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According to exemplar models of perceptual classifica-
tion, people represent categories by storing individual ex-
emplars in memory and classify objects on the basis of their
similarity to these stored exemplars (Hintzman, 1986;
Medin & Schaffer, 1978; Nosofsky, 1986). Exemplar mod-
els have been successful at predicting a wide variety of per-
ceptual classification phenomena, including details of clas-
sification learning, patterns of generalization to new
transfer stimuli, and the time course of classification de-
cision making. In the present research, however, we pursued
an avenue that may demonstrate a fundamental limitation
of these models.

The key previous study that motivated the present work
was the classic set of experiments reported by Rips (1989)
on the role of category variability in classification judgment.
An example of one of these experiments is as follows. Par-
ticipants were asked to imagine a circular object with a 3-
in. diameter. One group of participants was asked whether
this object was more likely to belong to the category of
quarters or the category of pizzas. A second group of par-
ticipants was asked whether the object was more similar to
the category of quarters or the category of pizzas. (It had
previously been determined that the 3-inch object lay mid-
way between the largest quarter and the smallest pizza that
a participant could remember.) The categorization group
judged the object to be more likely to belong to the cate-
gory of pizzas, whereas the similarity group judged the
object to be more similar to the category of quarters. Thus,
Rips demonstrated a dissociation between similarity judg-
ment and category judgment and therefore concluded that

categorization cannot be reduced to similarity. Smith and
Sloman (1994) observed a similar pattern of results under
certain experimental conditions, although their work also
pointed to cases in which the generality of the effect was
limited. 

A key point of Rips’s (1989) study is that observers’ clas-
sification judgments are strongly influenced by their knowl-
edge of the variability associated with alternative cate-
gories. Although the 3-in. object is judged as more similar
to the QUARTER category, observers know that quarters dis-
play essentially zero variability in their size, whereas piz-
zas display a good deal of variability on this dimension. Thus,
the observers’ knowledge of category variability exerted
an influence on classification decisions that went above and
beyond similarity judgment per se. Furthermore, because
numerous models of classification are based on similarity,
including exemplar models, these experiments on the role
of category variability pose an interesting challenge to
such models.

In the present work, we focused on the pattern of clas-
sification judgments observed in Rips’s (1989) experiments.
Although the similarity-judgment question that Rips asked
his participants is an intriguing one, various researchers
have expressed concerns about the meaningfulness of this
question (Goldstone, 1994; Nosofsky & Johansen, 2000).
In addition, models of perceptual classification were not de-
signed to predict how observers make direct judgments of
object-to-category similarity. As will be seen, however, the
classification results in and of themselves are sufficient to
severely challenge the predictions of exemplar-similarity
models, so this branch of Rips’s study is the one that we pur-
sued in the present research.

The representative of the class of exemplar-similarity
models that we focused on in this study is the generalized
context model (GCM; Nosofsky, 1986). In the GCM, exem-
plars are represented as points in a psychological space, and
similarity between exemplars is a decreasing function of
distance between the exemplars in the space. According to
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the model, an observer sums the similarity of an item to
the exemplars of the alternative categories, and the classi-
fication decision is based on the relative magnitude of these
summed similarities. Formally, according to the baseline
version of the model, the probability that item i is classi-
fied into Category A is given by

(1)

where sia denotes the similarity between item i and exem-
plar a, and Ma denotes the relative frequency with which
exemplar a is experienced as a member of Category A. The
terms SMa sia and SMb sib denote the summed similarities
of item i to the exemplars of Categories A and B, respec-
tively. 

The similarity between item i and exemplar a is com-
puted as follows. First, the distance between item i and ex-
emplar a is given by

(2)

where xim denotes the value of item i on psychological di-
mension m, and wm is a weight parameter that reflects the
degree of attention that an observer gives to dimension m
in judging psychological distance. The similarity between
item i and exemplar a is an exponential decay function of
psychological distance (Shepard, 1987), 

(3)

where c is an overall scaling parameter.
To see why Rips’s (1989) classification problems pose

a fundamental challenge to the GCM, consider the ab-
stract structure of the problems illustrated schematically
in Figure 1. There are two categories of objects (A and B)
that vary along a single dimension. Category A has very
low variability along that dimension (it is analogous to the
QUARTER category), whereas Category B has high vari-
ability (analogous to the PIZZA category). Item i is located
midway between the exemplar with greatest magnitude
from Category A and the exemplar with smallest magni-
tude from Category B. As is clear from Figure 1, item i is
highly similar to all of the exemplars from Category A but
is highly similar to relatively few exemplars from Cate-
gory B. Thus, the summed similarity of item i to Category A
exceeds its summed similarity to Category B, so the GCM
predicts that observers should tend to classify such an ob-
ject into the low-variability category. By contrast, the fun-
damental result observed by Rips was that participants
tended to classify such objects into the high-variability
category.1

