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ABSTRACT 
 

An understanding of the early cognitive deficits in patients with Parkinson's disease 
(PD) could provide better insight into the nature of the disease as well as its future 
course. One area of study that holds considerable promise is the study of category 
learning. Much research has examined the neurobiological basis of category learning and 
it is now well-established that multiple cognitive and brain systems are involved in 
learning different types of categorization tasks. One broad class of category learning 
tasks that have been examined include those that are learned using an explicit, 
verbalizable strategy, whereas another broad class includes tasks that are learned using 
some form of implicit learning that occurs outside of conscious awareness. This chapter 
reviews past research examining both explicit and implicit category learning in 
nondemented patients with PD. It is demonstrated that PD patients can be impaired on 
both explicit and implicit category learning tasks, but for very different reasons: 
impairment on explicit tasks appears to be related to deficits in attentional processes, 
whereas impairments on implicit tasks occur when the rule theoretically requires a 
greater degree of representation within the striatum. It is also shown that PD patients' 
impairment on certain implicit tasks is highly predictive of future global cognitive 
decline, a finding that highlights the utility of studying category learning in this disease.  
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INTRODUCTION 
 
It is well accepted that, along with the classic motor symptoms (tremor, rigidity, 

bradykinesia, postural instability), cognitive deficits are highly prevalent in patients with 
Parkinson's disease (PD; Owen, 2004). Estimates of dementia range across studies, but a 
recent review suggests that 24-31% of patients with PD meet formal criteria for dementia at a 
given time (Aarsland, Zaccai, & Brayne, 2005), and other studies suggest that up to 78% of 
PD patients can become demented over an 8-year period (Aarsland, Andersen, Larsen, Lolk, 
& Kragh-Sorensen, 2003). It is also now well established that PD patients can experience 
significant cognitive impairment in the absence of a frank dementia. For example, relative to 
healthy controls, nondemented PD patients are impaired in a variety of cognitive areas, such 
as working memory (Gilbert, Belleville, Bherer, & Chouinard, 2005; Owen et al., 1993; 
Owen, Iddon, Hodges, Summers, & Robbins, 1997; Postle, Jonides, Smith, Corkin, & 
Growdon, 1997), attention (R. G. Brown & Marsden, 1988; Filoteo & Maddox, 1999; 
Filoteo, Rilling, & Strayer, 2002; Sharpe, 1990), set shifting (Cools, Barker, Sahakian, & 
Robbins, 2001; Cronin-Golomb, Corkin, & Growdon, 1994; Hayes, Davidson, Keele, & 
Rafal, 1998; Owen, Roberts, Polkey, Sahakian, & Robbins, 1991), and procedural-based 
learning (Jackson, Jackson, Harrison, Henderson, & Kennard, 1995; Pascual-Leone et al., 
1993; Vakil & Herishanu-Naaman, 1998), to name a few. These deficits are often attributed 
to dysfunction within striatal-cortical circuits that are disrupted very early in the course of the 
disease (Dubois & Pillon, 1997; Muslimovic, Post, Speelman, & Schmand, 2005; Owen, 
2004). Importantly, the understanding of the initial cognitive deficits in PD patients will 
provide a clearer picture of the nature and progression of future cognitive loss and possible 
dementia in this disease. Thus, the study of cognition in nondemented PD patients is crucial. 

