
The MAXQMethod for Hierarchical Reinforcement Learning

Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

tgd@cs.orst.edu

Abstract

This paper presents a new approach to hier-
archical reinforcement learning based on the
MAXQ decomposition of the value function.
The MAXQ decomposition has both a procedu-
ral semantics—as a subroutine hierarchy—and a
declarative semantics—as a representation of the
value function of a hierarchical policy. MAXQ
unifies and extends previous work on hierarchical
reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. Conditions under which the
MAXQ decomposition can represent the optimal
value function are derived. The paper defines a
hierarchical Q learning algorithm, proves its con-
vergence, and shows experimentally that it can
learn much faster than ordinary “flat” Q learn-
ing. Finally, the paper discusses some interest-
ing issues that arise in hierarchical reinforcement
learning including the hierarchical credit assign-
ment problem and non-hierarchical execution of
the MAXQ hierarchy.

1 Introduction

Hierarchical approaches to reinforcement learning (RL)
problems promise many benefits: (a) improved exploration
(because exploration can take “big steps” at high levels of
abstraction), (b) learning from fewer trials (because fewer
parameters must be learned and because subtasks can ig-
nore irrelevant features of the full state) and (c) faster learn-
ing for new problems (because subtasks learned on previ-
ous problems can be re-used).

Recent research has explored three general approaches to
reaching these goals. The first approach, introduced by
Dean and Lin (1995), exploits a hierarchical decomposi-
tion primarily as a computational device to accelerate the

computation of the optimal policy. The second approach,
introduced by Parr and Russell (1998) relies on a program-
mer to design a hierarchy of abstract machines that con-
strains the possible policies to be considered. Their method
computes the policy that is optimal subject to these hier-
archical constraints by effectively flattening the hierarchy.
We will call this kind of policy hierarchically optimal, be-
cause it is the best policy consistent with the imposed hi-
erarchy. The third approach, pioneered by Singh (1992),
Kaelbling (1993), and Dayan and Hinton (1993), also re-
lies on a programmer-designed hierarchy. In this hierarchy,
each subtask is defined in terms of goal states or termina-
tion conditions. Each subtask in the hierarchy corresponds
to its own Markov Decision Problem (MDP), and the meth-
ods seek to compute a policy that is locally optimal for each
subtask. We will call such policies recursively optimal. Re-
cent work by Precup, Sutton, and Singh (1998) studies as-
pects of both the first and third approaches.

In this paper, we extend the research on recursively opti-
mal policies by introducing the MAXQ method for hier-
archical reinforcement learning. The methods introduced
by Singh, Kaelbling, and Dayan and Hinton are all spe-
cific to particular tasks. The Feudal Q learning method
of Dayan and Hinton suffers from the problem that at all
non-primitive levels of a Feudal-Q hierarchy, the learning
task can become non-Markovian, and therefore difficult to
solve. In contrast, the MAXQ method is general purpose.
At each level of the hierarchy, the task is Markovian and
can be solved by standard RL methods. In many cases,
state abstractions can be introduced without destroying the
optimality of the learned policy. Like Kaelbling’s work,
MAXQ supports non-hierarchical execution of the learned
policy, which permits it to behave well even when the opti-
mal policy violates the structure of the hierarchy.

This paper is organized as follows. First, we introduce the
MAXQ hierarchy using an example and define its procedu-
ral and declarative semantics. Then we introduce two theo-



1
2
3
4

0

R G

BY
0 1 2 3 4

F

Figure 1: The Taxi Domain

rems that describe the conditions under which the MAXQ
hierarchy can successfully represent the value function of
a fixed hierarchical policy. Section 4 introduces a learning
algorithm for training a MAXQ hierarchy and shows ex-
perimentally and theoretically that it works well. Finally,
the paper shows how a non-hierarchical policy can be com-
puted and executed using the MAXQ hierarchy.