Although Rips’s (1989) results clearly challenge the
predictions from the GCM, several aspects of his experi-
ments make it difficult to draw strong conclusions with
respect to the model. First, the GCM was designed pri-
marily as a model of how participants learn categories of
perceptual stimuli by induction over training exemplars.
For example, the model has been used to predict the cate-
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Figure 1. A schematic illustration of the type of category structure used by Rips (1989). Exemplar i is midway between
the nearest exemplar of both categories.
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gorization performance of observers viewing colors (Nosof-
sky, 1987), semicircles with radial lines (Nosofsky, 1986),
dot patterns (Shin & Nosofsky, 1992), and simple geo-
metric shapes (Nosofsky, 1984). Rips, however, asked par-
ticipants to make judgments about categories of relatively
high-level stimuli that were learned preexperimentally, such
as teapots, automobiles, the number of members in the
U.S. Senate, and the duration of a dinner party. It remains
an open question how situations involving prior knowl-
edge and highly conceptual types of categories should be
modeled within the framework of the GCM and other 
similarity-based models (for some ideas along these lines,
see Goldstone & Barsalou, 1998, and Heit, 1994).

Furthermore, as noted by Rips (1989), “although the mys-
tery item was numerically midway between the subjects’ ex-
treme values, it may have been subjectively closer to the
larger category” (p. 31). This possibility does not in itself
explain the dissociation between similarity and categoriza-
tion judgments reported by Rips. However, as we discussed
earlier, we are reluctant to rely on the results of observers’
direct ratings of the similarity of an object to a category to
assess the model’s predictions. Because the GCM bases its
categorization predictions on the psychological similari-
ties among individual exemplars, it is critical that this psy-
chological similarity space be carefully mapped out. 

The general goal of our experiments, therefore, was to
test paradigms that conceptually replicated the structure
of Rips’s (1989) classification problems, but in situations
within the GCM’s intended domain of inquiry. Thus, in the
present experiments, rather than considering prelearned
highly conceptual categories, participants learned simple
perceptual categories by induction over individual training
exemplars. In addition, to more rigorously assess the pre-
dictions from the GCM, we conducted similarity-scaling
experiments to precisely determine the locations of the in-
dividual exemplars in psychological space. The central
question was whether or not there would be effects of cat-
egory variability on perceptual classification perfor-
mance, analogous to the results observed by Rips, that vi-
olated the predictions from the exemplar-based GCM.

PRELIMINARY EXPERIMENTS

In a series of preliminary experiments, we sought to
replicate the classification results from Rips’s (1989)
QUARTER–PIZZA experiments, except in simple perceptual
domains in which participants learned the categories by
induction over training exemplars. The design of one such
experiment is illustrated schematically in Figure 2. The
stimuli were vertical lines varying only in length. A low-
variability category, analogous to QUARTER, was defined
by Line 1 in the figure; whereas a high-variability category,
analogous to PIZZA, was defined by Lines 2–8. In a classi-
fication training phase, the participants learned to associ-
ate the appropriate category label with each individual
line. To equate the category frequencies, Line 1 was shown
seven times as often as were each of Lines 2–8 during
training. Following training, the participants were tested
in a transfer phase that included all of the old exemplars
and that included presentations of the critical “middle”
stimulus illustrated in Figure 2 by the line labeled “MS.”
(We had conducted extensive similarity-scaling experi-
ments to find a middle stimulus that was equally similar
to the nearest exemplars of the low- and high-variability
category; for details, see the Procedure section of Exper-
iment 1.) The result we obtained was that the participants
were more likely to classify the middle stimulus into the
low-variability category than into the high-variability cat-
egory. Thus, we failed to provide a demonstration analogous
to the classification results observed in Rips’s experiments.

In other preliminary experiments, we tried to control for
possible “edge” effects involving these unidimensional
stimuli (Braida & Durlach, 1972), and for any directional
biases that might be present in observers’ judgments. For
example, in one experiment, the low-variability category
was defined by a single line length located in the center of
the stimulus range, whereas the high-variability category
was defined by distributions of line lengths located on both
sides of this center line. Extensive similarity-scaling work
was performed to find middle stimuli that were equally
similar to the line from the low-variability category and to

Figure 2. A schematic illustration of one of the preliminary experiments designed to conceptually
replicate Rips (1989). Line 1 was the low-variability category, and Lines 2 – 8 were the high-
variability category. The middle stimulus, MS, was scaled to be perceptually midway between Lines
1 and 2.
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the nearest neighbors from the high-variability category.
Again, however, the participants tended to classify these
middle stimuli into the low-variability category rather
than into the high-variability category, in contrast to the
phenomenon observed by Rips (1989).

We were limited in the conclusions that we could reach
based on the qualitative pattern of results from these pre-
liminary experiments. Following the schematic design of
Rips’s (1989) experiments, these preliminary experiments
basically pitted two variables against one another. Although
the middle stimulus had equal psychological spacing to
the closest exemplars of the competing categories, its
summed similarity was greater to the low-variability cat-
egory than to the high-variability one. Even if variability
per se had indeed exerted an effect on categorization judg-
ments, the designs may simply not have revealed it be-
cause the competing variable of summed similarity ex-
erted too powerful an opposite effect.

Thus, rather than continue to search for designs that might
replicate the qualitative effects demonstrated by Rips
(1989), we pursued some alternative research strategies. The
first strategy, pursued in Experiment 1, was to investigate
potential effects of category variability on classification
performance by manipulating it across conditions as an
independent variable, while trying to hold constant across
conditions the competing variable of summed similarity.
The second strategy, pursued in Experiment 2, was to con-
duct detailed quantitative tests of whether or not the GCM
could predict classification choice probabilities in situa-
tions involving categories of differing variability.