One research area that holds considerable promise in helping to better understand PD 
patients' early cognitive deficits is the study of category learning. Categorization is involved 
in learning to associate similar stimuli with one another to organize our world and help guide 
behavior, and as such, is highly important for our day to day activities. An important 
advancement over the last 10 years has been the increasing evidence for the existence of 
multiple category learning systems, each of which is best suited to learning a specific type of 
categorization problem (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Nosofsky, 
Palmeri, & McKinley, 1994; E. E. Smith & Sloman, 1994). Two forms of category learning 
that have been examined in PD are implicit and explicit category learning (see Figure 1). Past 
behavioral and functional neuroimaging work with normal participants and various patient 
populations provides extensive evidence for the distinction between implicit and explicit 
category learning (Ashby et al., 1998; Filoteo, Maddox, Simmons et al., 2005; Filoteo, 
Simmons, Zeithamova, Maddox, & Paulus, 2006; Knowlton & Squire, 1993; Maddox, 
Filoteo, Hejl, & Ing, 2004; Maddox, Filoteo, & Lauritzen, 2007; Maddox, Filoteo, Lauritzen, 
Connally, & Hejl, 2005; Maddox, O'Brien, Ashby, & Filoteo, 2007; Nomura et al., 2007; E. 
E. Smith, Patalano, & Jonides, 1998; E. E. Smith & Sloman, 1994). Explicit category 
learning is dependent on hypothesis generation, logical reasoning, working memory and 
executive attention. Tasks that measure explicit category learning are often referred to as 
rule-based tasks, because there is typically a verbalizable "rule" that defines category 
membership. The learning of rule-based tasks is believed to be mediated within an anterior 
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brain network that includes the dorsolateral frontal lobes and the anterior caudate nucleus 
(Ashby et al., 1998), regions that are often impacted early in the course of PD. 
 

Category Learning

Explicit                          Implicit

Rule-Based                Probabilistic      Perceptual     Information-Integration

Category Learning

Explicit                          Implicit

Rule-Based                Probabilistic      Perceptual     Information-Integration  

Figure 1. Classification of explicit and implicit category learning tasks. 

In contrast, there are several forms of implicit category learning in which a participant 
can learn categories without having any conscious awareness of the category structures. 
Some of the tasks that have been used to examine implicit category learning in PD are 
information-integration tasks, probabilistic learning tasks, prototype distortion tasks, and 
artificial grammar learning tasks. Information-integration category learning tasks are thought 
to be learned via a procedural-based learning system that depends on a dopamine reward-
mediated signal that associates a perceptual stimulus with a specific response (Wickens, 
1990), and is thought to take place within a posterior brain network including the inferior 
temporal lobe and the posterior caudate nucleus (Ashby & Maddox, 2005; Nomura et al., 
2007). Probabilistic category learning tasks (e.g., the Weather Prediction Task) are also 
believed to depend on an implicit learning system in which information about the probability 
of category membership is learned across multiple trials. Prototype distortion tasks and 
artificial grammar learning tasks, on the other hand, are thought to be learned through a 
perceptual-based priming system that is mediated within posterior visual cortices (P. J. Reber 
& Squire, 1999; P. J. Reber, Stark, & Squire, 1998). 

Given the nature and distribution of pathology in PD, it is not surprising that these 
patients are impaired on a variety of category learning tasks. For example, dopamine appears 
to be important in reward-mediated learning, so it might be expected that PD patients who, by 
definition, have a loss of dopamine-producing cells within the substantia nigra, would be 
impaired on tasks that are learned through feedback. Similarly, given the impact that PD has 
on striatal structures such as the caudate and putamen (via loss of dopamine input to these 
regions), it would not be surprising that these patients are impaired on any explicit or implicit 
category learning task that likely relies on those structures for learning. However, despite the 
finding that PD patients are impaired on a variety of category learning tasks, a number of 
important findings have been reported over the last 5 years that have enabled the nature of 
their deficits to be more clearly delineated, thus allowing one to describe in more specific 
terms why PD patients are impaired in some, but not all, aspects of category learning. This 
information has not only extended our knowledge regarding our understanding of this 
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disease, but has also informed the cognitive neuroscience of normal category learning 
processes. 

In this chapter, we review our previous work, and the work of other investigators, that 
has examined explicit and implicit category learning in nondemented patients with PD. In 
one section, we discuss previous studies in which explicit category learning was examined 
using both traditional clinical neuropsychological measures as well as experimental 
measures. In that section, we also address some conflicts in the literature regarding the 
potential underlying mechanism(s) of PD patients' explicit learning deficits. Next, we review 
the implicit category learning literature and address controversies regarding the conditions 
under which PD patients are impaired in learning implicitly based category structures. 
Finally, we discuss the potential clinical relevance of better understanding category learning 
deficits in PD. 