2 The MAXQ Hierarchy

We will introduce the MAXQ method using the simple Taxi
Problem shown in Figure 1. A taxi inhabits a 5-by-5 grid
world. There are four specially-designated locations in this
world, marked as R(ed), B(lue), G(reen), and Y(ellow).
The taxi problem is episodic. In each episode, the taxi starts
in a randomly-chosen state and with a randomly-chosen
amount of fuel (ranging from 5 to 12 units). There is a
passenger at one of the four locations (chosen randomly),
and that passenger wishes to be transported to one of the
four locations (also chosen randomly). The taxi must go to
the passenger’s location (the “source”), pick up the passen-
ger, go to the destination location (the “destination”), and
put down the passenger there. (To keep things uniform, the
taxi must pick up and drop off the passenger even if he/she
is already located at the destination!) The episode ends
when the passenger is deposited at the destination location.

There are seven primitive actions in this domain: (a) four
navigation actions that move the taxi one square North,
South, East, or West (each of these consumes one unit of
fuel), (b) a Pickup action, (c) a Putdown action, and (d) a
Fillup action (which can only be executed when the taxi is
at location F(uel)). Each action is deterministic. There is
a reward of 1 for each action and an additional reward of

20 for successfully delivering the passenger. There is a
reward of 10 if the taxi attempts to execute the Putdown
or Pickup actions illegally. If a navigation action would
cause the taxi to hit a wall, the action is a no-op, and there
is only the usual reward of 1. Finally, the episode also
ends (with a reward of 20) if the fuel level falls below
zero.

We seek a policy that maximizes the average reward per
step. In this domain, this is equivalent to maximizing the
total reward per episode. The optimal policy—which is
non-trivial to implement by hand—attains an average re-
ward per step of 0.92 (computed over 5000 trials). There
are 8,750 possible states: 25 squares, 5 locations for the
passenger (counting the four starting locations and the
taxi), 5 destinations, and 14 fuel levels.

This task has a simple hierarchical structure in which there
are three sub-tasks: Get the passenger, Refuel the taxi, and
Deliver the passenger. Each subtask involves navigating
to one of the five locations and then performing a Pickup,
Fillup, or Putdown action. While the taxi is navigating to
a location, only that location is relevant. We would like to
capture this hierarchical structure and take advantage of it
during learning and performance.

Figure 2 shows a MAXQ graph for this problem. This
graph contains two kinds of nodes: Max nodes (indicated
by triangles) and Q nodes (indicated by ovals). Max nodes
with no children denote primitive actions in the domain;
Max nodes with children represent subtasks. In this sim-
ple problem, there are five such subtasks: (a) Navigate(t)
(move the taxi to target location t), (b) Get (move to the
passenger’s location and pick up the passenger), (c) Put
(move to the passenger’s destination and put down the pas-
senger), (d) Refuel (move to F and Fillup), and (e) Root
(perform the overall task of picking up and delivering the
passenger). Notice that the Navigate task is shared by the
Get, Put, and Refuel tasks.

The immediate children of each Max node are Q nodes.
Each Q node represents an action that can be performed
to achieve its parent’s subtask. For example, the MaxGet
node has a child QNavigateForGet which represents the
action of navigating from the current state to the passen-
ger’s location. The distinction between Max nodes and Q
nodes is critical to ensuring that subtasks can be shared and
reused. Each Max node will learn the context independent
expected cumulative reward of performing its subtask. For
example, t will estimate the expected cu-
mulative reward of navigating from any state to one of the
five target locations t. Each Q node will learn the con-
text dependent expected cumulative reward of performing
its subtask. For example, t will learn
the expected cumulative reward of navigating to location
t and then completing the Get task. On the other hand,

t will learn the expected cumulative re-
ward of navigating to location t and then completing the
Put task. Both of these Q nodes will “ask” t
how much it will cost to get to location t, and they will use
this to help them compute their Q values. The value func-
tion computed by MaxNavigate is context independent and



QNavigateForRefuel(t) QFillup QNavigateForPut(t)

Putdown

QPutdownQNavigateForGet(t)

Pickup

QPickup

Fillup

North East South West

MaxRoot

QRefuel

MaxRefuel

MaxNavigate(t)

QNorth(t) QEast(t) QSouth(t) QWest(t)

QPut

MaxPut

QGet

MaxGet

Figure 2: A MAXQ graph for the Taxi Domain

can be shared by all three of its parent Q nodes.

In the rest of the paper, we will say that Max node a is the
child of Max node i if there is a Q node whose parent is i
and whose child is a.