EXPERIMENT 1

The purpose of Experiment 1 was to manipulate cate-
gory variability across conditions as an independent vari-
able, while trying to hold constant across conditions the
competing variable of summed similarity. Unfortunately,
we know of no method that allows one to perfectly satisfy
this goal. Any manipulation of category variability across
conditions will by necessity change the exemplar similar-
ity relations that are involved (as defined in the GCM).
However, it is possible to achieve a close approximation to
the desired manipulation.

Recall that, according to the GCM, the similarity be-
tween two items is an exponentially decreasing function of
the distance between those items in multidimensional
space (Equation 3). One property of the exponential is that
it decays very rapidly, so that items far from the middle stim-
ulus will add very little to the relevant summed similarity
calculations. The key is to add high-variability category
exemplars that are sufficiently far from the middle stimu-
lus so as to increase the category variability without much
influencing the summed similarity.

We used a category structure very similar to that of our
first pilot experiment. There were two conditions. In both
conditions, both the low-variability category exemplar
and the middle stimulus were identical to those from the
first pilot study (see Figure 2); however, the nature of the
high-variability category changed across conditions. In

Condition 1, the high-variability category consisted of
only the two smallest exemplars of the high-variability
category from the pilot experiment (i.e., Line 2 and Line 3
in Figure 2). In Condition 2, the high-variability category
contained all seven high-variability category exemplars
(i.e., Lines 2–8). The main difference between Condi-
tions 1 and 2 is the addition of five stimuli to the high-
variability category that are relatively distant from the
middle stimulus. As will be seen, these additional stimuli
increase the variability of the high-variability category,
while leaving the summed similarity of the middle stimu-
lus to the high-variability category virtually unchanged.
Thus, the GCM predicts almost identical classification
probabilities for the middle stimulus across the condi-
tions. By contrast, if there is an effect of variability on cat-
egorization analogous to the phenomenon reported by Rips
(1989), then the middle stimulus should be classified into
the high-variability category more often in Condition 2
than in Condition 1.

Note that, in the present design, the middle stimulus
was more centrally located with respect to the entire range
of stimuli in Condition 1 than in Condition 2. Because of
possible edge or range effects on unidimensional percep-
tion (Braida & Durlach, 1972; Luce, Nosofsky, Green, &
Smith, 1982), we were concerned that the middle stimu-
lus might be psychologically more similar to the nearest
exemplar from the high-variability category in Condition2
than in Condition1.2 Such a change in similarity relations
would also result in the prediction that the middle stimu-
lus would be classified into the high-variability category
more often in Condition2. To determine the extent of any
change in similarity relations across conditions, a separate
group participated in an identification task involving the
same stimuli and stimulus frequencies as in the catego-
rization tasks. An appreciable change in the identification
pattern of the middle stimulus across conditions would in-
dicate a shift in the similarity structure of the stimulus
space and make it difficult to separate out any effects of
variability and similarity in the classification task. The ab-
sence of such an effect would support the idea that any
change in the pattern of classification judgments across
conditions was due to an effect of variability per se.

Method
Participants. Thirty-five Indiana University undergraduates par-

ticipated in each condition of the identification task. Thirty-five and
37 Indiana University undergraduates participated in Conditions 1
and 2 of the categorization task, respectively. All received course
credit for their participation.

Stimuli. The same stimuli were used in the corresponding condi-
tions of the identification and classification tasks. The stimuli were
lines of varying length. The bottom point of each line was vertically
and horizontally centered on the screen. The full set of training stim-
uli consisted of lines of pixel length 30, 60, 75, 90, 105, 120, 135,
and 150. Condition 1 of both tasks used only the first three of these
training stimuli. Condition 2 of both tasks used all eight of these
training stimuli. For ease of description, we will often refer to these
line stimuli in terms of their pixel length.

The middle stimulus in both conditions of both tasks was a line of
39 pixels, the same middle stimulus used in our first pilot experi-
ment (see Figure 2). Stimulus 39 was chosen as the middle stimulus
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for two reasons. First, extensive similarity-scaling work that we con-
ducted during our pilot experiments had indicated that this line was
near the center of the subjective range between Stimuli 30 and 60,
thereby lessening the chance of any ceiling or floor effects. Second,
pilot work showed that, in tasks of unidimensional identification in-
volving these lines, Stimulus 39 was rarely confused with lines of
length greater than 60 (less than 2.0% of the trials). This result adds
weight to the argument that the additional 5 stimuli in Condition 2
should leave the summed similarity calculation from the exemplar
model relatively unchanged.

Procedure. Both the identif ication task and the classif ication
task were organized into training and transfer phases. Both tasks fol-
lowed the same general structure. There were 150 trials in the train-
ing phase. Stimuli 30 and 60 were both shown on 45% of the train-
ing trials, and the remaining 10% of the trials were split equally
among the remaining training stimuli. Thus, the bulk of training was
on the two stimuli nearest to the middle stimulus, so the addition of
the training stimuli far from the middle stimulus would change the
summed similarity calculation even less. In the identification task,
the participants learned a unique label for each training stimulus via
feedback. In the classification task, the participants learned via feed-
back that Stimulus 30 was in one category (the low-variability cate-
gory), and the remaining training stimuli were in a second (high-
variability) category.