 
 

PERCEPTUAL CATEGORIZATION TASK 
 
In the majority of our category learning studies, we have used the perceptual 

categorization task first developed by Ashby and Gott (Ashby & Gott, 1988) in which 
individuals are presented with simple stimuli and asked to learn to categorize them into 
distinct groups. The stimuli often consist of lines that vary in length or orientation or Gabor 
patches that vary in orientation and spatial frequency (see Figures 2 and 3). In this task, 
participants are presented with a stimulus and are asked to categorize it into Category A or 
Category B. Once a response is made, the participant is given immediate corrective feedback. 
Prior to the experiment, a large number of stimuli are sampled randomly from specific 
underlying category distributions. Figure 2 displays an example of these category 
distributions from one of our studies in which the stimuli were Gabor patches that varied in 
orientation and spatial frequency. Each stimulus can be represented as a unique point in two-
dimensional space. In Figure 2, the x-axis represents the spatial frequencies of the patch and 
the y-axis represents the orientation of the patch. Black squares represent Category A stimuli 
and open circles represent Category B stimuli. The arrows in Figure 2 link a sample stimulus 
with its representation in this two-dimensional stimulus space. In these studies, a single 
optimal categorization rule can be derived. The form of the rule is determined by the 
relationship between the two category distributions, and thus, the two stimulus attributes. The 
solid line in Figure 2 represents the optimal categorization rule. A participant who uses this 
rule will maximize long-run accuracy. Given the distribution of the Category A and B 
stimuli, and the optimal bound, the rule that best describes category membership in Figure 2 
is a unidimensional rule in which Gabor patches with lower spatial frequencies (wider bars) 
are members of Category A, and patches with higher spatial frequencies (narrower bars) are 
members of Category B.  

A major advantage in using the perceptual categorization task is that it allows us to 
examine different classes of categorization rules, such as implicit and explicit rules, by 
simply changing the distribution of the stimuli within the categories. Specifically, the rule 
depicted in Figure 2 is an explicit rule because the optimal rule that defines category 
membership (depicted as the sold line) can be easily verbalized. In essence, optimal 
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performance requires that the participant learn to attend to only the spatial frequency of the 
stimuli and identify the cut-off width that best separates the two categories. This rule can be 
verbalized as "categorize stimuli with wide bars into Category A, and categorize stimuli with 
narrow bars into Category B". In contrast, Figure 3 depicts two examples of implicit rules-- a 
linear implicit rule (Figure 3A) and a nonlinear implicit rule (Figure 3B). In this example, the 
optimal rule that defines category membership is based on a relationship between the length 
and the orientation of the line stimuli (that is, information from the two dimensions must be 
integrated). Because these stimuli are in separate physical units (length and orientation), it is 
difficult to verbalize an optimal rule of this nature, and thus learning has to occur at an 
implicit level. In these examples, the rule depicted in Figure 3A is based on a linear 
combination of the two stimulus dimensions, whereas the rule depicted in Figure 3B is based 
on a nonlinear combination of the two dimensions. 
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Figure 2. Stimulus distributions and sample stimuli used in the perceptual categorization task. Filled 
squares represent stimuli from Category A and open circles represent stimuli from Category B. The 
solid line represents the optimal unidimensional rule-based rule. Arrows point from specific stimulus 
exemplars to their location in the two-dimensional stimulus space. 

Another major advantage in examining PD patients' performance on the perceptual 
categorization task is that it readily lends itself to the application of sophisticated quantitative 
models (Ashby & Waldron, 1999; Maddox, Ashby, & Bohil, 2003). These models enable one 
to identify the process a participant used to perform a given task (i.e., implicit vs. explicit). 
This is necessary because it is sometimes the case that a participant will attempt to use one 
approach to solve a task, such as an explicit approach, despite the fact that another approach, 
such as an implicit approach, is more optimal and would lead to greater levels of accuracy. 
Although the details of this modeling approach is beyond the scope of this chapter, we 
provide some discussion of how the application of these models has been invaluable in 
helping to better understand the nature of PD patients' category learning deficits. The 
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interested reader is referred to other references for the details of this modeling approach 
(Ashby & Waldron, 1999; Ashby, Waldron, Lee, & Berkman, 2001; Maddox & Filoteo, 
2007). 
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Figure 3. Sample stimuli and stimulus distributions for (A) the linear information-integration condition 
and (B) the nonlinear information-integration condition in which the stimuli were single lines that vary 
in length and orientation. Open circles represent stimuli from Category A and closed circles represent 
stimuli from Category B. The solid line and curve represent the optimal rules. Arrows point from 
specific stimulus exemplars to their location in the two-dimensional stimulus space. 