To define the semantics of the MAXQ graph more formally,
let us suppose that the overall task is to solve a Markov
Decision Problem (MDP) M defined over a set of states S
and actions A with reward function R s s a (the reward
received upon entering state s after performing action a
in state s) and transition probability function P s s a (the
probability of entering state s as a result of performing a in
s). In this paper, we will assume that the MDPM defines an
undiscounted stochastic shortest path problem. All of the
results can be extended to the infinite-horizon discounted
case.

Each Max node i corresponds to a separate subtaskMi. The
children of Max node i are the actions of Mi. Each subtask
Mi divides the set S of all states into two disjoint subsets:
Si and Ti. The set Ti is the set of terminal states for Mi.
SubtaskMi will terminate whenever the environment enters
one of the states in Ti. A subset Gi Ti of the terminal

states are the goal states of Mi. Below, we will discuss the
details of defining a reward function that will encourage
Mi to terminate in one of these goal states. Let us define
i to be some (arbitrary) policy for subtask i. This policy

“attempts” to get from any state in Si to one of the goal
states in Gi.

A hierarchical policy for a MAXQ graph is a set of poli-
cies 0 n , one for each Max node, that indicate
how each Max node should choose its actions. The hierar-
chical policy is executed the same way that subroutines are
executed in ordinary programming languages. The Root
policy chooses one of its child actions to perform, say, Get.
The Get policy then chooses one of its child actions, say,
Pickup. Then the Pickup action is executed, since it is a
primitive. A Max node’s policy is executed until that Max
node enters a terminating state, at which point, “control”
returns to its parent Max node.

Therefore, we can view the MAXQ graph as a subroutine
call graph. Like subroutines, Max nodes can be parame-
terized. In this graph, MaxNavigate takes one parameter,
t, which specifies which of the five locations (R, B, G, Y,
F) is the target of the MaxNavigate. One way in which the



graph is different from an ordinary program is that the chil-
dren of each Max node are unordered. They can be called
in any order, and a Max node can execute each of its chil-
dren multiple times before it completes its subtask. The
MAXQ graph is therefore a kind of incompletely-specified
non-deterministic program. One result of learning will be
to determine a policy for each Max node that tells how and
when to invoke its children. This will make the MAXQ
graph a completely-specified deterministic program (inter-
acting with a non-deterministic environment).

Thus far, our formulation of the MAXQ method is essen-
tially the same as the Feudal Q learning method of Dayan
and Hinton (1993). However, an important improvement
over Feudal Q learning is the ability to interpret the MAXQ
graph as a representation of the value function for a hierar-
chical policy. Consider Max node i, and define Vi s to be
the expected cumulative reward for following the hierarchi-
cal policy starting in state s until we enter some state in
Ti. For a fixed hierarchical policy , subtask Mi has a well-
defined transition probability function Pi s s a , which is
the probability that the environment will move from state
s to state s when Mi executes action a. This probability
is well defined, because the child Ma is executing a fixed
policy a (as are all of its descendants). Hence, node i can
treat action a as an atomic action. The immediate reward
for node i of executing a will be the expected reward for
node a of moving from the current state s to a terminal state
in Ta according to policy a. This is denotedVa s . Hence,
we can write

Vi s Va s
s
Pi s s a Vi s (1)

where a i s . This gives us a recursive decomposition
of the value function so that the value function of the root
node is the value function of the entire MDP M and each
subtask Mi is a separate MDP.

This recursive expression becomes more useful when we
switch to the action-value (or “Q”) representation of the
value function. Define Qi s a to be the expected cumu-
lative reward for MDP Mi of performing action a in state s
and then following the hierarchical policy thereafter. De-
fine the second term on the right-hand side of Eq. (1) to be
Ci s a , which we will call the completion function. This
is the expected cumulative reward of completing MDP Mi
following policy after executing action a in state s. With
these definitions, we can rewrite Eq. (1) as

Qi s a Va s Ci s a (2)

where

Vi s Qi s i s i composite
s P s s i R s s i i primitive (3)

Ci s a
s
P s s a Vi s (4)

These completely define the value-function semantics of
the MAXQ hierarchy. Each Q node with parent i and child
a stores the informationCi s a for each state s in Si. Each
Max node i returns the Q value of the child chosen by i.