After training, the participants began the transfer phase. This
phase consisted of 200 trials. The middle stimulus was seen on 10%
of the transfer trials, and the presentation rates for each of the train-
ing stimuli dropped by 10%. The participants received feedback
after each training stimulus. Following responses to the middle stim-
ulus, the participants received a message of “Thank You.”

In both the identification and classification training and transfer
phases, stimuli were selected for presentation randomly on each trial
within the constraints stated above.

Results
In the identification task, the overall transfer phase

error rate for the training stimuli was 6.1%. In Conditions1
and 2, the middle stimulus was identified as Stimulus 60
or greater (which were the high-variability category ex-
emplars in the classification task) on 43.0% and 42.9% of
the transfer trials, respectively (MSe 5 577.80). A t test con-
firmed that the participants were not changing the identi-
fication pattern of the middle stimulus across conditions
[t(68) 5 0.031, p 5 .975], thus indicating that psychologi-
cal similarity relations involving the middle stimulus were
essentially unchanged across the variability conditions.

In the categorization task, the transfer phase error rates
for Stimuli 30 and 60 averaged across all participants and
both conditions were 4.5% and 2.0%, respectively. One
participant from Condition 1 had a transfer phase percent
correct for the training stimuli of less than 75% and was
excluded from all further analyses. In Conditions1 and 2,
the middle stimulus was classified into the high-variability
category on 29.5% and 47.1% of the trials, respectively
(MSe 5 773.62). A t test confirmed that the middle stim-
ulus was judged to be a member of the high-variability
category significantly more often in Condition 2 than in
Condition 1 [t (70) 5 2.693, p , .01].

Discussion
In Experiment 1, we found qualitative evidence that cat-

egory variability affects perceptual classification perfor-

mance beyond what is predicted by the GCM. Although
the summed similarity of the middle stimulus to the high-
variability category exemplars remained essentially con-
stant between conditions, we found that classification per-
formance changed dramatically. Specifically, the middle
stimulus was more likely to be classified into a category
as the variability of that category increased. Furthermore,
the results cannot be attributed to a changed similarity
structure across the two conditions, because, in the corre-
sponding identification tasks, there was no effect of the
variability manipulation on the identifications of the mid-
dle stimulus. 

In sum, these data suggest that the baseline version of
the GCM—that is, a version in which classification judg-
ments are based solely on relative summed similarity to
stored exemplars—fails to account fully for the effect of
category variability. The results echo the findings from Rips
(1989) in that high category variability exerts a “pull” on
classification judgments that goes beyond the influence of
exemplar-based similarity alone.

EXPERIMENT 2

In Experiment 2, we used another approach to test for
effects of category variability. First, in our pilot studies and
in Experiment 1, the stimuli were always unidimensional
line lengths. For purposes of generality, in Experiment 2,
we instead used stimuli varying along two dimensions: col-
ors varying in brightness and hue. Second, in Experi-
ment 2, our research strategy was to test whether the GCM
could quantitatively predict observers’ choice probabilities
in situations in which category variability was manipu-
lated. We hypothesized that the GCM would systematically
underpredict the probability with which a middle transfer
stimulus was classified into high-variability categories.

Figure 3. A schematic illustration of the color space for Ex-
periment 2. The triangles are the high-variability category mem-
bers, the circles are the low-variability category exemplars, and
the diamond is the middle stimulus. The location of the low-
variability category exemplars was rotated across conditions.
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A schematic illustration of the type of condition tested
in Experiment 2 is shown in Figure 3. During a training
phase, the participants learned that three of the training
exemplars (the triangles in the figure) were members of the
high-variability category and that the other three training
exemplars (the circles) were the low-variability category
exemplars. Each of the training exemplars was presented
with equal frequency, so the categories had equal base
rates. In a subsequent transfer phase, the participants clas-
sified the training stimuli and the middle transfer stimu-
lus (the diamond in Figure 3). Extensive pilot work was con-
ducted to find configurations in which the middle transfer
stimulus was roughly equally similar to the exemplars of
the low-variability category and the nearest exemplar of
the high-variability category.

Note from Figure 3 that the middle stimulus has greater
summed similarity to the low-variability category than to
the high-variability category. Thus, to the extent that the par-
ticipants tended to classify the middle stimulus into the
high-variability category, rather than the low-variability
one, it would constitute qualitative evidence against a pure
exemplar-similarity account of categorization. Beyond
seeking this qualitative evidence, our main goal was to test
the ability of the GCM to quantitatively account for the
full set of transfer data. We derived multidimensional scal-
ing (MDS) solutions for the colors in each condition and
then used the GCM in combination with the scaling solu-
tions to quantitatively fit the data.

Finally, to ensure that any tendency to classify the mid-
dle stimulus into the high-variability category was due to the
variability manipulation per se, and not to some stimulus-
specific properties associated with the high-variability ex-
emplars, four different conditions were tested in which the
relative locations of the categories in the color space were
varied. In each condition, the cluster of low-variability ex-
emplars was placed in a different one of the four corners
of the color space illustrated in Figure 3.