 

EXPLICIT CATEGORY LEARNING IN PD 
 
Rule-based measures of explicit category learning have been around since the 1920's 

(Weigl, 1927). The most popular rule-based clinical task that evaluates explicit category 
learning is the Wisconsin Card Sorting Test (WCST; Heaton, 1981). In performing the 
WCST, the participant has to learn a specific rule when matching cards of multiple 
dimensions (color, form, and number) to one of four key cards using trial-and-error feedback. 
Once the participant correctly classifies 10 cards in a row, the examiner changes the correct 
dimension (or rule) to which the participant must sort (e.g., from color to form) without 
informing the participant. The participant must then use the feedback to disengage from the 
previously correct rule in order to change to the new rule. Indices from the WCST include the 
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number of trials it takes to achieve the first category sort, the number of categories achieved 
within 128 trials, the number of perseverative errors (i.e., the number of times a participant 
made a classification response to a previously correct dimension), and the number of set loss 
errors (i.e., the number of times a participant made at least 5 correct responses in a row but 
failed to achieve the criterion of 10 correct responses in a row). A number of studies have 
found that nondemented PD patients are impaired on the WCST (Azuma, Cruz, Bayles, 
Tomoeda, & Montgomery, 2003; Lees & Smith, 1983; Paolo, Axelrod, Troster, Blackwell, & 
Koller, 1996) and recent functional imaging research suggests that their deficit might be 
associated with decreased activation in the ventrolateral prefrontal cortex, particularly under 
task conditions in which the striatum is most involved (i.e., having to shift to a new 
dimension or rule; Monchi et al., 2004; Monchi, Petrides, Mejia-Constain, & Strafella, 2007). 

Despite these consistent findings of impairment on the WCST, one potential problem 
with establishing an explicit category learning deficit in patients with PD using this task is 
that the nature of their impairment does not appear to be in the learning of categories, but 
rather having to switch to a new category once a previous category has been learned. That is, 
nondemented PD patients tend not to be impaired in the number of trials it takes them to learn 
the first category on the WCST, but they tend to perseverate on the previously learned 
categorization rule when they are actually required to switch to a new rule (Paolo et al., 
1996). This deficit is highly consistent with PD patients' well-established impairment in set 
shifting (Cools et al., 2001; Cronin-Golomb et al., 1994; Hayes et al., 1998; Owen et al., 
1991), particularly when having to shift from one stimulus dimension (e.g., shape) to another 
dimension (e.g., color; Downes et al., 1989; Gauntlett-Gilbert, Roberts, & Brown, 1999). 
Thus, based on their performance on the WCST, nondemented PD patients do not appear to 
have an explicit category learning deficit per se, but rather their deficit on this measure 
appears to be more related to a deficit in set shifting. 

Using other tasks, recent studies have attempted to understand the specific processes 
underlying explicit category learning deficits in nondemented PD patients. For example, 
Price (2006) administered a rule-based task to a group of nondemented PD patients in which 
category membership was based on a weighting of the presence of different geometric 
shapes. Specifically, 1-3 geometric figures were presented on each trial and participants were 
required to categorize the stimulus configurations into 1 of 2 categories. Each geometric 
figure had a specific weight assigned and category membership depended on the combination 
of these weights. The rule was explicit in the sense that participants could learn these weights 
verbally as the task proceeded. Results indicated that PD patients were impaired relative to 
healthy controls in learning the rule across 160 trials. In addition, Price (2006) obtained 
verbal reports from participants regarding how they were attempting to solve the task. An 
analysis of these verbal reports indicated that PD patients were less likely to use more 
efficient strategies that would lead to better performance, such as the possibility that a 
specific geometric shape was associated more with a specific category or that there was a 
differential weighting associated with the various geometric figures. Thus, these results 
suggest that PD patients are impaired in generating specific hypotheses that could be used to 
learn categories.  

