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Predicting Similarity and Categorization From Identification

F. Gregory Ashby and W. William Lee
University of California, Santa Barbara

In this article, the relation between the identification, similarity judgment, and categorization of
multidimensional perceptual stimuli is studied. The theoretical analysis focused on general
recognition theory (CRT), which is a multidimensional generalization of signal detection theory.
In one application, 2 Ss first identified a set of confusable stimuli and then made judgments of
their painvise similarity. The second application was to Nosofsky's (1985b, 1986) identification-
categorization experiment. In both applications, a GRT model accounted for the identification
data better than Luce's (1963) biased-choice model. The identification results were then used to
predict performance in the similarity judgment and categorization conditions. The GRT identi-
fication model accurately predicted the similarity judgments under the assumption that Ss
allocated attention to the 2 stimulus dimensions differently in the 2 tasks. The categorization
data were predicted successfully without appealing to the notion of selective attention. Instead, a
simpler GRT model that emphasized the different decision rules used in identification and
categorization was adequate.

The perceptual processes involved when subjects identify,
categorize, or judge the pairwise similarity of multidimen-
sional perceptual stimuli are closely related (e.g., Ashby &
Perrin, 1988; Getty, Swets, Swets, & Green, 1979; Nosofsky,
1986; Shepard & Chang, 1963; Shepard, Hovland, & Jenkins,
1961). Roughly speaking, as the similarity between a pair of
stimuli increases, so too does the probability that one will be
misidentified as the other and the probability that they will
be assigned to the same category. This observation suggests a
possible close relationship between these three tasks.

During the past several years, a number of theories have
been developed that attempt to simultaneously account for
data from all three of these tasks. Such theories are important
because they represent attempts to integrate a broad spectrum
of psychological data within one theoretical framework. In
this article, we (a) explore the empirical relation between
identification, categorization, and similarity judgment and (b)
examine the ability of the more powerful of these theories to
predict categorization performance and judgments of per-
ceived similarity from the confusions that subjects make in
an identification task.

The models that we focus most heavily on are derived from
general recognition theory (GRT; Ashby & Gott, 1988; Ashby
& Perrin, 1988; Ashby & Townsend, 1986). They assume that
the perceptual effect associated with each presentation of a
stimulus can be represented as a point in a multidimensional
space but that perceptual noise causes the percept to vary over
trials. Thus, GRT assumes that a distribution of percepts is
the appropriate perceptual representation of a stimulus. Dur-
ing identification or categorization, the subject is assumed to
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divide the perceptual space into response regions. On each
trial, the subject determines in which region the perceptual
effect falls and then emits the associated response.

If the same stimuli are used in different experimental tasks
and if the subject's perceptual system is unchanged, then the
resulting perceptual representations should be related. Nosof-
sky (1986) effectively argued that to account for this relation,
one must allow for systematic shifts in selective attention
across the various tasks. However, we argue below that the
key to understanding the relationship between identification,
categorization, and similarity judgment is to understand the
manner in which response regions change with the experi-
menter's instruction. As shown below, to a large extent, these
changes are accurately predicted by assuming that subjects
are trying to maximize response accuracy.

The models are tested against two separate data sets. The
first are identification-similarity data from an experiment
reported below, and the second are the identification-catego-
rization data reported by Nosofsky (1985b; 1986). In both
experiments, subjects began by participating in an identifica-
tion task that lasted for a number of experimental sessions.
After the last identification session, the same subjects began
a series of sessions in which they performed a new experimen-
tal task with the same stimuli. In our data set, the new task
required subjects to judge the similarity of stimulus pairs. In
the Nosofsky data set, the new task required subjects to learn
four different rules for categorizing the stimuli. Nosofsky
(1986) demonstrated that categorization performance can be
predicted from the errors made in an identification task. To
our knowledge, however, no one has attempted to predict
similarity judgments from identification performance (but see
Getty et al., 1979). In addition, GRT models have never been
simultaneously fit to data from two separate experiments.

Both experiments involved stimuli of the type shown in
Figure 1. On the basis of a number of independent tests, the
size and orientation components of the Figure 1 stimuli have
been assumed to be perceptually separable (e.g., Burns, Shepp,
McDonough, & Wiener-Ehrlich, 1978; Garner & Felfoldy,
1970; Hyman & Well, 1967; Shepard, 1964; see, however,
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Figure 1. Stimulus set for Experiment 1.
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Ashby & Maddox, 1990). Later in this article, however, we
question this assumption.

On each trial of an identification experiment, subjects are
shown one of n possible stimuli and are asked to identify it
uniquely. Call the « stimuli S\, 82, • • •, Sn and the n associated
responses Rt, RZ, •••, Rn- The data from an identification
experiment are summarized in an n x n confusion matrix in
which the entry in Row i and Column j gives the frequency
with which subjects emit Response Rj on trials when Stimulus
Si is presented. In a categorization experiment, the n stimuli
are partitioned by the experimenter into m categories C\, Cz,
• • •, Cm (where m < n). On each trial, subjects are shown one
of the « stimuli and are asked to name the category to which
it belongs. Data from a categorization task are summarized
in an n x m confusion matrix in which the entry in Row i
and Column j gives the frequency with which subjects cate-
gorize Stimulus Si into Category Cj. On each trial of a simi-
larity judgment experiment, subjects are shown two of the n
stimuli. The subjects' task is to rate the similarity of the pair
on a scale from 1 to R, with 1 meaning very dissimilar and R
meaning very similar. The relevant data from a similarity
judgment experiment is a rank ordering of all stimulus pairs
according to their judged similarity. The identification, cate-
gorization, and similarity judgment models studied in this
article were designed to account for the observed identification
and categorization confusion matrices and for the similarity
rank orderings.

Identification Models

General Recognition Theory (CRT)

General recognition theory is a multivariate extension of
signal detection theory (Green & Swets, 1966; Tanner, 1956).
It assumes that, on any given trial, the perceptual effect of a
stimulus can be represented as a point in a multidimensional
space. However, like signal detection theory, GRT assumes
that repeated presentations of the same stimulus do not always
lead to the same perceptual effect. Thus, over trials, the
perceptual effects of a stimulus are represented by a multivar-
iate probability distribution.

With the Figure 1 stimuli, GRT models naturally postulate
two perceptual dimensions: perceived size and perceived ori-
entation. In this case, each stimulus is represented as a bivar-
iate probability distribution. An example in which the percep-
tual distributions are normal is shown in Figure 2. Note that
the distribution has a three dimensional bell-like structure.
The height of the bell at any particular size and orientation
represents the likelihood that presentation of the stimulus will
elicit a percept having that particular size and orientation.
Rather than draw a three-dimensional figure, it is conven-
tional to depict a bivariate normal distribution by its contours
of equal likelihood, each of which is created by taking a slice
parallel to the perceptual plane and looking down at the result
from above.
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Figure 2. Bivariate normal distribution.

Multivariate normal distributions are specified by three
kinds of parameters: (a) location parameters (i.e., a mean on
each dimension), (b) spread parameters (i.e., a variance on
each dimension), and (c) association parameters (i.e., a covar-
iance or correlation for each pair of dimensions). With bivar-
iate normal distributions, the contours of equal likelihood are
always circles or ellipses. If the covariance term is zero, the
major and minor axes of the ellipse are always parallel to the
coordinate axes. With a positive covariance, the major axis
has a positive slope, and with a negative covariance, it has a
negative slope. The relative magnitude of the variances deter-
mines whether the contours are wider in the direction of the
x- or y-axis.

In an identification task, GRT assumes the subject divides
the perceptual space into regions and associates a response

label with each region. On each trial, the subject determines
in which region the stimulus representation falls and then
emits the associated response. The decision bounds are the
lines or curves that separate one response region from another.
With nine stimuli arranged in a 3 x 3 configuration (as in
Figure 1), nine response regions are required. Figure 3 shows
the nine response regions in a hypothetical perceptual space
(for other examples, see Figure 6).

The probability of responding R, on trials in which Stimulus
51 was presented is equal to the probability that a random
sample from the perceptual distribution associated with Stim-
ulus Sj falls in the response region associated with response
Rj. Formally,

II-J&.J
fi(x, y) dx dy (1)

where f\(x, y) is the bivariate normal probability density
function for Stimulus Si, and ^ signifies the /?j response
region.

Consider the Figure 1 case in which nine stimuli are ar-
ranged in a 3 X 3 configuration and in which there are two
relevant perceptual dimensions. In this case, each perceptual
distribution has five parameters (i.e., , a*1, <*y

2, and p),
and in addition, some parameters must be used to specify the
decision bounds. Although a 9 x 9 confusion matrix has
enough degrees of freedom to test such a model, for a number
of reasons it is desirable to also test more restrictive versions
of GRT. For example, by selectively fixing certain parameters,
various assumptions about the perceptual processing of the

Figure 3. Hypothetical decision bounds and contours of equal likelihood that satisfy perceptual
independence, perceptual separability, and decisional separability.
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stimuli can be tested, such as whether the stimulus compo-
nents are separable and whether they are perceived independ-
ently.

In many models, the process of adding simplifying assump-
tions is guided by mathematical simplicity rather than by
empirical validity. One important attribute of GRT is that
many simplifying assumptions can be tested empirically be-
fore being considered for incorporation into the model. If the
data do not support a particular assumption, it can be replaced
by one with greater empirical validity. A number of tech-
niques for testing many plausible simplifying assumptions
have been developed (Ashby, 1988; Ashby & Townsend, 1986;
Kadlec & Townsend, in press; Wickens & Olzak, in press).
This article focuses on three such assumptions: perceptual
independence, perceptual separability, and decisional separa-
bility.

Perceptual independence (PI) holds for a pair of compo-
nents in a particular stimulus if the perceptual effects of the
two components are statistically independent (Ashby &
Townsend, 1986). When the perceptual distributions are bi-
variate normal, perceptual independence holds for a given
stimulus if—and only if—the associated covariance parame-
ter is zero. This in turn means that the contours of equal
likelihood must be either circles or ellipses in which the major
and minor axes are parallel to the coordinate axes. All nine
contours in Figure 3 satisfy PI. Note that PI is a property of
a single stimulus.

Perceptual separability (PS) holds if the perceptual effects
of a given level of one component do not depend on the level
of the other component. For example, consider a stimulus
AiBj that is constructed from Component A at Level i and
from Component B at Level j. Component A is perceptually
separable from B at Level i if the perceptual effects of A\ do
not depend on the level of B. Therefore, PS is a property of
an entire set of stimuli (i.e., of A{B,, AiB2, • • • , A{Br, where r
is the number of levels of Component B). If Dimension x
corresponds to Component A and Dimension y to B and if
the perceptual distributions are normal, then the PS of A\
from Component B implies that Stimuli A\B\, A,B2, • • •, A(B,
all have the same mean and variance on Dimension x. Com-
ponents A and B are mutually perceptually separable if A, is
perceptually separable from B for all values of i and B, is
separable from A for all values of j. Note that this condition
implies a rectangular gridlike configuration of the perceptual
means. The contours illustrated in Figure 3 satisfy mutual PS.