To compute the value of a hierarchical policy in state s,
we begin at MaxRoot (node 0) and compute Q0 s 0 s .
This requires that we ask our child node a1 0 s for
its value Va1 s . Our child recursively asks its child a2
a1 s for its value, and so on until a leaf node an is reached.

Let a1 a2 an be the path that was traversed through
the MAXQ graph. Now leaf node an returns Van s , to
which its parent adds Can 1 s an and so on recursively.
The value returned by MaxRoot is

V0 s Van s Can 1 s an Ca1 s a2 C0 s a1
(5)

Figure 3 shows how the sequence of rewards r1 r2 re-
ceived from the primitive actions is decomposed hierarchi-
cally into the sum of the C terms.

3 Representation Theorems

Under what conditions can this hierarchy represent the
value function of a fixed, hierarchical policy? We will say
that a MAXQ graph is a full-state graph if separateCi s a
values are stored for each state s Si. In most applications,
including Figure 1, it will be desirable to introduce an ab-
straction function Xi s that will provide a set of features
that abstract essential information from the state. Each
Q node will then store the function Ci Xi s a , with one
value for each distinct abstract state Xi s .

For full-state graphs, it is easy to prove the following theo-
rem by expanding Equations (2–4):

Theorem 1 Let i; i 0 n be a hierarchical pol-
icy defined over a full-state MAXQ graph, and let i 0 be
the root node of the graph. Then there exist values for Ci
(for internal Max nodes) and Vi (for primitive, leaf Max
nodes) such that V0 s is the expected cumulative reward of
following policy in state s.

A more important and difficult question is to understand
the conditions under which an abstract-state MAXQ graph
can exactly represent the value function of a hierarchical
policy. The following theorem establishes one condition:

Theorem 2 For all Max nodes i and actions a, let
Resulti s a s Pi s s a 0 be the set of states that
can result from applying abstract action a in state s at node
i while following hierarchical policy . If the following



.. .r1 r2 r3 r4 r5 r8 r9 r10 r11 r12 r13 r14

. .
.

V0 s

Va1 s

Van 1 s

Van s Can 1 s an C0 s a1Ca1 s a2

Figure 3: The MAXQ decomposition; r1 r14 denote the sequence of rewards received from primitive actions at times 1 14.

condition holds, then the MAXQ graph with abstraction
functions Xi s a can represent the value function of any
policy whose value function can be represented by the
MAXQ graph with no abstraction functions:

For all Max nodes i, actions a, states s Si,
and distinct states s1 s2 Resulti s a whenever
Ci s1 a Ci s2 a it is the case that Xi s1 a
Xi s2 a

In other words, if an abstraction function Xi treats a pair of
result states s1 and s2 as identical, then their un-abstracted
values must be equal. Otherwise, the value function cannot
be properly represented. The four children of MaxNavigate
all satisfy this condition. The expected reward of complet-
ing the MaxNavigate action depends only on the current lo-
cation of the taxi, the target location, and the amount of
fuel remaining. If we are navigating to F (for refueling),
for example, the expected reward does not depend on the
source or destination locations.

The introduction of abstractions can create a hierarchical
credit assignment problem. For example, in our imple-
mentation, we used only the taxi location and the target
location to represent the C functions for QNorth, QSouth,
QEast, and QWest. We wanted these nodes to learn a nav-
igation policy that was independent of how much fuel re-
mained. But this means that when the fuel is exhausted and
a 20 penalty is received, these Q nodes cannot represent
the reason for this penalty! This is the hierarchical credit
assignment problem: to determine which node is respon-
sible for a reward that is received. Our solution is for the
designer of the MAXQ hierarchy to also decompose the re-
ward function. When each reward is generated, a marker
is attached that indicates which Q nodes are potentially re-
sponsible for this reward. For the 20 empty fuel penalty,
the QGet, QPut, and QRefuel nodes are held responsible,

because their parent, MaxRoot, must compare their Q val-
ues to decide when to refuel to avoid the penalty. Their C
functions must therefore be able to represent the rewards.