In one of our first studies examining explicit category learning in PD patients (Maddox 
& Filoteo, 2001), we used the perceptual categorization task (described above) in which 
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subjects were presented with horizontal and vertical lines that varied in length. Optimal 
responding required the participant to categorize the stimulus into one category if the 
horizontal line was longer than the vertical line or into the other category if the vertical line 
was longer than the horizontal line. Somewhat surprisingly, the patients learned the rule at 
the same rate and level as control participants. To further investigate explicit category 
learning, we conducted a follow-up study (Ashby, Noble, Filoteo, Waldron, & Ell, 2003) in 
which participants categorized single cards that varied along four different binary-valued 
dimensions (e.g., nature of shapes, number of shapes, filling of shapes, and color of card). In 
the explicit condition, category membership was defined by the value on a single dimension 
(e.g., the color of the card). In contrast to our original finding (Maddox & Filoteo, 2001), PD 
patients were impaired in learning this explicit categorization rule. This finding has also been 
replicated in another recent study (Maddox, Aparicio, Marchant, & Ivry, 2005).  

At first glance the findings from these previous studies which demonstrated a rule-based 
deficit in PD patients (Ashby et al., 2003; Maddox, Aparicio et al., 2005) seem to contradict 
our original finding of no deficit (Maddox & Filoteo, 2001), but one potential explanation for 
these discrepant results has to do with the presence or absence of irrelevant dimensional 
variation in the tasks used in the studies. That is, in our original study (Maddox & Filoteo, 
2001), both of the stimulus dimensions (i.e., the length of the horizontal and vertical lines) 
were relevant to category membership, so there was no irrelevant dimensional variation. In 
contrast, in the other studies (Ashby et al., 2003; Maddox, Aparicio et al., 2005), one 
dimension of the stimulus was relevant and three dimensions could vary randomly from trial-
to-trial. Thus, the task in the more recent studies required greater selective attention than our 
original study, suggesting that attentional deficits might contribute to PD patients' explicit 
category learning deficits.  

We examined this hypothesis more directly in a follow-up study (Filoteo, Maddox, Ing, 
Zizak, & Song, 2005) where we systematically manipulated the selective attention 
requirements during the learning of an explicit task. Specifically, participants were 
administered a task in which they were presented with stimuli that had four binary-valued 
dimensions in four different conditions. Examples of representative stimuli from one stimulus 
set used in this study are shown in Figure 4A. For these “castle” stimuli, the potential 
relevant dimensions could be the shape of the foundation (diamond or square), location of the 
ramparts (above walls or sunken into walls), number of rings surrounding the castle (1 or 2), 
or the color of the drawbridge (yellow or green). In each of the four conditions, one of the 
binary-valued dimensions determined category membership, and zero, one, two, or three 
irrelevant dimensions varied from trial-to-trial. Thus, there was a systematic difference 
among the four conditions in terms of the degree of irrelevant dimensional variation, and 
thus, the amount of selective attention required. Figure 4B displays the number of trials-to-
criterion (i.e., the number of trials it took subjects to obtain ten correct responses in a row 
correct with a greater number of trials indicative of poorer performance) for the four 
experimental conditions for the PD patients, a group of age-matched controls, and a group of 
younger controls. As can be seen, PD patients demonstrated a dramatic increase in trials-to-
criterion relative to the age-matched controls when there were two irrelevant dimensions that 
varied across trials. Overall, these results indicated that PD patients' ability to learn the 
explicit categories was impacted to a much greater extent than controls as the number of 
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varying irrelevant dimensions increased, suggesting that deficits in selective attention might 
contribute to the PD patients' impairment in explicit category learning. This finding is 
consistent with a previous study that demonstrated that PD patients are only impaired in 
discrimination learning when there is increased irrelevant dimensional variation (Channon, 
Jones, & Stephenson, 1993). 
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Figure 4. (A) Sample “castle” stimuli, and (B) trials-to-criterion for the PD patients, older normal 
controls (ONC), and younger normal controls (YNC).  