If decisional separability (DS) holds, then the subject's
decision about the level of one component does not depend
on the value of the perceptual effect associated with any other
component. This property, which often leads to suboptimal
performance, implies that the decision bounds are parallel to
the coordinate axes. Note that DS also holds in Figure 3.

A convenient analogy that provides psychological intuition
for these concepts is as follows (Ashby, 1989). Suppose a
processing channel exists for each stimulus component. Let
the critical set of a channel be the set of all possible stimuli
that directly stimulate that channel. If there is no mutual
interaction between the two channels, PI holds. If the critical
sets associated with the two channels do not overlap, PS holds.
If the subject makes a decision about the level of a component

by setting a criterion on the output of the channel associated
with that component, DS occurs.

Luce-Shepard Choice Models

To evaluate the validity of the GRT models, they are
compared with a number of models derived from the classic
biased-choice model (Luce, 1963; Shepard, 1957). In the
biased-choice model, P(Rj\St) is a function of the similarity
of Stimulus Si to Stimulus Sj, denoted ?/„, and of the bias
toward response Rj, denoted ft. Specifically,

P(Ri\Si) = (2)

where n is the number of stimuli in the ensemble. When
applying this model, it is typically assumed that similarity is
symmetric, so that »?„ = ?jjj. In addition, without loss of
generality, it is assumed that all self-similarities equal 1.0 (i.e.,
fH = i»jj = 1-0, for all i and j). Despite the fact that a number
of researchers have questioned the empirical validity of the
symmetry assumption (e.g., Krumhansl, 1978; Tversky,
1977), the biased-choice model has been the most successful
identification model of the past 25 years (when the criterion
is goodness-of-fit to an identification confusion matrix; e.g.,
Smith, 1980; Townsend, 1971; Townsend & Ashby, 1982).

In fact, the biased-choice model has been so successful that
one might wonder why other identification models should be
investigated. For example, Nosofsky (1986) found that the
biased-choice model accounted for more than 99% of the
variance in the identification confusion matrices obtained
from both subjects in an experiment that used stimuli like
those in Figure 1. Despite results such as these, we believe
there are at least four reasons to investigate other models.
First, the biased-choice model, as given in Equation 2, is
cognitively sterile in the sense that a good fit to a particular
data set provides little insight into the perceptual and cognitive
processes involved in the identification task. Second, although
the biased-choice model usually provides excellent fits to
identification data, it occasionally encounters difficulty. For
example, Ashby and Perrin (1988) found that it provided poor
fits to 3 of the 8 confusion matrices reported by Townsend,
Hu, and Ashby (1981). Third, even a model that accounts for
99% of the variance in a particular data set might be im-
proved. An alternative model that accounts for 99.5% of the
variance in the same data accounts for 50% of the unexplained
variance. Newtonian physics accounts for most of the variance
in astronomical data, but it was rejected in favor of a more
powerful model many years ago. Finally, when accounting
for data in an identification confusion matrix, percentage of
variance accounted for is a misleading statistic. In most cases,
the main diagonal contains the largest entries in an identifi-
cation confusion matrix. Thus, any model that predicts that
the probability of a correct response is greater than the prob-
ability of an error will account for a large percentage of the
observed variance.

The MDS-choice model (i.e., multidimensional scaling-
choice model) is a special case of the biased-choice model that
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in identification. In the MDS-choice model, i?ij is replaced
with a more structured similarity measure (Getty, Swets, &
Swets 1980; Getty et al., 1979; Nosofsky, 1985b; Shepard,
1957). Aside from symmetry, the biased-choice model makes
no assumptions about the relation of various stimulus simi-
larities. In contrast, the MDS-choice model assumes that
stimuli can be represented as points in a multidimensional
perceptual space, Pairwise similarities can be inferred from
the interpoint distances. If the MDS space is of low dimen-
sionality, the MDS-choice model may require fewer parame-
ters to derive all the pairwise similarities than the biased-
choice model. In addition, the MDS representation may yield
insights about the perceptual processing of the stimuli that
cannot be obtained from the biased-choice model.

With the stimuli used in our experiments, the model natu-
rally postulates a perceptual space with two dimensions: ori-
entation and size. Perceived similarity, as represented by ??„ is
assumed to be inversely related to the distance between the
point-representations of St and Sj. The exact relation between
similarity and distance is defined by the similarity function.
Two alternatives are prominent: the exponential decay and
the Gaussian.

Let dij be the distance between the point-representations of
Stimuli S-, and Sj. The exponential decay similarity function
assumes

and the Gaussian similarity function assumes

(3)

(4)

Shepard (1957, 1958a, 1958b, 1987, 1988) proposed the
exponential decay function as a universal principle. Nosofsky
(1985b) found evidence that with highly confusable stimuli,
better fits are obtained with the Gaussian similarity function,
but Ennis (1988) showed that with probabilistic stimulus
representations, the two models are difficult to discriminate.
Finally, Shepard (1986,1988) and Takane and Shibayama (in
press) argued that the Gaussian function is most appropriate
in cases in which subjects are highly practiced and the models
are fit to the confusion matrices of single subjects. If the data
are aggregated over subjects, or if the subjects are not highly
practiced, the exponential function is likely to fit better. The
argument runs as follows. As d increases, expf-rf2) approaches
zero more quickly than exp(-rf), and thus, with the Gaussian
similarity function, the contribution to the response proba-
bilities of very dissimilar stimuli is less than with the expo-
nential function. Thus, any factor that increases confusions
between dissimilar stimuli will tend to favor the exponential
similarity function.

Different versions of the MDS-choice model can also be
formulated depending on how distance is defined. In this
article, two specific distance metrics are considered. Both are
special cases of the so-called Minkowski metric. Let (uu y-,) be
the coordinates of the perceptual representation of Stimulus
Si. Then the Minkowski metric defines the distance d$ by

^ = [\Ui - tij\r + |Vi - Vjl']"". (5)

The exponent r defines the nature of the distance metric.
Euclidean distance results when r=2 and city-block distance

when r = 1. Previous applications of the MDS-choice model
have paired the exponential similarity function with the city-
block distance metric (the exponential-city-block MDS-
choice model; Nosofsky, I985a; Shepard, 1957,1987; Takane
& Shibayama, 1986), the Gaussian similarity function with
the Euclidean metric (the Gaussian-Euclidean MDS-choice
model; Nosofsky 1985b, 1986), or the exponential similarity
function with the Euclidean metric (the exponential-Euclid-
ean MDS-choice model; Nosofsky, 1987). These are the three
versions of the MDS-choice model tested in this article.

Traditionally, the exponential-city-block model was
thought to fit best when the dimensions are separable and the
exponential-Euclidean model to fit best when the stimulus
dimensions are integral (Attneave, 1950; Garner, 1974; Han-
del & Imai, 1972; Hyman & Well, 1968; Shepard, 1964;
Torgerson, 1958). However, more recently a number of re-
searchers have found that with separable dimensions the best
fitting MDS-choice model is the Gaussian-Euclidean (Ashby
& Perrin, 1988; Nosofsky, 1985b).

The MDS-choice model is a special case of the biased-
choice model in the following sense: An identification con-
fusion matrix that is generated from any MDS-choice model
can be fit perfectly by some biased-choice model, but identi-
fication confusion matrices can be generated from the biased-
choice model that cannot be fit perfectly by any MDS-choice
model with the same number of parameters. To see this, note
from Equations 2, 3, and 4 that the MDS-choice model
satisfies each of the restrictions that the biased-choice model
places on the similarity parameters. Namely, ij8 = ̂  and %•>>
= 1 for all i. Thus, in the biased-choice model, there exists a
unique similarity parameter, ̂  for each unique distance rfu

in the MDS-choice model. A consequence of this equivalence
is that the MDS-choice model can never provide a better
absolute fit to a set of data than the biased-choice model. It
can, however, provide a better relative fit. Specifically, it could
provide a fit that is almost as good, but at the savings of many
free parameters.

Although the MDS-choice model and GRT both assume
that stimuli can be represented in a multidimensional percep-
tual space, the similarity between the two approaches ends
with this assumption. The GRT models (a) emphasize varia-
bility in the percept, (b) assume that confusability is a funda-
mental construct, (c) stress the importance of the decision
bound, and (d) assume that response selection is a determin-
istic process (i.e., if a percept falls in Response Region A, then
Response /?A is given with probability 1). On the other hand,
the MDS-choice models (a) assume a static perceptual repre-
sentation, (b) assume that similarity is a fundamental con-
struct, (c) stress the importance of interpoint distance, and (d)
assume that response selection is a probabilistic process (i.e.,
a given percept always leads to an /?A response probability
between 0 and 1).

Similarity Models

General Recognition Theory

Confusability is closely related to similarity. In general, the
greater the similarity between a pair of stimuli, the more often
they are confused. In fact, GRT assumes that, in the absence
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of response bias, confusability and perceived similarity are
proportional (Ashby & Perrin, 1988). Thus, when the stimuli
are two dimensional, the similarity of Stimulus Si to Stimulus
Sj is given by

s(S-,, j) = k I I fJ&J
fix, y) dx dy (6)

where k is a positive constant, fix, y) is the bivariate normal
probability density function representing the perceptual ef-
fects of Stimulus Si, and ̂  signifies the region for responding
Rj in an unbiased identification experiment. Without loss of
generality, k can be set to 1. Thus, in GRT, perceived simi-
larity is closely related to identification accuracy. Ashby and
Perrin (1988) showed that this model contains the Euclidean
MDS models as a special case, even those that assume that
subjects differentially weight potentially oblique perceptual
dimensions. Even so, the Equation 6 similarity measure is
not constrained by any of the so-called distance axioms. In
particular, the predicted similarities need not be symmetric
and not all self-similarities need be equal.