This requires a change to the decomposition equations. Let
Ri s s a be the portion of the reward that is assigned to
node i. Then we write the following:

Ci s a
s
P s s a Ri s s a Vi s (6)

Vi s Qi s i s i composite
s P s s i Ri s s i i primitive (7)

In many domains, we believe it will be easy for the de-
signer of the hierarchy to also decompose the reward func-
tion. However, an interesting problem for future research
is to develop algorithms for autonomously solving the hi-
erarchical credit assignment problem.

4 A Learning Algorithm

The preceding section has shown that the hierarchy can cor-
rectly represent the value function of any hierarchical pol-
icy if the full state is employed to represent the Ci func-
tion in each node i. Hence, we could apply Parr and Rus-
sell’s HAM-Q algorithm to learn the best hierarchical pol-
icy. However, because we are committed to employing
state abstractions, we have chosen instead to develop a rein-
forcement learning algorithm for finding a recursively op-
timal policy.

It turns out that in general there can be many different re-
cursively optimal policies, and that some of them achieve
better expected rewards than others. The problem is that
a subtask may have many policies that are locally optimal,
but some of them are more useful than others for the over-
all task. For example, suppose we changed the taxi domain



so that if the taxi hits a wall, the trial is terminated with a
reward of 5. Then for MaxNavigate t , if the target loca-
tion t is more than 5 steps away, the locally optimal policy
would be to hit a wall. This would not be part of any hi-
erarchically optimal policy, however! Dayan and Hinton
faced this same problem, and they solved it by providing a
penalty of 10 points to subtask i for entering an undesired
terminal state (i.e., a state in Ti but not in Gi). This has
the proper effect, but in the MAXQ hierarchy, it causes the
value function computed by the entire hierarchy to be in-
correct, because it incorporates the (often non-zero) proba-
bility of receiving these terminal state penalties.

A better method is to define, for each Max node MDP Mi, a
parallel Markov decision problem M̃i with the same states,
actions, and transition probabilities asMi but with a second
reward function R̃i that is zero except for undesired termi-
nal states, where it provides a large penalty. (We used a
penalty of 100 points). Our learning algorithm will seek
a locally optimal policy ˜ i for M̃i. However, it will also
compute the value function for executing ˜ i in the original
MDP Mi, and this is the value that will be passed “up” the
MAXQ hierarchy.

Specifically, our learning algorithm MAXQ-Q is a variant
ofQ learning that performs the following. At each compos-
ite Max node, we maintain two tables Ci s a and C̃i s a .
The algorithm chooses an action a to perform according to
its current exploration policy. It executes a, observes the
resulting state s and reward Ri s s a , and computes the
following:

a : argmax
a

C̃i s a Va s (8)

C̃i s a : 1 t i C̃i s a t i
R̃i s Ri s s a C̃i s a Va s

(9)
Ci s a : 1 t i Ci s a t i

Ri s s a Ci s a Va s
(10)

Here a is the best action in s according to the current C̃
and V values. Both C̃ andC are updated using a . At each
leaf node i, the update is slightly different:

Vi s : 1 t i Vi s t i Ri s s i (11)

The quantity t i is the learning rate for node i at time step
t.

In order to prove convergence of this algorithm, we must
make several assumptions. First, we must assume that all
deterministic policies in MDP M are proper (i.e., they all
terminate with probability 1). Second, we must assume

that all locally optimal policies, ˜ a, give the same transi-
tion probability distribution P ˜a

i s s a . This ensures that
all locally optimal policies at node a give rise to the same
MDP at any node i that is a parent of a. (A consequence
of this assumption is that all recursively optimal policies
will have the same value function.) Third, we must as-
sume that Vi , Ci , and C̃i are bounded at all times (this
is easy to enforce). Fourth, the exploration policy executed
at each node i during learning must be a GLIE (greedy in
the limit with infinite exploration) policy—that is, a policy
that executes each action infinitely often in every state that
is visited infinitely often, and that is greedy with respect to
Q̃i with probability 1. Finally, the learning rates t i must
satisfy the usual conditions:

lim
T

T

t 1
t i and lim

T

T

t 1

2
t i (12)

Theorem 3 Under the assumptions listed above, with
probability 1, MAXQ-Q will converge to a recursively op-
timal policy for MDP M consistent with MAXQ hierarchy
H.

