more unified
architecture, according to which actions can be assessed with the use
of a metric that integrates both primary reward and the informa-
tional value of exploration, even in simple, habitual decision systems.

We studied patterns of behaviour and brain activity in 14 healthy
subjects while they performed a ‘four-armed bandit’ task involving
repeated choices between four slot machines (Fig. 1; see Supplemen-
tary Methods). The slots paid off points (to be exchanged for money)
noisily around four different means. Unlike standard slots, the mean
payoffs changed randomly and independently from trial to trial, with
subjects finding information about the current worth of a slot only

through sampling it actively. This feature of the experimental design,
together with a model-based analysis, allowed us to study explora-
tory and exploitative decisions under uniform conditions, in the
context of a single task.

We asked subjects in post-task interviews to describe their choice
strategies. The majority (11 of 14) reported occasionally trying the
different slots to work out which currently had the highest payoffs
(exploring) while at other times choosing the slot they thought had
the highest payoffs (exploiting). To investigate this behaviour quan-
titatively, we considered RL (ref. 2) strategies for exploration. These
strategies come in three flavours, differing in how exploratory actions
are directed. The simplest method, known as ‘1-greedy’, is undir-
ected: it chooses the ‘greedy’ option (the one believed to be best)
most of the time, but occasionally (with probability 1) substitutes a
random action. A more sophisticated approach is to guide explora-
tion by expected value, as in the ‘softmax’ rule. With softmax, the
decision to explore and the choice of which suboptimal action to take
are determined probabilistically on the basis of the actions’ relative
expected values. Last, exploration can additionally be directed by
awarding bonuses in this latter decision towards actions whose
consequences are uncertain: specifically, to those for which explora-
tion will be most informative. The optimal strategy for a restricted
class of simple bandit tasks has this characteristic1, as do standard
heuristics14 for exploration in more complicated RL tasks such as
ours, for which the optimal solution is computationally intractable.

We compared the fit of three distinct RL models, embodying the
aforementioned strategies, to our subjects’ behavioural choices. All the
models learned the values of actions with the use of a Kalman filter (see
Supplementary Methods), an error-driven prediction algorithm that
generalizes the temporal-difference learning algorithm (used in most
RL theories of dopamine) by also tracking uncertainty about the
value of each action. The models differed only in their choice rules.
We compared models by using the likelihood of the subjects’ choices
given their experience, optimized over free parameters. This com-
parison (Supplementary Tables 1 and 2) revealed strong evidence for
value-sensitive (softmax) over undirected (1-greedy) exploration.
There was no evidence to justify the introduction of an extra
parameter that allowed exploration to be directed towards uncer-
tainty (softmax with an uncertainty bonus): at optimal fit, the bonus
was negligible, making the model equivalent to the simpler softmax.
We conducted additional model fits (see Supplementary Information)
to verify that these findings were not an artefact of our assumptions
about the yoking of free parameters between subjects.

Having characterized subjects’ behaviour computationally, we
used the best-fitting softmax model to generate regressors containing
value predictions, prediction errors and choice probabilities for each
subject on each trial. We used statistical parametric mapping to
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identify brain regions in which neural activity was significantly
correlated with the model’s internal signals. Consistent with previous
studies7–9 was our observation that a prediction error was correlated
significantly with activity in both the ventral and dorsal striatum (see

Supplementary Table 3). Other, cortical, structures linked to this
subcortical network15 also showed significant value-related corre-
lations. Specifically, we found activity in medial orbitofrontal cortex
to be correlated with the magnitude of the obtained payoff (Fig. 2a), a

Figure 1 | Task design. a, Illustration of the timeline within a trial. Initially,
four slots are presented. The subject chooses one, which then spins. Three
seconds later the number of points won is revealed. After a further
second the screen is cleared. The next trial is triggered after a fixed trial
length of 6 s and an additional variable inter-trial interval (mean 2 s).

b, Example of mean payoffs that would be received for choosing each slot
machine (four coloured lines) on each trial, demonstrating their
independent random diffusion. The payoff received for a particular choice is
corrupted by gaussian noise around this mean.