The relationship between GRT and MDS is summarized
in Figure 4. The left side of the figure shows the hypothetical
stimulus representation of four stimuli—A, B, C, and D—
which vary on two physical dimensions, X and Y. Four
possible GRT perceptual representations of these stimuli are
depicted in the middle of Figure 4, and the equivalent MDS
representation is shown on the right. In the top GRT repre-
sentation, perceptual independence holds for each stimulus,
and all stimuli have equal amounts of perceptual variability
on both dimensions. In this case, the equivalent MDS repre-
sentation comes from the simple Euclidean MDS model (i.e.,
Equation 5 with r = 2). In the second GRT representation,
the Perceptual Dimensions x and y are always perceived
independently, and all stimuli are associated with the same
amount of perceptual variability along Dimension x and also
along Dimension y. Note, however, that there is greater
variability along Dimension y than along Dimension x. The
equivalent MDS representation comes from the weighted
Euclidean scaling model (Carroll & Chang, 1970; Horan,
1969). This model allows subjects to differentially weight the
dimensions. In Figure 4, greater weight is placed on Dimen-
sion u. In the third GRT representation, x and y exhibit a
positive dependence, but the magnitude of this dependence
(i.e., p) does not depend on which stimulus was presented.
The equivalent MDS representation comes from the so-called
general Euclidean scaling (GEM) model (Carroll & Chang,
1972; Tucker, 1972). In the GEM representation, the angle
between Perceptual Dimensions u and v satisfies p = -cos 6.
Finally, in the bottom GRT representation, Perceptual Di-
mensions x and y are perceived independently when Stimulus
A is presented, but when B is presented x and y exhibit a
negative dependence. In this case, there is no equivalent MDS
representation.

Note that, although the Stimulus Vectors B and C are
orthogonal in the stimulus representation, they are not or-
thogonal in any GRT or MDS representation. This illustrates
that the dimensions of the GRT or MDS representation are
not stimulus dimensions but instead are perceptual dimen-
sions. The MDS-choice models and the GRT models are
alternative theories of the perceptual representation of mul-

tidimensional stimuli. In each theory, a perceptual represen-
tation mediates a choice process.

MDS-Choice Model

In the MDS-choice model, similarity is specifically defined
by 'Zij, which is a function of the psychological distance
between Stimuli & and Sj (see Equations 2, 3, and 4). The
estimates of the coordinate values of each point-representa-
tion (the Mi and V;) are substituted into Equation 3 or 4 to
generate the similarity predictions.

Categorization Models

General Recognition Theory

The GRT identification model can be generalized to predict
categorization performance. Consider the situation in which
there are two categories, CA and CB, and a total of n stimuli.
In this case, GRT postulates that the subject divides the
perceptual space into two regions: one associated with Re-
sponse Rf. and one associated with Response R%, Thus, the
probability of responding R, when Stimulus Si was presented
is

t, y) dx dy (7)

where &, refers to the response region of Category Cj, and
fix, y) is again the bivariate normal probability density func-
tion representing Stimulus S\. (Note that lowercase subscripts
refer to individual stimuli and uppercase subscripts refer to
categories.)

A number of different versions of this model can be for-
mulated depending on how the boundary that separates the
two response regions is constructed. As a concrete example,
suppose the experimenter assigns Stimuli Si - S4 of Figure 1
to Category CA and Stimuli S5 - S9 to Category CB. Suppose
that during the categorization phase of the experiment, there
are an equal number of Category CA and CB trials, and within
each category, each stimulus is presented with equal proba-
bility. Then the distribution of percepts on Category CA trials
is

MX, y) = i/,(x, y) + l<f*(x, y) + if,(x, y) + i/4(x, y).

Similarly, the distribution of percepts on Category CB trials is

MX, y) = i/j(*, y) + |/6(x, y) + i/fo y)

+ |/8(x, y) + \f9(x, y ) .

The optimal classifier uses the decision rule

Respond RA if 7; - > 1; otherwise respond Rj>
JB(X, y)

and so the response region ^A includes all points (x, y) such
that/A(jc, y)/fy(x, y) > 1. The decision bound is the set of all
points (x, y) such that/A(.x, y)/ft(x, y)= 1. In all but a very
few special cases, this bound will be highly nonlinear.
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Figure 4. Representation in the stimulus space of four hypothetical stimuli (left), four possible
perceptual representations of the stimuli according to general recognition theory (GRT; center), and
their equivalent MDS perceptual representations (right).

To generate categorization predictions from identification
performance, the GRT identification model is first fit to the
identification confusion matrices. Next, estimates of the pa-
rameters describing the perceptual distribution associated
with each stimulus are obtained from the best fitting model.
These are then used in conjunction with Equation 7 to obtain
the predicted accuracies in the categorization condition.

Generalized Context Model

Medin and Schaffer (1978) developed the context model as
an application and extension of the biased-choice model to
the categorization paradigm. Consider a categorization task
with two categories, CA and CB. According to the context
model, the probability that Stimulus Si is classified as a
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member of Category CA, P(RA\St), is given by
a V «
PA 1, »?ij

«?U + (1 -
(8)

where as before, j3A is the bias for responding R*, and 77 „ is
the similarity between Stimuli S, and 5j.

Nosofsky (1984, 1986) generalized the context model to
continuous valued perceptual dimensions. The resulting
model, known as the generalized context model (GCM) as-
sumes

w = p-<V (91* U \~^ '

where, as before, d» is the distance between the perceptual
representations of Stimuli Si and S, and a is generally set to
a = 1 (the exponential similarity function) or a = 2 (the
Gaussian similarity function).

The GCM postulates a more powerful distance measure
than the MDS-choice model. Nosofsky (1986) assumed that
whereas the coordinates of the perceptual representation of
each stimulus are the same in identification and categoriza-
tion, there is a possibility that the proportion of attention
allocated to the various perceptual dimensions might be dif-
ferent in the two tasks. For example, accurate identification
of the Figure 1 stimuli requires that each perceptual dimen-
sion be allocated approximately equal amounts of attention.
Consider, however, a categorization task in which three cate-
gories are created, one for each circle size. In this case, there
is no reason to allocate any attention to the orientation
dimension.

Let the proportion of attention allocated to Dimensions u
and v be denoted by wu and vv», respectively (where wu + wv

= 1). Then the GCM assumes that the distance between the
perceptual representations of Stimuli Si and S, is given by

f k ~ C[wu|«i - WjT + Wv |Vi - Vj| r]1/ r. (10)

As in the MDS-choice model, the Parameter r is generally set
to r = 1 (city-block distance) or r = 2 (Euclidean distance).
The nonnegative Parameter c scales the perceptual space. It
can be interpreted as a measure of overall stimulus discrimin-
ability and so is expected to increase with increased exposure
duration or as subjects gain experience with the stimuli.

Although Nosofsky (1990) showed that under certain re-
strictive conditions, the GCM and the GRT models make
similar predictions, the two models nevertheless differ fun-
damentally in their assumptions about the categorization
process. The GCM is an exemplar model. It assumes that on
each trial, the subject performs a global match between the
representation of the presented stimulus and the memory
representation of every exemplar in each category. The out-
come of this matching process determines the strength of each
response alternative. As long as the parameters have finite
values, response strength is always positive valued, and thus,
response selection is probabilistic. The GRT model assumes
that exemplar information is available, but unnecessary for
experienced subjects.1 As soon as the subject determines in
which region the percept has fallen (which is sometimes
difficult), response selection occurs automatically (and deter-
ministically). For example, when categorizing faces by ethnic-
ity, GRT assumes that through experience, subjects have

learned to associate certain ethnicities with certain regions of
the "face" space. So long as a particular face is not near a
bound that separates regions associated with different ethnic-
ities, categorization is automatic. In particular, there is no
need to access the representations of the many faces in each
candidate ethnicity (as GCM assumes).

Experiment 1
The basic idea behind the two experiments described in

this article is that, if the processes and representations under-
lying the various psychophysical tasks (such as identification,
categorization, and similarity judgment) are related, then it
should be possible to predict performance in one task from
performance in another task. Specifically, in Experiment 1,
we wanted to predict performance in a similarity judgment
task from identification confusions. Thus, the goals of Exper-
iment 1 were to (a) collect identification confusion data, (b)
fit the models to the data, (c) generate similarity predictions
using the results of the identification model-fits, (d) collect
similarity-judgment data, and (e) compute the correlation
between the predicted and observed similarity judgments. The
analysis of these data allows us to compare the models on
how well each accounts for the identification data and how
well each predicts the similarity-judgments.

The stimulus set consisted of the nine semicircles shown in
Figure 1. Note that the stimuli vary on two dimensions: the
size of the circle and the orientation of the radial line. These
two dimensions have been found to be perceptually separable
in a number of independent tests (e.g., Burns et al., 1978;
Garner & Felfoldy, 1970; Hyman & Well, 1967; Shepard,
1964; however, see Ashby & Maddox, 1990; Nosofsky,
1985b).

Two subjects each participated in five sessions of identifi-
cation and five sessions in which they judged the similarity of
pairs of the stimuli (on a scale from 1 to 10). On the average,
each of the 9 stimuli were presented about 165 times during
the course of the identification sessions, and each of the 81
stimulus pairs were presented about 22 times during the
course of the similarity sessions.

Virtually all identification models are able to account for
data in which accuracy is perfect. The challenge is to account
for the specific confusions that subjects make when accuracy
is degraded. Accurate estimation of specific error probabilities
requires a high overall error rate. A number of specific exper-
imental manipulations effectively increase error rate. These
include choosing highly similar stimuli, limiting exposure
duration, and using a backward mask. Following Nosofsky
(1986), we chose to use all three of these techniques. General
recognition theory predicts that each technique will increase
perceptual variability (or decrease the distance between per-
ceptual means), but that they should not fundamentally dis-
rupt normal identification processes.2

' This is the case at least in a categorization task. In other tasks,
for example, when subjects are asked to make typicality judgments,
exemplar information is necessary.

2 The presence of a mask is most likely to disrupt the natural
identification process, particularly if the mask shares features with
the stimulus. Therefore, our mask consisted only of a rectangular grid
of white dots.
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Typically, when collecting judgments of similarity, one does
not limit exposure duration or terminate the display with a
mask. However, prediction of similarity judgments from iden-
tification data is facilitated if the perceptual representation is
invariant across the two tasks. The best way to minimize
differences in the perceptual representations is to keep the
stimulus display conditions the same in the two conditions.
Unfortunately, however, because an identification trial in-
volves only one stimulus and a similarity judgment trial
involves two stimuli, identical stimulus conditions are impos-
sible. The best one can do is to select a longer exposure
duration in the similarity condition.

Table 1
Observed and Predicted Identification Confusions

Method

Subjects

Two subjects participated in this experiment. Subject 1 was a
female undergraduate who had never been in a psychology experi-
ment. Subject 2 was a male graduate student, experienced in experi-
ments similar to this one. Both were students at the University of
California at Santa Barbara and were paid for their participation.
Both subjects had normal vision.

Stimuli

The stimulus set consisted of nine semicircular figures (see Figure
1), constructed by factorially combining three sizes (i.e., radii) and
three orientations. The radii were 1.18, 1.25, and 1.32 cm; the
orientations were 50°, 53°, and 56°. Average visual angle was about
1°, and thus these stimuli were similar to those used by Nosofsky
(1985b, 1986). The stimuli were computer generated and displayed
on a Mitsubishi Electric Color Display Monitor Model No. C-9918NB
in a dimly lit room.