Proof Sketch: The proof employs a stochastic approxima-
tion argument similar to those introduced to prove the con-
vergence ofQ learning and SARSA 0 (Jaakkola, Jordan, &
Singh, 1994; Bertsekas & Tsitsiklis, 1996; Singh, Jaakkola,
Littman, & Szpesvari, 1998). The proof is by induction on
the levels of the tree, starting at the Max nodes all of whose
children are primitive leaf nodes. At these “first-level” Max
nodes, the standard results for Q learning can be applied to
prove that the Ci values will converge with probability 1
to the optimal value function. Furthermore, because each
node i is executing a GLIE exploration policy, the policy
at these nodes will also converge with probability 1 to a
locally optimal policy.

Now consider a Max node j all of whose children are ei-
ther primitive nodes or “first-level” Max nodes. Define
Ptj s s i to be the transition probabilities observed by par-
ent node j when it invokes child node i in state s at time t
in the learning process. Because the first-level Max nodes
are executing GLIE policies, Ptj s s i will converge (with
probability 1) to the state transitions Pj s s i that will be
produced by any of the locally optimal policies for node
i (by assumption, all of these locally optimally policies
give the same state transition probabilities). This enables
us to prove that node j also converges with probability 1
to the optimal Cj values and a locally-optimal policy. The
key is to decompose the error in any particular Cj backup
into two terms. One term—corresponding to the difference
between a sample backup (using the observed state tran-
sition) and a full Bellman backup (using Ptj s s i )—has



expected value of zero. The other term—corresponding to
the difference between doing a full Bellman backup using
the current transition probabilities, Ptj s s i and doing a
full Bellman backup using the final transition probabilities
Pj s s i —converges to zero with probability 1. By apply-
ing a stochastic approximation result (Proposition 4.5 from
Bertsekas and Tsitsiklis, 1996), we can prove that node j
will converge to a locally optimal policy. Hence, by induc-
tion, we can prove that the entire hierarchy converges to a
recursively optimal policy. End of Proof Sketch.

There is one interesting method that can be employed to
accelerate learning in the higher nodes of the graph. When
an action a is chosen for Max node i in state s, the exe-
cution of a will move the environment through a series of
states s1 sk sk 1 s . If a was indeed the best action
to choose in s1, then it should also be the best action to
choose (at node i) in states s2 through sk. Hence, equations
(9) and (10) can be applied in all of these states. This re-
flects an important difference between standard subroutine
calls and the MAXQ hierarchy. In standard subroutines,
there is a set of preconditions that must be true at the start
of the subroutine. A partially-executed subroutine can of-
ten make these preconditions false, so that it is not possi-
ble to interrupt a subroutine and then call it again without
first re-establishing the preconditions. In the MAXQ hier-
archy, however, a Max node i can be invoked in any state
s Si, and it must “complete” execution of the task from
that state onward. This means that the execution of the Max
node can be interrupted and restarted with no change to the
hierarchy.

We applied algorithm MAXQ-Q to the Taxi task using a
tabular representation of the C functions. We employed
state abstraction as follows. For the QNorth, QSouth,
QEast, and QWest nodes, the C function ignores the pas-
senger source and destination locations and the amount of
fuel. TheC function of QPickup ignores the passenger des-
tination and fuel, but it must know the source location and
taxi location in order to predict the effects of illegal Pickup
actions. Similarly, QPutdown ignores the passenger source
location and the fuel, and QFillup ignores the source and
destination locations and the fuel. QNavigateForGet can
represent its C function by a single value, because after
a successful Navigate, only a Pickup remains to complete
the Get action. The same is true for QNavigateForPut and
QNavigateForRefuel. Because of the hierarchical credit as-
signment, QGet and QRefuel need to see the entire state,
but QPut can ignore all of the state information, because
once it succeeds, the task is completed. All of these ab-
stractions mean that instead of a set of seven 8,750-element
Q functions (61,250 values) for flat Q learning, the MAXQ
hierarchy requires only 18,253 values to represent the C

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Re
w

ar
d 

pe
r S

te
p

Trial

Flat

Hierarchical

Mean Optimal
Performance

Figure 4: Online performance of flat and hierarchical Q learning
on the Taxi task. Each curve is smoothed using a 200-trial moving
average. The horizontal line shows the average performance of
the optimal policy.

functions.