Method
Participants. Eighty-eight Indiana University undergraduates

participated in this experiment for course credit. There were 22 par-
ticipants in Condition 1, 22 in Condition 2, 21 in Condition 3, and
23 in Condition 4. All claimed to have normal color vision.

Stimuli. The stimuli were 13 computer-generated colors. The
particular colors that were used varied across four conditions of test-
ing. According to the Munsell system, the colors varied primarily in
hue and brightness and were of roughly the same saturation. A com-
plete list of the Adobe Photoshop red, green, and blue values is given
in Table 1. The precise psychological configuration of the colors in
each condition is presented in the Results section.

The colors ranged from light purple in one corner to dark blue in
the opposite corner. Each color occupied a 5.08 ´ 5.08 cm square on
a white background. In the classification task, a single color was pre-
sented centered on the screen. In a similarity-scaling task, two color
squares were shown, separated by a horizontal distance of 4.1 cm.

Procedure. We tested four separate categorization conditions,
with the location of the cluster of low-variability category exemplars
rotated across conditions (for an illustration, see Figure 4). In a train-
ing phase, the participants learned the category structure by induc-
tion over exemplars. On each trial, a color was shown, and the par-
ticipant judged its category assignment. Feedback was given after
each training trial. There were 20 training blocks. During each block,
each low- and high-variability category exemplar was seen once.
Following training, there were 20 transfer blocks. Each transfer trial
proceeded exactly as in training; however, one trial was added per
block. On this additional trial, the middle stimulus was displayed,
and the participants received feedback of “Thank You.” The order of
presentation of stimuli within both training and transfer blocks was
randomized.

To verify that the arrangement of colors in psychological space
corresponded reasonably well to the schematic design illustrated in
Figure 3, we conducted similarity-scaling studies following the com-
pletion of the classification task. These scaling studies were used to
derive MDS solutions for the colors. The participants in Conditions 1
and 3 rated the similarities of all of the colors from Conditions 1 and 3.
Likewise, the participants in Conditions 2 and 4 rated the similarities
of all colors from Conditions 2 and 4. (MDS solutions were derived
separately for these pairs of conditions, because we had originally
planned to run only Conditions 1 and 3.) In each scaling study, there
were four blocks of trials, and each possible pair of different stimuli
was seen once per block. The order of the pairs and left–right place-
ment of the colors on the screen were randomized. On each trial, the
participants rated the similarity of the two colors on a 9-point scale
(1 5 highly dissimilar , 9 5 highly similar). A rating scale was
shown on the bottom of the screen as a reminder, and the partici-
pants were urged to use the entire scale range.

Results
Similarity scaling.The standard Euclidean model from

ALSCAL was used to derive MDS solutions from the av-
eraged similarity ratings. Averaged across conditions, the
two-dimensional scaling solutions yielded a stress equal
to .022 and accounted for 99.7% of the variance in the av-
eraged similarity ratings. The resulting locations of the
colors in two-dimensional psychological space are illus-
trated separately for Conditions 1–4 in Figure 4. In Con-
ditions 2, 3, and 4, the configurations satisfied our goal of
creating multidimensional category structures in which the
middle stimulus was roughly equally similar to the cluster
of exemplars of the low-variability category and the near-
est exemplar of the high-variability category. This goal
was not satisfied, however, in Condition 1. Although we

Table 1 
Red (R), Green (G), and Blue (B) Values for 

Each Stimulus in Experiment 2

Stimulus R G B

1 222 225 255
2 212 225 255
3 197 230 255
4 190 234 253
5 195 196 235
6 159 201 227
7 152 176 215
8 145 142 189
9 110 153 186
10 115 114 168
11 96 118 168
12 62 122 168
13 38 122 161

Note—Stimulus 7 was the middle stimulus. Stimuli 1, 4, 10, and 13 were
shown in all conditions. Stimuli 9 and 12 were shown in Condition 1
only. Stimuli 8 and 11 were presented in Condition2 only. Stimuli 2 and
5 were displayed in Condition 3 only. Stimuli 3 and 6 were shown in
Condition 4 only.
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will not be able to evaluate the Condition1 results with re-
gard to the qualitative direction in which the middle stim-
ulus was classified (because both the exemplar-similarity
and variability factors favor the high-variability category),
the data from this condition are still valuable for evaluating
the quantitative predictions from the exemplar model.

Classification. The average error rates for training stim-
uli during transfer for Conditions1, 2, 3, and 4 were 6.1%,
4.4%, 3.6%, and 5.0%, respectively. Two participants from
Condition3 had a transfer error rate on the training stimuli
greater than 25% and were excluded from further analysis.

The middle stimulus was classified into the high-
variability category in Conditions1, 2, 3, and 4 on 73.0%,
50.7%, 55.8%, and 73.4% of the transfer trials, respectively.
In Conditions 1 and 4, the middle stimulus was classified
into the high-variability category on significantly greater
than 50% of the transfer trials [t(21) 5 3.769, p , .01, and

t(22) 5 3.819, p , .01, respectively]. In Conditions2 and 3,
the percentage of trials in which the middle stimulus was
judged to be a member of the high-variability category did
not differ significantly from 50% [t (21) 5 0.098, p 5 .923,
and t (18) 5 0.687, p 5 .501, respectively].