Procedure

Identification trials. Before the actual trials began, subjects were
shown a drawing of how the stimuli were arranged in a 3 x 3
configuration (similar to Figure 1) and how each stimulus could be
identified by two numbers: the level on the orientation dimension
and the level on the size dimension. They were told that to respond
correctly, they must correctly identify the levels along both dimen-
sions.

Each trial began with a fixation dot that appeared in the center of
the screen for 500 ms. Next, one of the nine stimuli was randomly
selected and then displayed for 150 ms. This was followed immedi-
ately by a mask (i.e., a grid of dots). Subjects had up to 10 s to make
a response. As soon as the subjects responded, the correct response
appeared for 1.5 s. This was followed by a 2-s pause, and then the
next trial was initiated. Subjects made their responses by pressing one
of nine buttons on a 3 x 3 keypad. There were a total of five sessions
(days) of identification. Each session consisted of 300 trials in four
blocks of 75 trials; there was a 30-s break between blocks. On the
average, each stimulus was shown about 165 times during the five
sessions. Because we were interested in asymptotic identification
performance and not in the learning process, the first session was
considered practice, and data from this session were not included in
the subsequent analysis.

Similarity-judgment trials. After the end of the identification
sessions, each subject completed five sessions (days) of judging simi-
larity. Each trial began with a fixation dot that appeared for 500 ms.
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Note. Rows correspond to stimuli and columns to responses. Top
row. Observed frequency; Middle row. Predicted frequency of the
biased choice model; Bottom row: Predicted frequency of the most
efficient general recognition theory model.
' (angle level, size level).
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Table 2
Summary of the Assumptions Underlying Each of the General Recognition Theory Models

Model

GRT(PI, PS, DS)
GRT(PI, PS,, DS,)
GRT(PI, DS)
GRT(PS, DS)
GRT(PI)
GRT(PS,, DS,)
GRT(DS)
GRT(«)

Perceptual in-
dependence?

Yes
Yes
Yes
No
Yes
No
No
No

Perceptual separability?
Yes

Only on size dimension
No
Yes
No

Only on size dimension
No
No

Decisional separability?

Yes
Only on size dimension

Yes
Yes
No

Only on size dimension
Yes
No

Note. GRT = general recognition theory; PI = perceptual independence; PS =
DS = decisional separability.

• perceptual separability;

Next, a pair of stimuli was randomly selected and then displayed side
by side for 400 ms. This was followed immediately by the mask,
which was displayed until the subjects made a response. The two
stimuli were about 1 cm apart. Horizontally, the visual angle of the
entire display was about 2.5'. The subjects' task was to rate the
similarity of the two stimuli on a scale from 1 to 10, with 1 meaning
very dissimilar and 10 meaning very similar. There were 81 possible
stimulus pairs. On the average, each pair was shown about 22 times
during the course of the similarity sessions. The first day was consid-
ered practice, and data from that day were excluded from the analysis.
Subjects responded on a keyboard with a row of buttons labeled from
1 to 10. There was a 2-s pause between trials and a 30-s pause between
blocks. Each session consisted of 360 trials in four blocks of 90 trials.

Results and Theoretical Analyses

Identification

Confusion matrices (raw frequencies) for both subjects are
presented in Table 1. The top number in each cell is the
observed frequency. The bottom two numbers are predicted
frequencies of models that are described below. Overall ac-
curacy was 47.9% for Subject 1 and 36.9% for Subject 2.

Three classes of models were fit to the identification data:
a number of models derived from GRT, the biased-choice
model, and several MDS-choice models. The GRT and MDS-
choice models all assumed a two dimensional perceptual
representation.3 The biased-choice model was included be-
cause it has been the best identification model for many years
and so can serve as a benchmark for how well the other
models accounted for the data (e.g., Smith, 1980; Townsend,
1971; Townsend & Ashby, 1982).

The GRT models that were tested are summarized in Table
2. Note that the different versions make different assumptions
about perceptual independence (PI), perceptual separability
(PS), and decisional separability (DS). The most restrictive
model, GRT(PI, PS, DS), assumes all three of these condi-
tions. Figure 3 shows contours of equal likelihood and deci-
sion bounds that might be predicted by GRT(PI, PS, DS).
Decisional separability holds because each decision bound is
parallel to a coordinate axis. Perceptual separability holds
because the means fall in a rectangular formation and because
the width of the ellipses is the same within every column and
every row. Perceptual independence holds because the major
and minor axes of each ellipse are parallel to the coordinate

axes. For one stimulus, both means can arbitrarily be set to 0
and both variances to 1.0, and so GRT(PI, PS, DS) has only
12 free parameters. Of these, 4 determine the distribution
means, 4 determine the variances, and 4 determine the deci-
sion bounds. We do not expect good fits from GRT(PI, PS,
DS), because a preliminary analysis using techniques devel-
oped by Ashby (1988) turned up evidence that perceptual
independence and separability were violated in the data of
both subjects. Thus, more general versions of GRT are
needed.

The other models described in Table 2 are all more general
versions of GRT(PI, PS, DS). The most general model,
GRT(*), does not assume perceptual independence, percep-
tual separability, or decisional separability. In all models not
assuming decisional separability, the decision bounds were
staircased, with two steps on each dimension.

Note that two of the models, GRT(PI, PSS, DSS) and
GRT(PSS, DSs), assume separability only on the size dimen-
sion. The possibility of an asymmetric perceptual separability
arises directly from an examination of Figure 1. Note that
when judging size, the orientation of the line is irrelevant and
so perceptual separability is feasible on this dimension. How-
ever, when judging orientation, circle size is relevant because
the line is longer when the circle is large. Because of this,
orientation judgments might be easier when the circle is large
than when it is small. If so, we expect perceptual separability
to fail on this dimension.

The eight GRT models described in Table 2 have a hierar-
chical structure in the sense that some contain others as a
special case. This structure is illustrated in Figure 5. Any pair
of models connected by arrows in Figure 5 are nested, with
the upper model containing the lower as a special case.

Previous attempts to fit GRT models to identification data
were restricted to versions that assume both PI and DS (Ashby
& Perrin, 1988). Models that violate either of these assump-
tions are computationally more difficult to fit. However, we
developed a fitting procedure that can accurately and reliably
estimate the parameters of the most general versions of GRT.

'Although the stimuli have two obvious physical dimensions,
models that assume three or more perceptual dimensions could be
tested. However, the two dimensional models have more psycholog-
ical plausibility, and in addition, they provide excellent fits to the
data.
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(PS.DS)

(PI.PS.DS)

Figure 5. Hierarchical relation between the general recognition the-
ory models fit to the data of Experiment 1. (PI = perceptual inde-
pendence; PS = perceptual separability; DS = decisional separability.)

This procedure is described in the Appendix (along with a
brief description of a method for fitting the biased-choice
model).

Three versions of the MDS-choice model were fit: (a) the
exponential-city-block model, (b) the Gaussian-Euclidean
model, and (c) the exponential-Euclidean model. Recall that
in general, Model (a) or (b) fits best when the dimensions are
separable, and Model (c) fits best when the dimensions are
integral. In addition, the Gaussian similarity function tends
to fit best when the analysis is performed on the data of
individual, well-practiced subjects. When the subjects have
had little practice or when the data is aggregated over a
number of subjects, the exponential similarity function tends
to fit best (Shepard, 1986; Takane & Shibayama, in press).
Because the dimensions of the Figure 1 stimuli are typically

assumed to be separable and the data are from well-practiced
individual subjects, we expect the Gaussian-Euclidean model
to provide the best fit to the identification data.

All of these models were fit to the identification confusion
matrices using an iterative search routine that minimized the
sum of squared errors (SSE)

whereyj/JjISi) is the observed frequency with which Response
RJ was given on trials when Stimulus St was presented and
fp(Rj\Si) is the corresponding theoretical prediction. Because
many of the models are related in a nested fashion, it
is possible to test whether the extra parameters of a more
general model lead to a significant improvement in fit over
the more restricted version. Let SSET and SSEt refer to the
SSE of a restricted and more general model, respectively,
where the restricted model is a special case of the more general.
Let df, and dfg refer to the degrees of freedom associated with
each model. Then under the null hypothesis that the restricted
model is correct, the statistic

^ (SSE, - SSEJ/W, - df,)
obs SSEJtfc

has an approximate F distribution with dfr - dft degrees of
freedom in the numerator and df& degrees of freedom in the
denominator4 (e.g., Khuri & Cornell, 1987).

The SSE for the best fitting version of each model, along
with its percentage of variance accounted for, is shown in
Table 3. First, note that as predicted, the Gaussian-Euclidean
version was the best fitting MDS-choice model. In fact, for
both subjects, the Gaussian-Euclidean MDS-choice model

4 Using a new algorithm of Wickens (in press), we repeated this
analysis using the method of maximum likelihood. In this case, the
difference in fit values of two nested models has a chi-square distri-
bution, with degrees of freedom equal to the difference in the number
of free parameters. In all cases, this second method of analysis led to
exactly the same conclusions.

Table 3
Model Fits to Identification Data

Model

Biased choice
EX/CB MDS
G/EMDS
EX/E MDS
GRT(PI, PS, DS)
GRT(PI, PS,, DS,)
GRT(PI, DS)
GRT(PS, DS)
GRT(PI)
GRT(PSS> DSS)
GRT(DS)
GRT(»)

No. of pa-
rameters

44
24
24
24
12
28
36
21
44
37
45
53

Subject 1

SSE
224

1,080
316

1,254
1,673

208
528

1,188
179
177
137
100

% variance

99.4
97.0
99.1
96.5
95.3
99.4
98.6
96.7
99.5
99.5
99.7
99.7

Subject 2

SSE
1,948
3,094
2,291
3,421
4,398

817
579

3,394
195
627
188
78

% variance

92.7
87.3
91.2
86.0
82.1
96.7
97.7
86.2
99.2
97.5
99.3
99.7

Note. SSE = sum of squared errors; MDS = multidimensional scaling; CRT = general recognition
theory; PI = perceptual independence; PS = perceptual separability; DS = decisional separability. "EX/
CB MDS" refers to the exponential/city-block MDS-choice model. "G/E MDS" refers to the Gaussian/
Euclidean MDS-choice model, and "EX/E MDS" refers to the exponential/Euclidean MDS-choice
model.
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was found not to fit significantly worse than the more general
biased-choice model: for Subject 1, F(20,28) = .57; for Subject
2, F(20, 28) = .25; in both cases, p > .25.