Figure 4 compares the online performance of flat and hi-
erarchical Q learning. For flat Q learning, we employed
Boltzmann exploration with an initial temperature of 50.
This was decreased by a factor of 0.997 after each suc-
cessful trial. We experimented with many different cool-
ing schedules, but we were unable to get flat Q learning to
converge to the optimal policy within 50,000 trials. This
was the fastest cooling schedule that was able to attain (at
least briefly) the optimal expected reward. For hierarchical
Q learning, we employed a separate temperature for each
Max node. The starting temperature for all nodes was 50
except MaxRoot, which used 100. Each node decreased its
temperature when it successfully reached a goal terminal
state. MaxRoot was cooled by a factor of 0.9986, the sec-
ond level Max nodes at 0.997, and MaxNavigate at 0.995.
In all cases, a learning rate of 1 was employed, since
all actions and rewards are deterministic.

These cooling rates were chosen so that the lower Max
nodes in the graph can become reasonably competent at
their subtasks before the nodes higher in the graph try to
learn. If care is not taken, a Max node i may conclude that
a subtask a is very expensive (because the subtask has not
yet learned a good policy), and therefore, it sets theC value
for a very low. When this is combined with Boltzmann ex-
ploration, the result is that the subtask may never be tried
again. Hence, we only performed an update for a Q node
if that node completed its subtask with an average absolute
Bellman error per step of less than 0.2. (This parameter
was not tuned at all.)

Figure 4 shows that the hierarchical method is able to learn



the task much faster and achieve a higher level of perfor-
mance than flat Q learning. Of course, both methods could
be improved by employing techniques for accelerating Q
learning, such as eligibility traces (e.g., Peng & Williams,
1996).

5 Non-Hierarchical Execution

We have shown that the MAXQ hierarchy can learn an op-
timal policy for an MDP if that policy is a recursively opti-
mal hierarchical. However, there are situations in which the
optimal policy is almost—but not quite—hierarchical. For
example, consider a modified Taxi task (the “fickle Taxi
problem”) in which as soon as the taxi picks up the pas-
senger and moves one square, the passenger can randomly
change the destination with probability 0.3. This change
comes after the hierarchical policy has committed to exe-
cuting t for the original destination. As
a result, the MaxNavigate subtask will take the taxi to the
old destination. Then control will return to MaxPut, which
will invoke QNavigateForPut to move the taxi to the new
destination.

Such “almost hierarchical” MDP’s raise the question of
whether there is a way to convert a recursively-optimal hi-
erarchical policy into an optimal non-hierarchical policy.

To answer this question, we implemented the Fickle Taxi
domain. We removed all aspects of fuel from the domain
so that we could figure out the optimal policy and hand-
code it. Figure 5 compares the performance of flat Q learn-
ing and hierarchical Q learning on this modified task. The
optimal policy can achieve an average reward per step of
1.172; but the best hierarchical policy (compatible with the
MAXQ graph of Figure 2) can only achieve 1.002. Hier-
archical learning with MAXQ-Q is able to attain this level
rapidly. Flat Q learning approaches the optimum, but does
not reach it within 10,000 trials. We tuned each algorithm
to optimize its performance. We employed a learning rate
of 0.35 and decayed the initial temperature of 50.0 by a fac-
tor of .460 (for flat Q) and .211 (for hierarchical Q) when-
ever a goal terminal state was reached.

An alternative to hierarchical execution of the MAXQ
graph is polling execution, as first suggested by Kaelbling
in her (1993) Hierarchical Distance to Goal method. In the
polling approach to MAXQ, each action is chosen by start-
ing at MaxRoot and computing the path (from root to leaf)
with the highestQ value. The primitive action at the end of
this path is then executed, and the process is repeated. This
is equivalent to computing the one-step greedy lookahead
policy given the current value function. If the hierarchi-
cal policy is not optimal, then this one-step greedy policy
will be closer to an optimal policy, because it corresponds

to one step of policy improvement in the policy iteration
algorithm (Bertsekas, 1995). This informally proves the
following:

Theorem 4 For all states s, the value of the policy com-
puted by polling execution of the MAXQ hierarchy is the
value of the policy computed by hierarchical execution.

Hence, polling execution of a MAXQ graph can produce a
non-hierarchical policy that is better than the hierarchical
policy represented by the graph.