Modeling results. The GCM was fitted to the classifi-
cation transfer data from Conditions 1–4 by using a 
maximum-likelihood criterion. The coordinate values
used in the distance function (Equation 2) were those that
were derived from the MDS analysis of the similarity-
ratings data. The modeling analyses assumed that the par-
ticipants weighted equally the two psychological dimen-
sions. Thus, the only free parameter in the model was the
overall sensitivity parameter, c. 

The modeling results are summarized in Table 2 in terms
of the observed and predicted probability with which the
middle stimulus was classified into the high-variability

Figure 4. Multidimensional scaling (MDS) solutions derived from averaged similarity ratings for the stim-
uli of Experiment 2. The center of each shape represents the MDS coordinate for each color. For each condi-
tion, the triangles are the high-variability category exemplars, the circles are the low-variability category
exemplars, and the diamond is the middle stimulus.
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category. In all four conditions, the baseline version of the
GCM greatly underpredicted the observed classification
probability of the middle stimulus. The departures of the ob-
served data from the quantitative predictions of the model
were statistically significant in Conditions1, 3, and 4 [Con-
dition 1, t(21) 5 2.456, p , .05; Condition2, t (21) 5 1.245,
p 5 .227; Condition 3, t (18) 5 2.349, p , .05; Condi-
tion 4, t (22) 5 6.259, p , .01].

Discussion
In summary, in all four conditions of Experiment 2, the

baseline version of the GCM underestimated the proba-
bility with which the middle test stimulus was classified
by observers into the high-variability category. The depar-
tures of the observed classification proportions from the
predictions of the model were statistically significant in
Conditions 1, 3, and 4. The results were particularly dra-
matic in Condition 4. Here, the GCM predicted that ob-
servers would tend to classify the middle stimulus into the
low-variability category, yet they classified it into the high-
variability with probability significantly greater than .50.
This result constitutes strong qualitative evidence against
the predictions from the model.

One might try to save the exemplar-similarity model by
positing that the observers may have differentially weighted
the psychological dimensions composing the exemplars,
whereas our modeling analyses assumed equal weighting
of the two psychological dimensions. In the present case,
we believe that making allowance for differential weight-
ing of the psychological dimensions provides an ad hoc
account of the results. A central assumption in past appli-
cations of the GCM is that, following extensive training
experience with a category, observers learn to distribute
attention across the psychological dimensions in a manner
that tends to optimize performance (i.e., to maximize their
percentage of correct classifications of the training stim-
uli). Although a detailed discussion goes beyond the scope
of the present article, it turns out that the attention weights
that are needed to allow the GCM to fit the classification
transfer data are often highly suboptimal. For example, in
some conditions, fitting the classification probability for
the middle stimulus required the model to place most of its
attention weight on the dimension that was less diagnos-
tic of category membership. Because the underpredictions
of the GCM were so systematic across the four conditions
of testing, a much more plausible account of the results is
that the variability manipulation exerted an effect on clas-
sification judgments in a manner that goes beyond the pre-
dictions from the baseline version of the model.

GENERAL DISCUSSION

Summary
In summary, our experiments provide evidence that there

are systematic effects of category variability on percep-
tual classification that go beyond the predictions from the
baseline version of the exemplar-similarity model. In Ex-

periment 1, we arranged a design in which the variability
of a target category increased across conditions, whereas
the summed similarity of the middle stimulus to the cate-
gory exemplars was held essentially constant across these
conditions. Contrary to the predictions from the baseline
GCM, the probability with which the observers classified
the middle stimulus into the target category increased as
the category’s variability was increased. In Experiment 2,
the baseline GCM systematically underpredicted the prob-
ability with which a transfer “middle” stimulus was classi-
fied into high-variability categories. In one case, the results
were particularly dramatic: Because the middle stimulus
had greater summed similarity to the low-variability cat-
egory exemplars than to the high-variability ones, the GCM
predicted that the middle stimulus would tend to be clas-
sified into the low-variability category rather than into the
high-variability category. By contrast, the results went sig-
nificantly in the opposite direction.

In this article, for purposes of brevity, we focused on
the GCM’s underprediction only in the four conditions of
Experiment 2. We should emphasize, however, that this
underprediction was an extremely robust finding that held
in numerous other analogous experimental conditions that
we did not report in detail. For example, following meth-
ods described by Nosofsky (1985), we derived unidimen-
sional scaling solutions for the line-length stimuli used in
our preliminary experiments and in Experiment 1. (These
scaling solutions were derived by fitting a model known
as the MDS-choice model to the identification confusion
data collected in these experiments.) We then used the
GCM in combination with the derived unidimensional
scaling solutions to predict the probability with which the
middle stimulus was classified into the high-variability
category. In addition, we tested two-dimensional condi-
tions analogous to those in our Experiment 2, except where 
the low-variability category consisted of a single high-
frequency exemplar instead of the cluster of three exem-
plars illustrated in Figure 3. In every condition of every ex-
periment that we conducted (a total of 13 conditions across
five experiments), the GCM underpredicted the probabil-
ity with which the middle stimulus was classified into the
high-variability category.