Second, note that GRT(PI, PSS, DSS) fit the data of both
subjects better than the biased-choice model, despite the fact
that it has 16 fewer free parameters. Third, although GRT(PI,
PSS, DSS) has 4 more parameters than the MDS-choice
models, it provides a better fit in the sense that generalizing
the MDS-choice models by postulating extra stimulus dimen-
sions, a different similarity function, a different distance
metric, or attention weights will not allow the MDS-choice
model to fit the data of either subject better than GRT(PI,
PSs, DSs). This is because the MDS-choice model is a special
case of the biased-choice model and so it can never have a
lower SSE than the biased-choice model. Because GRT(PI,
PSs, DSS) fits better than the biased-choice model, it must
necessarily fit better than these generalized MDS-choice
models.

Fourth, note that overall, the GRT models do an excellent
job of accounting for the data of both subjects. In fact, the
only versions that perform poorly are GRT(PI, PS, DS) and
GRT(PS, DS). These are the only two versions that assume
perceptual separability on both stimulus dimensions, and so
their poor fit is strong evidence for at least an asymmetric
perceptual integrality.

The relation between the various models is described in
Figure 5. An asterisk on the left side of an arrow means that
the more general model fitted significantly better (i.e., p <
.05) than the more restricted model for Subject 1 and an
asterisk on the right side means the difference was significant
for Subject 2. An ns indicates a nonsignificant difference. The
most efficient model provides the best fit with the fewest
number of parameters. To find the most efficient GRT model,
one begins at the bottom of Figure 5 and works upward.
Whenever an asterisk is encountered, one continues upward;
ns means that extra parameters have been added without a
significant improvement in fit.

For Subject 1, note that GRT(PI, PSS, DSs) fits significantly
better than GRT(PI, PS, DS) but that further generalizations
provide no improvement. Another path moves through
GRT(PI, DS) and ends at GRT(PI). However, because
GRT(PI) contains GRT(PI, PSS, DSS) as a special case, relax-
ing the assumption of asymmetric separability provides no
significant improvement in fit, and so GRT(PI, PSS, DSS) is
a more efficient model for the data than GRT(PI). A third
path proceeds through GRT(PS, DS) and ends at GRT(DS).
Unfortunately, however, GRT(PI, PSs, DSS) is not a special
case of GRT(DS) and so we have no way to compare these
two models statistically. GRT(DS) provides a better fit, but
at the cost of 17 additional parameters. If the two models
were nested, the improvement in fit would be nonsignificant
(p > .25), which suggests that GRT(PI, PSS, DSS) may be the
more efficient model.

For Subject 2, the interpretation of the model fits is straight-
forward. With two exceptions, every generalization led to a
significant improvement in fit. Thus, the most efficient model
for describing the data of Subject 2 is GRT(»).

On the basis of these results, we conclude that PS and DS
are violated for Subject 2 on both dimensions and for Subject
1 only on the orientation dimension. In addition, it appears

that PI holds for Subject 1 but not for Subject 2. Although
these results support our intuitive rationale for an asymmetric
violation of separability, they contradict current ideas about
these stimulus dimensions. The GRT fits to Nosofsky's
(1985b) identification confusion matrices to be reported be-
low allow an opportunity to substantiate these results.

The parameter estimates of the best fitting models can be
effectively studied by examining their predicted contours of
equal likelihood. Figure 6 shows the contours and decision
bounds predicted by GRT(PI, PSs, DSS) for Subject 1 and by
GRT(») for Subject 2. Note that in both cases, PS is strongly
violated on the orientation dimension, especially for the mid-
dle level of orientation. In particular, as size increases, per-
ceived orientation increases. The Subject 1 model assumes PS
on the size dimension, but in the case of Subject 2, note that
the violations of PS on the size dimension are small. In
summary, both subjects exhibited substantial violations of PS
and DS on the orientation dimension, and Subject 2 exhibited
small but significant violations of PS and DS on the size

LU
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Figure 6. Decision bounds and contours of equal likelihood that
describe the parameter estimates of GRT(PI, PSs, DSs) for Subject 1
and GRT(«) for Subject 2. (GRT = general recognition theory.)
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dimension. In addition, Subject 2 also displayed moderate
violations of PI.

Table 1 also contains the predictions of the best fitting
biased-choice model and the best fitting versions of CRT,
namely, GRT(PI, PSS, DSS) for Subject 1 and GRT(«) for
Subject 2. Note that for Subject 1, neither model has any
large prediction errors, but for Subject 2, the biased-choice
model poorly predicts a number of cells in the confusion
matrix. Specifically, it predicts that subjects will never respond
R6 on trials when Stimulus S9 is presented, even though this
was the most common error on S9 trials. Similarly, it incor-
rectly predicts almost no /?2 errors on Ss trials. It is interesting
to note that many of the largest errors of prediction involve
pairs of stimuli that differ on only one stimulus dimension.

Similarity Judgments

The data from this part of the experiment consisted of
ordinal ratings, ranging from 1 to 10, with 10 indicating the
greatest similarity. Subjects were instructed to judge the sim-
ilarity between the stimulus on the left and the stimulus on
the right. Specifically, they were not instructed to consider
one of the stimuli as the standard or the referent. Because of
this, all data analyses ignored presentation order. Thus, we
assume s(St, Sj) = s(Sj, Si).

All models described above assume that ratings of judged
similarity agree only monotonically with perceived similarity.
Thus, we are only interested in the ordinal agreement between
the model predictions and the observed similarity ratings. The
first step, therefore, is to rank order the stimulus pairs accord-
ing to their judged similarity. Next, predicted similarities are
generated from the various models, these are rank ordered,
and finally, the observed rank orders are compared with the
predicted rank orders.

Rank ordering the stimulus pairs according to their judged
similarity turns out not to be a trivial problem. For each
stimulus pair, each subject made approximately 44 similarity
judgments. Because it is not meaningful to compute means
for ordinal data, and because an examination of the medians
indicated a large number of ties, we developed an alternative
method for rank ordering the judged similarities. Let RAS

represent the subject's rating of the similarity of Stimuli SA

and SB and let Pr (/?AB :£ i) denote the proportion of times
that the subject's similarity rating for the (SA, SB) pair was
less than or equal to i. Then we assumed that the pair (SA,
SB) was judged by the subject to be at least as similar as the
pair (SC) SD) if

Table 4
Observed Similarity Rankings

10

XPr i) < I Pr (RcD < i).
1=1 (11)

Note that the maximum value of the sum on the left side of
Equation 11 is 10.0 (when all proportions equal 1.0) and the
minimum value is 1.0. (Because the rating scale ranged from
I to 10, it is always true that Pr [/?AB < 10] = 1). The maximum
value is achieved when all similarity ratings equal 1; that is,
when the stimulus pair is maximally dissimilar and
the minimum value is achieved when all ratings equal 10 (i.e.,
when the stimulus pair is maximally similar). Thus, Equation
I1 establishes a weak order on the similarity judgments, which

Stimulus
no.

1
2
3
4
5
6
7
8
9

1 2

15 6
— 11

— —
— —
— —
— —
— —
— —
— —

Stimulus no.

3

10
14
3

—
—
—
—
—
—

4

Subject
22
28
32
13

—
—
—
——

5

1
27
21
34
17
4

—
—
——

6

31
23
33
16
2

18

—
——

7

45
43
44
19
29
20

1

—

8

40
37
42
36
26
24

5
9

—

9

39
41
38
35
25
30
12
8
7

Subject 2
1
2
3
4
5
6
7
8
9

6

—
—
—
—
—
—
—
—

12
7

—
—
—
—
—
—
—

18
13
3

—
—
—
—
——

29
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32
8_

—
—
——

23
27
25
10
4

—
—
—
—

33
35
22
24
9
2

—
——

42
38
45
17
26
36
5

——

40
43
39
31
21
16
15
14

—

44
41
37
34
19
20
28
11
1

guarantees that the stimulus pairs can be rank ordered ac-
cording to their judged similarity (e.g., Krantz, Luce, Suppes,
& Tversky, 1971). The empirical rank orderings are presented
in Table 4. The most similar pair is ranked 1, and the least
similar pair is ranked 45.

MDS Analysis

Before examining the ability of the various models to
predict the similarity data from the results of the identification
condition, it is instructive to submit the similarity data to a
standard MDS analysis. Performing a nonmetric MDS (e.g.,
Kruskal, 1964a, 1964b) on the Table 4 similarities is equiva-
lent to estimating a pair of coordinate values for each stimulus
such that the rank ordering of the distances between stimulus
points agrees as closely as possible with the rank ordering of
the stimuli by judged similarity. In essence, MDS programs
attempt to account for the similarity data by fitting a model
with 14 free parameters to the Table 4 similarity matrix.5 In
contrast, the identification models have no free parameters in
this application because their parameter values were all fixed
when they were fit to the identification data. Because of the
many free parameters of the MDS-similarity model, this
approach should account for the similarity data substantially
better than any of the identification models.

Thus, an MDS-similarity analysis has a number of advan-
tages. First, the resulting goodness-of-fit value provides a
realistic upper bound for the identification models. Second,

5 Although nine stimuli have 18 coordinate values in a two dimen-
sional representation, without loss of generality, 4 coordinate values
can be fixed.
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if one assumes that the MDS model is correct, then the MDS
solution obtained from fitting the MDS-choice model to the
identification data can be compared with the solution ob-
tained from fitting the MDS-similarity model to the similarity
data. This exercise should provide useful insights into the
relation between identification and judged similarity.

The MDS-similarity model was fit to the Table 4 similarity
matrix using SYSTAT's MDS routine (Wilkinson, 1989).
Two separate models were fit to each subject's data; one was
based on city-block distance and the other on Euclidean
distance (i.e., the simple Euclidean MDS model). The pre-
dicted similarities were rank ordered, and then the rank order
correlation (i.e., Kendall's tau correlation) between the ob-
served and predicted rankings were computed. The results are
shown in the top of Table 5.

There are two points of interest about these values. First,
although the differences are not statistically significant (p >
.10, in each case), note that for both subjects the city-block
metric provides a better fit than the Euclidean metric. This
finding agrees with previous research that has found the city-
block metric to provide better fits when the stimulus dimen-
sions are separable (e.g., Attneave, 1950; Garner, 1974). Sec-
ond, note that the MDS-similarity model is unable to account
for a large amount of variability in the data of both subjects.
This is especially true for Subject 1. The fit values in Table 5
seem especially poor when one recalls that the best fitting
identification models accounted for 99.7% of the variance in
the identification data collected from these same two subjects.
There are two possibilities: (a) The MDS model of similarity
is incorrect, (b) Judged similarity data is noisier than identi-
fication data.