We tested this on the Fickle Taxi task by first training the
MAXQ hierarchy by MAXQ-Q for 1000 trials and then
continuing the training with polling execution. Figure 6
shows that there is an initial loss of performance when we
switch to polling execution. This is because during hierar-
chical training, the more abstract Q nodes in the graph have
only learned their C values well in states where they were
frequently executed. Under polling, they are now executed
in other states as well, and they rapidly learn the correct
values so that performance is able to reach the level of the
optimal non-hierarchical policy. In this domain, polling ex-
ecution of the best hierarchical policy can produce the op-
timal policy.

6 Concluding Remarks

This paper has defined the MAXQ value function decom-
position for hierarchical reinforcement learning. The pa-
per has shown that the MAXQ graph can represent the
value function of any hierarchical policy implemented by
the graph. A learning algorithm based on Q learning was
introduced, proved to converge, and shown experimentally
to perform much better than ordinary, non-hierarchical Q
learning.

The most important aspect of the MAXQ method is the sep-
aration between the context-independent policy and value
function (represented by the Max nodes) and the context-
dependent value function (represented by the Q) nodes.
This permits the value functions of subtasks to be learned
independent of their context, and this enhances the re-
usability of the subtasks and makes it easier to employ state
abstraction within the subtasks. However, optimality of the
learned policy is lost in general, and hierarchical credit-
assignment problems may be introduced. Fortunately, the
ability of the MAXQ hierarchy to represent the value func-
tion of the hierarchical policy permits the non-hierarchical
execution of a one-step greedy policy that is better than the
hierarchical policy.

Acknowledgements. The author thanks Eric Chown for
many helpful discussions of this work and Valentina Bayer,



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Re
w

ar
d 

pe
r S

te
p

Trial

Optimal Non-Hierarchical

Optimal Hierarchical
Hierarchical

Flat

Figure 5: Online performance of flat and hierarchical Q learning
on the Fickle Taxi task. Each curve is the average of 10 runs;
the returns from each run were smoothed by a 200-trial moving
average.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Trial

Optimal

Polling Execution

Figure 6: Online performance on the Fickle Taxi task. The first
1000 trials are trained hierarchically. The remaining trials are
trained while polling.

William Langford, and Wesley Pinchot for helpful com-
ments on an earlier draft. The support of ONR grant
N00014-95-1-0557and of NSF grant IRI-9626584 is grate-
fully acknowledged.

References
Bertsekas, D. P. (1995). Dynamic programming and optimal con-

trol. Athena Scientific, Belmont, MA.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA.

Dayan, P., & Hinton, G. (1993). Feudal reinforcement learning.
NIPS, 5, pp. 271–278. Morgan Kaufmann, San Francisco,
CA.

Dean, T., & Lin, S.-H. (1995). Decomposition techniques for
planning in stochastic domains. Tech. rep. CS-95-10,
Dept. of Computer Science, Brown University, Provi-
dence, Rhode Island.

Jaakkola, T., Jordan, M. I., & Singh, S. P. (1994). On the con-
vergence of stochastic iterative dynamic programming al-
gorithms. Neur. Comp., 6(6), 1185–1201.

Kaelbling, L. P. (1993). Hierarchical reinforcement learning: Pre-
liminary results. ICML-93, pp. 167–173 San Francisco,
CA. Morgan Kaufmann.

Parr, R., & Russell, S. (1998). Reinforcement learning with hier-
archies of machines. NIPS, Vol. 10 Cambridge, MA. MIT
Press.

Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-
learning. Mach. Learn., 22, 283–290.

Singh, S., Jaakkola, T., Littman, M. L., & Szpesvari, C.
(1998). Convergence results for single-step on-policy

reinforcement-learning algorithms. Tech. rep., University
of Colorado, Dept. Comp. Sci.

Singh, S. P. (1992). Transfer of learning by composing solutions
of elemental sequential tasks. Mach. Learn., 8, 323–339.

Sutton, R. S., Precup, D., & Singh, S. (1998). Between MDPs and
Semi-MDPs: Learning, planning, and representing knowl-
edge at multiple temporal scales. Tech. rep., University of
Mass., Dept. Comp. Inf. Sci., Amherst, MA.