Our results are consonant with the earlier findings of
Rips (1989), whose influential study suggested strongly
that there are effects of category variability on classifica-
tion judgments that go beyond the predictions from pure
“similarity-based” models. Our experiments, however, may

Table 2 
Average Proportion of Transfer Trials in Which the Middle

Stimulus Was Classified Into the High-Variability 
Category in Experiment 2

Condition Data GCM

1 .73 .58
2 .51 .42
3 .56 .36
4 .73 .35
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be viewed as providing even more direct evidence against
the pure similarity-based version of the GCM than did
Rips’s results. First, Rips’s findings were obtained in a sit-
uation in which people made classification judgments about
prelearned and sometimes abstract conceptual categories.
By contrast, the GCM was formalized with low-level per-
ceptual stimuli in mind and for situations in which learn-
ing takes place via induction over individually presented cat-
egory exemplars. Such conditions were strictly maintained in
the context of the present experiments. Thus, the present
challenges to the baseline GCM occurred in the type of
domain for which the model was actually formalized.

The present demonstrations go beyond the ones re-
ported by Rips (1989) in another important manner as
well. To obtain evidence against similarity-based models
of classification, Rips relied on the results from a task in
which observers judged the similarity of a hypothetical
item to entire categories of objects. Although the category-
similarity judgment task is intriguing, the meaningfulness
and interpretation of the task has nevertheless been ques-
tioned by investigators such as Goldstone (1994), Nosof-
sky and Johansen (2000), and others. By contrast, in the
present experiments, similarities between exemplars were
measured by using the same fundamental, psychological
scaling techniques as in most past applications of the
GCM. Thus, in the present experiments, the failures of the
baseline model occurred in a situation in which we played
by the model’s own ground rules.

Accounting for the Effects 
of Category Variability

We conclude our article by considering possible ac-
counts of the effects of category variability, although fu-
ture research will be needed to distinguish among these
possibilities.

First, as suggested by Smith and Sloman (1994), ob-
servers’ tendency to classify transfer stimuli into high-
variability categories rather than into low-variability ones
may indicate that multiple systems underlie category
judgment.  Although similarity comparisons to stored ex-
emplars may be one important component of categoriza-
tion, observers may also make use of explicit rules. Intu-
itively, an observer may form a rule that an object must be
virtually identical to the members of a low-variability cat-
egory in order to be classified into that category. A variety
of modern models of classification posit that categoriza-
tion is governed by multiple systems, such as rules and ex-
emplars (Erickson & Kruschke, 1998; Nosofsky, Palmeri,
& McKinley, 1994) or rules and procedural learning sys-
tems (Ashby, Alfonso Reese, Turken, & Waldron, 1998).
It would be interesting to test whether these models pre-
dicted the category-variability effects observed in the pres-
ent experiments.

Another possible explanation of our results springs
from the class of “decision-boundary” models of Ashby and
Maddox and their colleagues (Ashby & Lee, 1991; Ashby
& Maddox, 1993; Maddox & Ashby, 1993). According to
certain of these models, observers assume that categories

are multivariate normally distributed, and, during training,
they estimate the means, variances, and covariances of the
category distributions. Observers then construct decision
boundaries to optimally separate perceptual space into re-
sponse regions. According to such models, the middle trans-
fer stimulus tested in our designs would have a greater
likelihood of having been generated from the high-
variability category distribution, so the optimal decision
boundary would classify it into that category. Indeed, in
our Experiment 2 conditions, the middle stimulus would
be closer to the centroid of the high-variability distribu-
tions, so it would have a much higher likelihood of having
been generated from those categories. Perhaps observers
do not always precisely estimate the parameters of the cat-
egory distributions, which would explain why the middle
stimulus was not always classified into the high-variability
category in our experiments. 

Finally, it may be possible to explain the category-
variability effects while staying within the framework of
exemplar-similarity models. Throughout our article, we have
focused on the baseline version of the GCM formalized in
Equation 1. A fuller version of the model, however, makes
provision for the role of category response-bias parame-
ters. As it was originally formalized (Nosofsky, 1986,
1987), according to the GCM, the probability that item i
is classified into Category A is given by 

(4)

where bA (0 # bA # 1) denotes the response-bias associ-
ated with CategoryA. Thus, a natural question is whether par-
ticipants’ tendency to classify objects into the high-
variability category may reflect some form of response
bias. 
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Figure 5. Schematic illustration of an experimental design to
test whether observers are sensitive to the direction of variability.
See text for details.
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Admittedly, explanations based on response bias are
often not very satisfying. In the present case, for example,
it is obvious that, by assuming that there is a response bias
associated with the high-variability category, the GCM
will be able to better predict the probability with which
the middle stimulus was classified into that category. Un-
less there is a principled reason, however, for positing why
such a bias may exist, the explanation is post hoc and serves
only to redescribe the data. 