There is a good deal of evidence that MDS is an incorrect
theory of perceived similarity. First, a number of researchers
have found extensive violations of interdimensional additiv-
ity, a property assumed by both the city-block and Euclidean

Table 5
Kendall's Tau Rank-Order Correlations Between Observed
and Predicted Similarity Rankings

Model Subject 1 Subject 2

City-block distance
Euclidean distance

MDS-similarity
.772
.743

Identification
Biased-choice .529
CRT .568
G-E MDS-choice .541

Attention

.864

.860

.549

.575

.593

Ignoring orientation
GRT
G-E MDS-choice

Attention parameter
GRT
G-E MDS-choice

.748

.667

.683

.669

.592

.634

.749

.679

Note. MDS = multidimensional scaling; GRT = general recognition
theory; G-E = Gaussian-Euclidean. GRT(PI, PSS, DSS) for Subject 1
and GRT(») for Subject 2.

MDS models (Krantz & Tversky 1975; Nygren, 1979; Tversky
& Krantz, 1969). Second, Tversky (1977; see also Krumhansl,
1978) forcefully argued that perceived similarity also violates
the distance axioms, thereby falsifying all models that repre-
sent perceived dissimilarity by the distance between stimulus
points. On the other hand, MDS solutions often have psycho-
logical validity (e.g., Cliff, 1973; Jones & Young, 1972; She-
pard, 1963; Shepard & Chipman, 1970). Therefore, even if
the model is incorrect, it should account for a substantial
amount of variability in the present data set.

An examination of the raw (i.e., trial by trial) data supports
the hypothesis that rated similarity is inherently noisy. For
example, on trials when the pair (5,, S}) was presented,
Subject 1 gave similarity responses that ranged from a low of
1 to a high of 10. Subject 2's responses ranged from 4 to 10.
When the most dissimilar pair, (Si, Sg), was presented, the
responses ranged from 1 to 7 for Subject 1 and from 1 to 8
for Subject 2. This variation is much greater than that which
occurred during the identification condition. For example,
Subject 1 never confused St and S9, and Subject 2 only
confused this pair once in 258 trials. Perhaps the similarity
judgments were noisier than the identification responses be-
cause the identification task has more ecological validity than
the similarity judgment task. Outside of the laboratory, most
subjects will have less experience producing a numerical
estimate of the similarity of a pair of stimuli than they will
identifying or categorizing the same stimuli (e.g., Nosofsky,
1985b).

The MDS solutions for each subject are shown in Figure 7.
At the top are the perceptual representations according to the
MDS-similarity model with Euclidean distance and at the
bottom are the representations according to the Gaussian-
Euclidean MDS-choice model (i.e., when fit to the identifi-
cation data). Note the striking difference between the similar-
ity and identification representations. In particular, interpoint
distances along the orientation dimension are much smaller
in the similarity representation. In fact, for Subject 1, all
stimuli of the same size have almost identical coordinates,
regardless of orientation. This result is strong evidence that
subjects allocated attention differently in the two tasks. Spe-
cifically, it appears that both subjects divided attention equally
between the two dimensions in the identification task, but
that when judging similarity, they both allocated more atten-
tion to the size dimension.

What could cause such differences in selective attention?
One possibility is that on identification trials, the subject must
pay equal attention to both stimulus dimensions or accuracy
will suffer. On similarity trials, however, there is no objectively
correct response, and so it makes sense that subjects will adopt
a strategy that conserves mental effort. Introspective reports
of our subjects indicated that the stimulus size differences
were more salient than the orientation differences. Therefore,
it seems plausible that when judging similarity, subjects allo-
cated more attention to the salient size dimension. This
hypothesis seems even more reasonable in light of the 400-
ms stimulus exposure durations and the poststimulus mask.
With limited stimulus information, unmotivated subjects may
be especially likely to selectively attend to salient stimulus
dimensions.
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Subject 1 Subject 2

-2

2

Similarity Similarity

-2

Identification Identification

- 2 - 1 0 1

orientation

2 - 2 -1 0 1

orientation

Figure 7. MDS representations (Euclidean distance) of the stimuli used in Experiment 1, as derived
separately from the identification and similarity data.

Predictions of Similarity Models

As a first test of the similarity models, predicted similarity
judgments were derived directly from the parameter estimates
obtained when the various models were fit to the identification
confusion matrices. During this procedure, no new parame-
ters were estimated. For the biased-choice model, the pre-
dicted similarity between St and Sj is simply s(Si,Sj) = %.
Recall that the biased-choice model sets rm = 1, for all values
of i.

For the MDS-choice models, s(Si, Sj) = exp(~rf,"), where d^
is the distance between the perceptual representations of
Stimuli Si and Sj, and a = 1 or a = 2, depending on the
version of the model. The predicted similarities depend on
whether the Euclidean or city-block distance metric is used,
but they do not depend on the form of the similarity function
(i.e., on a). Because the Gaussian similarity function is a
monotonic transformation of the exponential similarity func-
tion, and because we are only interested in the rank order
predictions of the various models, the two similarity functions

make identical predictions (assuming they start with the same
set of distances).

The similarity predictions of the GRT models are generated
from Equation 6. The first step in this procedure is to reset
the decision bounds estimated from the confusion matrices
so that all response biases are eliminated. This was done under
a local constraint of decisional separability. Globally, the
unbiased decision bounds were step functions on each dimen-
sion. Unlike the biased-choice model and the MDS-choice
models, the GRT models are not constrained to make sym-
metric similarity predictions. Most GRT models predict s(Si,
Sj) T4 s(Sj, Si). However, because the instructions ignored
presentation order, the predictions of the GRT models for the
similarity between Stimulus 5f and Stimulus 5J were taken as
the average of the s(Si, Sj) and the s(Sj, Si) predictions.

Table 5 (under Identification Models) shows the rank order
(Kendall's tau) correlations between the observed similarity
rankings and the predicted rankings derived from the biased
choice model, the Gaussian-Euclidean MDS-choice model,
and the GRT model that best accounted for each subject's
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identification data, namely, GRT(PI, PSS, DSS) for Subject 1
and GRT(») for Subject 2. Three aspects of Table 5 stand
out. First, all rank order correlations are significantly greater
than 0 (p < .001). In fact, all correlations are greater than .5.
This seems quite good considering the fact that no new
parameters were estimated during this phase of the data
analysis. Second, note that for each subject, the difference
between the smallest and largest correlation is less than .05.
None of these differences is statistically significant (all ps >
.25), and thus none of the models perform significantly better
than any of their competitors.6 Unlike the identification con-
dition, all models predicted the similarity data approximately
equally well. Third, all identification models fit substantially
worse than the MDS-similarity model.

The poor performance of the identification models relative
to the MDS-similarity model is not surprising given the
potential shift in selective attention between the two tasks.
The identification models should perform better if we allow
them to allocate attention differently in the two tasks. We did
this in two different ways. First, we assumed subjects com-
pletely ignored the orientation dimension. In this case, the
MDS-choice models assume that the similarity between a pair
of stimuli is completely determined by (the absolute value of)
the difference between their coordinates on the size dimen-
sion. The GRT models assume that the relevant statistic is
the overlap of their marginal perceptual distributions on the
size dimension. To the extent that the Figure 6 MDS-similar-
ity solution is valid, this approach should work particularly
well for Subject 1.

The second way we allowed the identification models to
allocate attention differently in the two tasks was by construct-
ing versions of the models that had one free attention param-
eter. Specifically, this parameter measured the proportion of
attention allocated to the size dimension in the similarity
condition. In the GRT models, the attention parameter is a
constant, w, that multiplies all variances on the size dimension
(Ashby & Perrin, 1988). A value of w < 1 indicates that more
attention was allocated to the size dimension than to the
orientation dimension. A fitting procedure determined the
value of this parameter that maximized the rank order cor-
relation between the model's predictions and the observed
similarity judgments.

The resulting rank order correlations are shown at the
bottom of Table 5. For Subject 2, note that both models with
a free attention parameter provided better fits than their
counterparts that assumed all attention was focused on the
size dimension. This agrees with the MDS solution shown in
Figure 7. Also note that the GRT model performed better
than the MDS-choice model. For Subject 1, the best fit is by
the version of GRT(PI, PSS, DSS) that assumed all attention
was focused on the size dimension. Note that this model
actually predicts the similarity data better than the simple
Euclidean MDS-similarity model, even though the GRT
model has no free parameters in this application and the
MDS-similarity model has 14. This is a striking result. It is
only possible if (a) there is a close relation between similarity
and identification and (b) distributional overlap is a better
measure of perceived similarity than simple Euclidean dis-
tance.

Nosofsky's (1985b, 1986) Identification-
Categorization Experiment

This section focuses on the identification-categorization
relationship. An ideal application replicates Experiment 1,
except that during Phase 2, subjects make categorization
responses rather than similarity judgments. Our goal was to
predict performance in the categorization conditions on the
basis of performance in the identification task. Fortunately,
Nosofsky (1985b, 1986) ran exactly this experiment.

Method
The stimuli Nosofsky used were similar to those in Figure 1.

However, instead of a 3 x 3 stimulus set, he used 16 stimuli arranged
in a 4 x 4 configuration. In addition, the bottom horizontal line of
each stimulus was absent. As in Experiment 1, data were collected
from 2 subjects. Each subject made about 210 identification responses
to each stimulus. (See Table 1 of Nosofsky, 1985b, for the confusion
matrices.)

In the categorization phase, 4 of the 16 stimuli were assigned to
Category 1 and 4 were assigned to Category 2. The following four
conditions, illustrated in Figure 8, were included: (a) Dimensional:
Category 1 contains small circles and Category 2 contains large circles;
(b) Criss-cross: Category 2 contains exemplars with small sizes and
small orientations and exemplars with large sizes and large orienta-
tions, whereas Category 1 contains exemplars with small sizes and
large orientations and exemplars with large sizes and small orienta-
tions; (c) Interior-exterior: Category 1 contains exemplars with inter-
mediate values on each dimension, whereas Category 2 contains
exemplars with an extreme value on one of the two dimensions; and
(d) Diagonal: a diagonal bound with a slope of approximately -1
separates the two categories. The exemplars of Category 1 lie below
the bound and the exemplars of Category 2 lie above the bound.

Each categorization condition consisted of a learning phase fol-
lowed by a transfer phase. During the learning phase, only the 8
stimuli that had been explicitly assigned to one of the two categories
were presented (with feedback). During the transfer phase, all 16
stimuli were each presented about 220 times, but feedback was given
only on trials when one of the eight training exemplars was presented.
The data of interest are the categorization confusion matrices col-
lected during the transfer phase. (See Table 3 of Nosofsky, 1986, for
the confusion matrices.)