Figure 2 | Reward-related activations. Activation maps (yellow, P , 0.001;
red, P , 0.01 to illustrate the full extent of the activations) are
superimposed on a subject-averaged structural scan. a, Region of medial
orbitofrontal cortex (mOFC) correlating significantly with the number of
points received. The coordinates of the activated area are [3,30,221, peak
z ¼ 3.87]. The bar plot shows the average BOLD response to outcome,
binned by amount won (error bars represent s.e.m.). b, Regions of
ventromedial prefrontal cortex (vmPFC; including medial and lateral

orbitofrontal cortex and adjacent medial prefrontal cortex) correlating
significantly with the probability assigned by the computational model to
the subject’s choice of slot. The coordinates of the activated areas are as
follows: medial orbitofrontal, [23,45,218, peak z ¼ 5.62]; lateral
orbitofrontal (not illustrated), [45,36,215, peak z ¼ 4.6]; medial prefrontal,
[23,33,26, peak z ¼ 4.62]. The bar plot shows the average medial
prefrontal BOLD response to decision, binned by choice probability (error
bars represent s.e.m.).
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finding consistent with previous evidence indicating that this region
is involved in coding the relative value of different reward stimuli,
including abstract rewards16,17. Furthermore, activity in medial and
lateral orbitofrontal cortex, extending into ventro-medial prefrontal
cortex, was correlated with the probability assigned by the model to
the action actually chosen on a given trial (Fig. 2b). In the softmax
model, this probability is a relative measure of the expected reward
value of the chosen action, and the observed profile of activity is thus
consistent with a role for orbital and adjacent medial prefrontal
cortex in encoding predictions of future reward18,19. The same
quantity was negatively correlated with activity in a small area of
dorsolateral prefrontal cortex (left: 239,36,42, peak z ¼ 3.38; right:
36,33,33, peak z ¼ 3.27); that is, higher activity was seen there for
lower-probability choices.

We next sought to identify brain activity that selectively reflected
whether actions were chosen for their exploratory or exploitative
potential. To test for such a signature, we classified trials according to
whether the actual choice was the one predicted by the model to be
the dominant slot machine with the highest expected value (exploi-
tative) or a dominated machine with a lower expected value
(exploratory). We then directly compared the pattern of brain
activity associated with these exploratory and exploitative trials.
We found no area that exhibited significantly higher activity for
exploitative than exploratory decisions (employing whole-brain
correction for multiple comparisons). However, the opposite con-
trast revealed several activations. First, right anterior frontopolar
cortex (Fig. 3a) was significantly more active during decisions
classified as exploratory (P , 0.05, corrected whole-brain for mul-
tiple comparisons with false discovery rate; activation was noted
bilaterally at P , 0.001 uncorrected but did not survive whole-brain
correction on the left). Average blood-oxygenation-level-dependent

(BOLD) signal time courses from the region (Fig. 3b) demonstrated
phasic increases and decreases in activity that were time-locked to
subjects’ exploratory and exploitative decisions, respectively.

Because the prefrontal cortex is the principal cortical region
implicated in behavioural control20, the signal we observed in anterior
frontopolar cortex could reflect a control mechanism facilitating the
switching of behavioural strategies between exploratory and exploita-
tive modes. This most rostral of prefrontal regions is known to be
associated with high-level control21. This region sits atop a proposed
hierarchy of nested prefrontal controllers22 and is implicated in
mediating between different goals, subgoals23 or cognitive processes21.

Differential activation during exploratory trials was also observed
bilaterally in anterior intraparietal sulcus (whole-brain corrected at
P , 0.05; Fig. 4), bordering on the postcentral gyrus. The sulcus has
repeatedly been implicated in decision making in both humans15,19 and
primates24–26, with different subregions being associated with different
output modalities. In lateral intraparietal area LIP, associated with
saccades, neurons also carry information about decision variables such
as the reward expected for a saccade24–26; the area perhaps serves as an
interface between frontal areas (where such information may be
calculated) and motor output. The anterior border of the sulcus,
close to our exploration-related activation, is associated with grasping
and manual manipulation27, raising the possibility that such infor-
mation (here, that associated with exploration) might also reach
parietal regions involved in the button-press actions in our task.

Last, we used a multiple regression analysis to verify that differ-
ential activity in frontopolar and intraparietal regions during
exploratory trials was not better explained by any of several poten-
tially confounding factors such as switching between options or
reaction times (see Supplementary Information and Supplementary
Tables 4 and 5).