The reason that a response-bias explanation provides a
potentially interesting account of our results, however, is
that, in general, it is optimal for an observer to have a higher
bias for responding with a high-variability category than
with a low-variability one. In particular, such a pattern of
response bias will often maximize the percentage of cor-
rect classification decisions that are made by the observer.
The construct of parameter optimization has always been
a central idea in theorizing involving the GCM. For ex-
ample, Nosofsky (1984, 1986, 1987, 1991) provided evi-
dence that observers will often distribute attention across
the psychological dimensions that compose the exemplars
in a manner that tends to optimize performance. In a sim-
ilar vein, it seems reasonable to posit that observers may
adjust their response biases to achieve such a goal. Indeed,
the hypothesis that observers may have a tendency to ad-
just their response biases so as to optimize payoffs in al-
ternative task settings has always been one of the central
ideas underlying signal-detection analyses of classifica-
tion data as well (Green & Swets, 1966). 

Why is it generally optimal for an observer to have a re-
sponse bias toward the high-variability category? To an-
swer this question intuitively, consider the category struc-
ture illustrated in Figure 1. Consider in particular the
stimulus from the high-variability category that lies clos-
est to the low-variability one. This stimulus has relatively
few neighbors from its own category to which it is highly
similar, yet it is fairly similar to numerous exemplars from
the low-variability category. To counteract this strong
competition from the low-variability category exemplars,
an observer would need to establish a response bias toward
the high-variability category in order to classify this stim-
ulus with high accuracy. Although such a response bias
would also result in lowered accuracy for the members of
the low-variability category, the adverse effect would be
minimal. The reason is that each member of the low-
variability category has numerous close neighbors from
its own category that provide it with similarity-based sup-
port. The resulting high summed similarity for the low-
variability category members counteracts the response
bias toward the high-variability category. Thus, by adopt-
ing a response bias toward the high-variability category,
an observer tends to optimize performance. We have ver-
ified that, for all of the category structures tested in this
study involving a high-variability category, it is indeed op-
timal for an observer to have a higher response bias to-
ward the high-variability category than toward the low-
variability one.

A response-bias explanation may also mesh nicely with
the original phenomena reported by Rips (1989). As noted

earlier, observers judged a 3-in. disk as being more simi-
lar to the QUARTER category but were more likely to clas-
sify the object as a member of the PIZZA category. If one
accepts the idea that the observers had a strong response
bias to classify objects into the high-variability PIZZA cat-
egory, then these results seem very sensible. The opera-
tion of a response bias should not be expected to influence
observers’ judgments of similarity, so the finding that the
participants judged the 3-in. object as more similar to the
QUARTER category than to the PIZZA category seems quite
reasonable.

Thus, a critical goal for future research is to test whether
there are effects of category variability on perceptual clas-
sification that go beyond the ability of an exemplar-
similarity model to explain, even if provision is made for
the possibility of differential response bias. To sketch one
idea that we have along these lines, consider the design il-
lustrated in Figure 5. There are four category distribu-
tions: A, B, C, and D. Distributions A and C exhibit high
variability along the horizontal dimension, whereas Dis-
tributions B and D exhibit high variability along the ver-
tical dimension. Four transfer stimuli are located midway
between the nearest exemplars of adjacent category dis-
tributions. To the extent that observers are sensitive to the
direction of variability in each distribution, we hypothe-
size that they would tend to classify TA into Category A,
TB into Category B, and so forth. Even if allowance were
made for the operation of category response biases, the
standard exemplar-similarity model would be unable to
account for such a pattern of results. To predict that TA is
classified into Category A rather than Category B, the re-
sponse bias for A (bA) would need to be set greater than
the response bias for B (bB), bA . bB. Likewise, the model
would require bB . bC, bC . bD, and bD . bA. But this pat-
tern violates the law of transitivity, and so it is impossible
to satisfy this set of response-bias requirements. It is an
open question whether the hypothesized pattern of classi-
fication transfer would be observed in such a design, but
to the extent that it was, it would present a severe chal-
lenge even to versions of the exemplar-similarity model
that make provision for category response bias.
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NOTES

1. Note that a related study conducted by Fried and Holyoak (1984)
does not pose the same direct challenge to the GCM as does Rips’s
(1989) study. In Fried and Holyoak’s experiment, participants learned to
discriminate between the members of a low-variability category and a
high-variability one. At time of transfer, participants were tested on ob-
jects that were closer to the centroid of the low-variability category but
that were statistically more likely to have been generated from the high-
variability category. Because participants tended to classify these objects
into the high-variability category, Fried and Holyoak’s results provided
evidence that people are sensitive to the distributional character of cate-
gories. However, this general pattern of results is consistent with the pre-
dictions from exemplar models. Given that the critical transfer stimuli
were more likely to have been generated from the high-variability cate-
gory, it is also likely that they were more similar to specif ic training ex-
emplars of the high-variability category than to those of the low-
variability one. By contrast, in Rips’s design, the critical transfer stimuli
were equally similar to the nearest exemplars of the low- and high-
variability categories, as illustrated in Figure 1.

2. In unidimensional identification, as the overall range of the stimuli
is increased, the ability to discriminate between fixed pairs of stimuli
tends to decrease. In addition, stimuli at the edges of the stimulus range
are often discriminated with higher sensitivity than are stimuli located at
the middle of the range. It is as if the perceptual space is “stretched” at
its edges.
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