Nosofsky (1986) showed that by allowing for shifts in selective
attention between the two tasks, the GCM did a reasonable job of
predicting the categorization data from the fits to the identification
confusion matrices. In the dimensional and diagonal conditions, the
GCM did an excellent job, accounting for more than 98% of the
variance in the data of both subjects. In the criss-cross and interior-
exterior conditions, however, the fits were less satisfactory. For ex-
ample, in the interior-exterior condition, the GCM accounted for
only 85% and 75% of the variance in the data of Subjects 1 and 2,
respectively.

Results and Discussion

Identification Condition
As in Experiment 1, the first step of the data analysis was

to fit the various models to the identification confusion mat-

6 None of the other identification models listed in Table 3 per-
formed significantly better. GRT(PI, PSS, DSs) yielded the highest
rank order correlation for Subject 1 and GRT(PI, PS, DS) yielded
the highest correlation for Subject 2 (i.e., T = .622).
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Figure 8. The four experimental conditions of Nosofsky's (1986) categorization experiment.

rices. Because Nosofsky's (1985b, 1986) experiment involved
7 more stimuli than the identification-similarity experiment
reported above, all of the models had many more free param-
eters in this application. For example, with 16 stimuli the
biased-choice model has 135 free parameters, whereas with 9
stimuli it has only 44. Because this data set is so large, we fit
only a subset of the GRT models described in Figure 5. The
nested relation between the various GRT models is illustrated
in Figure 9.

The fits of the various models to the identification confu-
sion matrices are described in Table 6. Note that the pattern
of results is very similar to Experiment 1. The best fitting
MDS-choice model again assumed a Gaussian similarity func-
tion and a Euclidean distance metric, and again the fit of this
model was not significantly worse than the fit of the biased-
choice model. In addition, as before, the best fitting GRT
models substantially outperformed the biased-choice model.
Because of the larger stimulus ensemble of this experiment,
however, the GRT models have many fewer parameters than
the biased-choice model, and so interpretation of these results
is simpler than in Experiment 1. Specifically, note that the
SSE associated with GRT(«) is about 4 times smaller than

PI.DS PI,PSs,DSs

PI.PS.DS

Figure 9. Hierarchical relation between the general recognition
theory models fit to the identification data of Nosofsky (1985b). (PI
= perceptual independence; PS = perceptual separability; DS =
decisional separability.)
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Table 6
Model Fits to Nosofsky's (1985) Identification Data

Model

Biased-choice
G-E MDS
GRT(PI, re, DS)
GRT(PI, PSS, DS,)
GRT(PI, DS)
GRTfPI)
GRT(»)

No. of pa-
rameters

135
45
18
51
66
84

100

SSE
821

1,096
4,676
1,478
1,228

282
219

Subject 1

% variance
99.5
99.3
97.0
99.0
99.2
99.8
99.9

SSE
1,544
2,147
8,572
2,922
4,020
1,340

911

Subject 2

% variance
98.4
97.8
91.2
97.0
95.9
98.6
99.1

Note. SSE = sum of squared errors; G-E = Gaussian-Euclidean; MDS = multidimensional scaling;
GRT = general recognition theory; PI = perceptual independence; PS = perceptual separability; DS =
decisional separability.

the SSE associated with the biased-choice model for Subject
1 and about 40% smaller for Subject 2, even though GRT(«)
has 35 fewer parameters than the biased-choice model. In
fact, note that GRT(PI) has 51 fewer parameters than the
biased-choice model and yet GRT(PI) fits better for both
subjects. The excellent fits of the GRT models in these two
experiments provide additional support for GRT, and they
pose a significant challenge to the biased-choice model and
the multidimensional scaling approach to modeling identifi-
cation.

As Figure 9 indicates, each time the GRT model is gener-
alized, a significant improvement in fit occurs (p < .01). This
suggests that both subjects violated PS and DS on both
stimulus dimensions and that PI was violated for at least some
of the stimuli. An examination of the parameter estimates
from the best fitting models indicated that for Subject 1,
violations of PI and PS were small. However, Subject 1 did
exhibit a substantial violation of DS on the orientation di-
mension. Subject 2 displayed larger violations of PI and PS
but smaller violations of DS. In addition, in agreement with
Experiment 1, both subjects showed a slight tendency for
perceived orientation to increase with perceived size.

Categorization Conditions

Nosofsky (1986) reported the results of fitting the GCM
with a Gaussian similarity function and the Euclidean dis-
tance metric to his categorization data. Three parameters were
estimated: a response bias #A, an attention parameter w, and
a discriminability parameter c (see Equations 8-10; for more
details see Nosofsky, 1986). Of these parameters, Nosofsky
emphasized the role of attention in accounting for the iden-
tification-categorization relation.

Allocating more attention to a stimulus dimension has the
effect of stretching the perceptual space along that dimension.
This operation facilitates categorization only if it decreases
between-category similarity. In the dimensional condition,
and to a lesser extent in the diagonal condition, a shift in
selective attention should have precisely this effect. However,
in the criss-cross and interior-exterior conditions, it is unclear
why stretching one of the perceptual dimensions should im-
prove categorization performance. As predicted by this hy-
pothesis, the GCM performed best in the dimensional con-

dition, next best in the diagonal condition, and worst in the
criss-cross and interior-exterior conditions.

According to GRT, however, the most important difference
between identification and categorization is that the two
require very different sets of decision bounds. Shifts in selec-
tive attention may occur, but these often play a minor role in
the identification-categorization relation. It should be instruc-
tive then to see how well we can account for the categorization
data without appealing to the concept of selective attention.

We began by assuming that the perceptual representations
that are estimated when GRT(0) was fit to the identification
confusion matrices accurately describe the percepts during
the categorization conditions. Next, we assumed that during
the training phase, subjects learned to assign categorization
labels in an optimal fashion. That is, by the end of the learning
phase and all through the transfer phase, subjects used the
decision bound that maximized categorization accuracy. This
is a rather naive assumption, which is, at best, only approxi-
mately correct. However, because it specifies decision bounds
without the need to estimate any free parameters, it represents
a convenient benchmark against which to test the other
models. We call this the optimal GRT(») model.

Starting with this optimal model, we also constructed a two
parameter GRT(*) categorization model. Because the as-
sumption that subjects exactly use the optimal bound is surely
incorrect, most desirable are parameters that add flexibility to
the decision bound. The first parameter is a response bias. In
the optimal model, Response /?A is given whenever the like-
lihood ratio l(x, y) = fA(x, y)/fn(x, y) > 1.0. With a response
bias, Response R* is given whenever l(x, y) > 0, for some
constant /?. When ft < 1, the subject is biased toward Response
RA and when 0 > 1, the subject is biased toward Response
RB. A response bias directly shifts the decision bound. Often
the biased decision bound (i.e., 0 ̂  1) is nearly parallel to the
unbiased bound (i.e., ft = 1). The second parameter represents
the effects of the extra experience with the eight stimuli
presented during the learning phase. In GRT, such extra
experience is assumed to affect the perceptual variability along
both stimulus dimensions. Thus, the second parameter, 7, is
a constant that multiplies both variances in each of the eight
training stimuli. The Parameter 7 affects the decision bound
in a manner similar to the response bias, except that the 7 ̂
1 bound is less likely to be parallel to the 7 = 1 bound.



168 F. GREGORY ASHBY AND W. WILLIAM LEE

Table 7
Model Fits to Nosofsky's (1986) Categorization Data

Subject 1

Model
No. of pa-
rameters SSE

% vari-
ance

Subject 2

SSE
% vari-

ance

Dimensional condition

Optimal GRT(«)
Optimal GRT(PS)

GRT(»)
GRT(PS)

GCM

Optimal GRT(»)
Optimal GRT(PS)

GRT(«)
GRT(PS)

GCM

0
0
2
2
3

0
0
2
2
3

.008

.006

.007

.004

.002

Criss-cross condition
.041
.052
.040
.050
.095

99.72
99.80
99.78
99.88
99.93

97.86
97.21
97.94
97.30
94.73

.158

.118

.070

.066

.017

.185

.090

.167

.074

.159

92.84
94.68
96.98
97.14
99.21

86.29
93.20
86.56
93.98
86.97

Interior-exterior condition

Optimal GRT(«)
Optimal GRT(PS)

GRT(»)
GRT(PS)

GCM

Optimal GRT(*)
Optimal GRT(PS)

GRT(«)
GRT(PS)

GCM

0
0
2
2
3

0
0
2
2
3

.325

.188

.157

.077

.126

Diagonal condition
.078
.056
.097
.019
.034

72.84
83.65
88.75
92.72
84.52

97.93
98.54
95.87
99.14
98.31

.318

.209

.263

.117

.208

.048

.088

.033

.032

.043

68.88
80.84
75.12
88.86
74.84

98.11
96.32
98.63
98.68
98.19

Note. SSE = sum of squared errors; CRT = general recognition theory; PS ;

GCM = generalized context model.

: perceptual separability;

In addition to these two GET models, a second but similar
pair was constructed. The only difference was that the second
pair assumed PS on both dimensions. The rationale for testing
these two models is that the categorization conditions de-
scribed in Figure 8 emphasize the dimensional structure of
the stimuli. The principal exception is the diagonal condition,
but note that even this condition can be described by a
dimensional rule with one exception in each category (Nosof-
sky, 1986). This raises the interesting hypothesis that the
dimensional structure of the stimuli may be more apparent
in the categorization conditions than in the identification
conditions.

Therefore, we constructed an optimal GRT(PS) model,
which is identical to the optimal GRT(0) model except that
perceptual separability is satisfied.7 A similar relation exists
between the GRT(PS) categorization model and the GRT(»)
categorization model. Table 7 presents the results of the
categorization fits for the four GRT models8 and for the
GCM. The fits of the GCM are from Nosofsky (1986).

First, note that the GRT(PS) models generally performed
better than the GRT(«) models. The optimal GRT(PS) model
fits better than the optimal GRT(0) model in six of the eight
cases, and the two-parameter GRT(PS) model fits better than
the two-parameter GRT(*) model in six of eight cases (in one
additional case, they fit equally well). This is tentative support
for the hypothesis that the specific nature of the categories

chosen by Nosofsky (1986) caused the subjects to more
strongly perceive the dimensional structure of the stimuli.

Second, note that even though it has no free parameters,
the optimal GRT(PS) model does surprisingly well when
compared with the three parameter GCM. In fact, with respect
to SSE, it actually outperforms the GCM in two cases, and in
one other case, it performs only slightly worse. With respect
to the percentage of variance statistic, it performs even better,
outperforming the GCM in half the cases. Thus, given the
identification confusion matrices, the optimal GRT(PS)
model is able to predict a priori the results of the categoriza-
tion conditions almost as well as the three parameter GCM.