Figure 3 | Exploration-related activity in frontopolar cortex. a, Regions of
left and right frontopolar cortex (lFP, rFP) showing significantly increased
activation on exploratory comparedwith exploitative trials. Activationmaps
(yellow, P , 0.001; red, P , 0.01) are superimposed on a subject-averaged
structural scan. The coordinates of activated areas are [227,48,4, peak

z ¼ 3.49] for lFP and [27,57,6, peak z ¼ 4.13] for rFP. b, rFP BOLD time
courses averaged over 1,515 exploratory (red line) and 2,646 exploitative
(blue line) decisions. Black dots indicate the sampling frequency (although,
because sample alignment varied from trial to trial, time courses were
upsampled). Coloured fringes show error bars (representing s.e.m.).

Figure 4 | Exploration-related activity in intraparietal sulcus. a, Regions of
left and right intraparietal sulcus (lIPS and rIPS) showing significantly
increased activation on exploratory compared with exploitative trials.
Activation maps (yellow, P , 0.001; red, P , 0.01) are superimposed on a
subject-averaged structural scan. The coordinates of the activated areas are
[229,233,45, peak z ¼ 4.39] for lIPS and [39,236,42, peak z ¼ 4.16] for

rIPS. b, lIPS BOLD time courses averaged over 1,515 exploratory (red line)
and 2,646 exploitative (blue line) decisions. Black dots indicate the sampling
frequency (although, because sample alignment varied from trial to trial,
time courses were upsampled). Coloured fringes show error bars
(representing s.e.m.).
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These results have important implications for both computational
and neural accounts of action selection. The finding of brain regions
discretely implicated in exploration (and particularly that one of
them is a prefrontal, high-level control structure21) is consistent with
a theory in which exploration is accomplished by overriding an
exploitative tendency, but troubling for accounts such as uncertainty
bonus schemes1,14, which more tightly entangle exploration and
exploitation. Such anatomical separation would be unlikely under
these latter schemes, because they work by choosing actions with
respect to a unified value metric that simultaneously prizes both
information gathering and primary reward. Just such an exploration-
encouraging value metric has previously been suggested to explain
why dopamine neurons respond to novel, neutral stimuli13; such
anomalous responses in an otherwise typically appetitive signal
remain puzzling in view of our failure here to find either behavioural
or neural evidence for such an account.

Exploration has a central role in the acquisition of adaptive
behaviour in environments that change. Characteristic expressions
of frontal pathology28 include impairments in task switching as well
as behavioural perseveration, which might relate, at least in part, to a
core deficit in exploration. As one might expect for such a critical
function, subcortical systems are also implicated in the control of
exploration, with noradrenaline being suggested as regulating a
global propensity to explore29,30, a factor captured in our model in
terms of the parameter regulating competition in the softmax rule.
Last, self-directed exploration of the form studied here is an example
of a refined cognitive function that is ubiquitous but hard to pin
down in regular designs (because exploratory and exploitative
responses are apparently seamlessly mixed). We were able to capture
it only through a tight coupling of computational modelling,
behavioural analysis and functional neuroimaging.

METHODS
Fourteen right-handed healthy human subjects participated in an fMRI scan
(using a 1.5 T Siemens Sonata scanner) while repeatedly choosing between
animated slot machines. One of three candidate reinforcement learning models
for their behaviour was selected, and its parameters estimated, by maximizing
the cumulative likelihood of the subjects’ choices given the model and param-
eters. Trials were classified according to the model as exploratory or exploitative,
and trial-by-trial estimates of subjects’ predictions about slot machine payoffs
(and the error or mismatch between those predictions and received payoffs) were
generated by running the model progressively on the subjects’ actual choices and
winnings. A general linear model implemented in SPM2 (Wellcome Department
of Imaging Neuroscience, Institute of Neurology, UCL) was used to locate brain
voxels where the measured BOLD signal was significantly correlated with these
model-generated signals. Regions identified as significantly correlated with
exploration were subjected to a subsequent multiple regression analysis to
investigate whether other, confounding factors might better account for the
observed activity. For a detailed description of the experimental and analytical
techniques, see Supplementary Methods.
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