7 This was done by averaging the means and variances of the
GRT(») identification model within each of the stimulus rows and
columns illustrated in Figure 1.

8 Following Nosofsky (1986), all GRT models were fit to the data
using a maximum likelihood criterion (i.e., the fits minimized minus
log likelihood). However, because of rounding error, the GRT models
predicted zero entries in some of the cells of the categorization
confusion matrices, and thus the absolute value of the final minus
log likelihood statistic is meaningless. For this reason, those values
are not reported here. The SSE and percentage of variance accounted
for statistics reported in Table 8 were computed from the maximum
likelihood fits (again following Nosofsky, 1986) and so should be
interpreted with caution.
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This result is important for several reasons. First, it supports
the validity of the GRT(«) model of the identification data.
If our parameter estimation procedure had led to incorrect
estimates of the perceptual distributions, it is unlikely that the
categorization data could have been predicted so accurately.
Second, it reemphasizes the close relation between identifi-
cation and categorization noted by Nosofsky (1986). Third, it
affirms the important role of the decision bound in the
identification-categorization relation.

Table 7 indicates that, for both subjects, the optimal GRT
models did worst in the interior-exterior condition. An ex-
amination of the categorization confusion matrices from this
condition indicates one reason (see Table 3 of Nosofsky,
1986). During the transfer phase, both subjects were correct
on Stimulus 14 only half the time, even though Stimulus 14
was a training exemplar for Category 2. The optimal model
predicts above chance performance on all training exemplars.

Finally, note that the two parameter GRT(PS) model fits
better than the three parameter GCM for both subjects in the
criss-cross, the interior-exterior, and the diagonal conditions.
In the dimensional condition, both models account for about
99.9% of the variance in the data of Subject 1, and the GCM
fits better for Subject 2. Thus, with the possible exception of
the dimensional condition, it is not necessary to appeal to
shifts in selective attention to account for the identification-
categorization relation. A simpler model that emphasizes the
different decision bounds required in the two tasks is ade-
quate.

In an effort to improve the performance of the GCM in the
categorization conditions, Nosofsky (1986) hypothesized that
certain stimuli, which have not previously been assigned to a
particular category, are nevertheless implicitly categorized in
the memory representation. In other words, in addition to
assigning a category membership to the training stimuli, the
subject is assumed to infer the category membership of each
stimulus not presented during training. Nosofsky (1986)
called this the augmented generalized context model (AGCM).
Many versions can be formulated depending on which cate-
gory each inferred exemplar is assigned. Although technically
the AGCM has the same number of free parameters as the
GCM, determining the best partition of the stimulus ensemble
involves a process much like parameter estimation. In the
criss-cross, interior-exterior, and diagonal conditions, the
AGCM performed substantially better than the GCM, ac-
counting for at least 88% of the variance in each case. In the
dimensional condition, the two models performed about
equally well. More general versions of the GRT model could
also be developed. Perhaps the most obvious method of doing
this is to add extra parameters that allow the decision bound
even more flexibility. We constructed and tested such models
and found that they accounted for the categorization confu-
sion matrices as well or better than the AGCM. These analyses
are not reported here because our goal is not to obtain the
absolute smallest SSE but to illustrate the predictive validity
of decision bounds. The results in Table 7 achieve this goal.

Summary and Conclusion

The goal of this article was to study the relationship of
identification to similarity judgment and categorization. The

theoretical analysis focused on GRT but the GRT models
were also compared with the MDS-choice models. The strat-
egy was to fit the various models to the identification confu-
sion data and to use the resulting parameter estimates to
predict performance in the similarity judgment and categori-
zation conditions.

The identification-similarity experiment reported above
involved a total of nine stimuli. This number is small enough
so that it is feasible to fit very general versions of GRT, yet
large enough so that the parameters of these general models
are identifiable. The simpler versions of GRT assumed PI and
DS. As in past applications (Ashby & Perrin, 1988) these
models fit about as well as the biased-choice model and the
best fitting MDS-choice model. The more general versions of
GRT allowed violations of PI and DS. These models have
not previously been fit to identification data. For both subjects
in Experiment 1, some version of these more general GRT
models fit the empirical confusion matrices better than the
biased-choice model or any version of the MDS-choice model.
For Subject 2, this difference was substantial: the SSE for
GRT(*) was about 25 times smaller than the SSE of the
biased-choice model. The results of fitting the various models
to the identification confusion matrices reported by Nosofsky
(1985b) were similar to the results of Experiment 1. Specifi-
cally, GRT(0) again substantially outperformed the biased-
choice model. This result is especially significant because in
this application, GRT(0) has 35 fewer parameters than the
biased-choice model. To our knowledge, GRT is therefore the
first model to outperform the biased-choice model in an
identification experiment.

The parameter estimates from the best fitting models sug-
gest at least an asymmetric perceptual integrality, namely,
that perceived orientation depends on size. In addition, in
both experiments, evidence was obtained for a corresponding
violation of DS on the orientation dimension. These findings
contradict the conventional thinking about these stimulus
dimensions, but they explain several apparently puzzling re-
sults. For example, using a speeded classification task, Garner
and Felfoldy (1970) found a redundancy gain when subjects
classified on the orientation dimension but no redundancy
gain when they classified on the size dimension. Despite this
evidence of asymmetric separability, Garner and Felfoldy
concluded that size and orientation are mutually separable.

In addition to the violations of separability, the model that
best fit the data of Subject 2 in both experiments also exhibited
violations of PI. (Subject 1 of Nosofsky, 1985b, also violated
PI, but only slightly). In both experiments, the biased-choice
model fit the data of Subject 1 better than the data of Subject
2. Although it may be coincidence, this raises the possibility
that a good fit of the choice model requires separability, PI,
or both.

An analysis of the similarity data supported the hypothesis
that subjects allocated attention to the two stimulus dimen-
sions differently in the identification and similarity judgment
tasks. Specifically, in identification, they allocated approxi-
mately equal amounts of attention to the two dimensions,
but when judging similarity they allocated almost all attention
to the size dimension. These selective attention differences
may occur because feedback is provided in identification tasks
but not in similarity experiments. The feedback motivates
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subjects to maximize accuracy, which requires allocating
equal amounts of attention to the two dimensions. When
judging similarity, however, there is no objectively correct
response, and so subjects may be motivated to conserve
energy, especially when stimulus information is limited. One
way of conserving energy is by selectively attending to the
more salient stimulus dimension.

The model that best predicted the similarity judgments was
a GRT model with one free attention parameter. In fact, for
Subject 1, this model accounted for the data about as well as
the MDS-similarity model from the SYSTAT statistical pack-
age with 14 free parameters.

The analysis of Nosofsky's (1986) categorization data
yielded some support for the hypothesis that the nature of the
particular categories chosen by Nosofsky caused the subjects
to more strongly perceive the dimensional structure of the
stimuli. It was also shown that the categorization data could
be predicted successfully from the identification confusions
without appealing to the notion of selective attention. A
simpler model that emphasizes the different decision bounds
used in identification and categorization was adequate.

These studies point to the possibly important role of selec-
tive attention in the identification-similarity relationship, and
they underscore the importance of the decision bound when
trying to predict categorization performance from identifica-
tion confusions. They also establish GRT as a powerful alter-
native to the identification, categorization, and similarity
models that are based on the biased-choice model and on the
multidimensional scaling approach to modeling similarity.
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Appendix

Model Fitting

GRT Models
This appendix describes the techniques used to overcome

two problems in fitting the GRT models. The first problem
is to compute response probabilities from the bivariate normal
distribution when the correlation term (p) is nonzero. The
second problem is to search efficiently through the parameter
space in such a way that local minima are avoided.

Correlation problem. Consider a model that assumes that
a certain perceptual distribution is bivariate normal with
mean vector M and covariance matrix S. Generating predic-
tions from this model requires multiple integrations of the
bivariate normal density function. If the correlation coeffi-
cient is zero, the multiple integral can often be easily decom-
posed into a product of single integrals, and in this way, it
can be quickly evaluated. However, if the correlation coeffi-
cient is nonzero, the problem is more difficult.

For example, consider the following integral

oi, X2

/*x f*\

%S~ 00 •-'—00
NO*, (Al)

where N(n, S) is the bivariate normal probability density
function. To begin, we use Cholesky factorization (e.g., Ashby,
in press) to find a lower triangular matrix A such that

X = AZ + (t

where the random vector A* = (X,, X2) has a bivariate normal
distribution with mean vector M and covariance matrix S, and
Z1 = (Zi, Z2) has a bivariate Z distribution (i.e., bivariate
normal with mean vector 0 and covariance matrix I).

Note that Equation Al can be rewritten as

i < xol- + a22Z2 < xo2 - (A2)

Probabilities such as Equation A2 can be numerically com-
puted quickly and accurately by using a table that contains
areas under the Z distribution. In our experience, extremely
accurate estimates can be obtained from a list of only 25 of
these values (along with linear interpolation when appropri-

ate). Let * (z) = P(Z < z); that is, * is the cumulative Z
distribution function. Now, for each of the 25 Z values, define

n \G(zi) =

The 25 G(z{) are used to approximate the Equation A2
probability in the following manner. First, step through all 25
Z2 values for each value of Z, that is less than or equal to (xol

- ni)/an. For each of these (Z,, Z2) pairs, check whether
a2iZi + a22Z2 < x0i - ti2. If this inequality is satisfied, compute
the product G(Z,)G(Z2). The sum of all such products ap-
proximates the Equation A2 probability and therefore also
the Equation Al integral.

Parameter estimation problem. Because many of the GRT
models have a large number of parameters, the models are
highly susceptible to local minima; thus, a new method was
needed to overcome this problem. We used a method devel-
oped by Ennis (personal communication, February, 1990),
which proceeds as follows. First, fit a model in which the only
free parameters are the distribution means; the variances are
all set to 1 , and the correlation coefficients are all set to 0.
Next, fit a model in which the means and variances are free
parameters. During this step, the correlation coefficients are
constrained to equal 0. In addition, the final estimates from
the fit of the first model (i.e., the estimates of the means) are
used as the initial estimates of the second model. Finally,
during the last step all parameters are free to vary. The
estimates of the means and variances obtained from the
second step are used as the initial estimates during this final
step. Ennis has found that this procedure reliably locates the
global minimum.

Choice Models

Finding the best fits for the choice models is straightforward.
For the MDS-choice models a one-step procedure that used
the same minimization routine described above produced
reliable parameter estimates. To fit the biased-choice model,
we first used the method outlined in Smith (1982, Appendix
B) to get the maximum likelihood estimates of the model
parameters. These estimates were then used as the "initial
guesses" for the SSE minimization routine.
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