Although this work supports the notion that deficits in selective attention processes might 
underlie the explicit category learning impairment in patients with PD, the specificity of such 
a deficit had not been demonstrated. In particular, PD patients had not been examined on 
more complex explicit category learning tasks in which other cognitive processes are also 
emphasized. Indeed, most past studies of explicit category learning in PD have used tasks in 
which only a single dimension is relevant, such as those studies that have used the WCST 
(Ashby et al., 2003; Paolo et al., 1996). Such tasks emphasize selective attention processes 
that are often found to be impaired in nondemented patients with PD (Filoteo & Maddox, 
1999; Maddox, Filoteo, Delis, & Salmon, 1996; Sharpe, 1990). However, it is well known 
that PD patients are impaired in other cognitive processes that also likely contribute to 
explicit category learning. Specifically, working memory deficits have often been reported in 
these patients (Gilbert et al., 2005; Owen et al., 1993; Owen et al., 1997; Postle et al., 1997), 
and this cognitive process is likely involved in explicit category learning. For example, in 
learning explicit rules, participants must generate hypotheses regarding the possible rule, test 
such hypotheses using feedback, switch to a new hypothesis if the one currently in use is not 
correct, and keep track of those hypotheses that either did not work or are currently working. 
Thus, it is possible that deficits in working memory might also contribute to PD patients' 
impairment in learning explicit categorization rules. 

To examine this issue, we conducted another study in which participants were asked to 
learn three explicit category structures (Filoteo, Maddox, Ing, & Song, 2007). One of the 
conditions required participants to learn the rule depicted in Figure 2, and the other two 
conditions required participants to learn the rules depicted in Figure 5. The stimuli in this 
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study consisted of Gabor patches that varied from trial-to-trial in orientation and the width of 
the bars. In the unidimensional explicit condition (Figure 2), optimal responding required that 
the subject set a criterion on the spatial frequency dimension and respond "A" if the bars were 
wide or "B" if the bars were narrow. Orientation was irrelevant in this condition although it 
varied from trial-to-trial. Thus, participants had to attend selectively to one stimulus 
dimension (the width of the bars) and ignore the other, irrelevant varying dimension 
(orientation). Note, as in previous studies (Ashby et al., 2003; Maddox, Aparicio et al., 
2005), this rule required participants to learn a rule in the presence of an irrelevant dimension 
that varied from trial-to-trial. In the conjunctive explicit condition, optimal responding 
required the subject to respond "A" if the stimulus was more vertical and had narrow bars, or 
respond "B" if otherwise. This approach represents an explicit combination of the two 
features and the rule is highly verbalizable. As such, this task is considered to be explicit. The 
optimal rule is depicted by the solid horizontal and vertical lines in Figure 5A. In the 
disjunctive condition, the optimal rule required that the subject respond "A" if the stimulus 
was more vertical and had narrow bars or if the stimulus was more horizontal and had wide 
bars, or to respond "B" if the stimulus was more vertical and had wide bars or if the stimulus 
was more horizontal and had narrow bars. The optimal rule is depicted by the solid horizontal 
and vertical lines in Figure 5B.  
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Figure 5. Stimulus distributions for (A) conjunctive, and (B) disjunctive rule-based category learning 
conditions. Filled squares represent stimuli from Category A and open circles represent stimuli from 
Category B. Solid lines represent the optimal bounds for each condition. 

Note, although optimal responding in both the conjunctive and disjunctive tasks required 
participants to use a verbalizable combination of the two stimulus dimensions, the two tasks 
likely emphasize working memory to a different degree. Specifically, the logical expression 
associated with the disjunctive rule is much longer than the logical expression associated 
with the conjunctive rule, and therefore should require greater working memory. Thus, a 
comparison of PD patients’ performances in the conjunctive and disjunctive conditions could 
help determine whether working memory deficits might also contribute to PD patients’ 
explicit category learning deficits. In addition, because the conjunctive and disjunctive 
conditions require the participant to base their decision on both stimulus dimensions, these 
conditions served as an important test to determine if PD patients are impaired in all explicit 
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tasks, or if they are impaired in only those tasks where there is irrelevant dimensional 
variation, such as in the unidimensional task. 

Figure 6 displays the results from the three conditions. As can be seen, PD patients 
demonstrated a large impairment on the unidimensional explicit condition (Figure 6A), 
replicating previous findings (Ashby et al., 2003; Maddox, Aparicio et al., 2005). In contrast, 
the patients were not impaired in the conjunctive condition (Figure 6B) or the disjunctive 
condition (Figure 6C). Importantly, both groups displayed less learning in the disjunctive 
condition than the conjunctive condition, which was likely due to the greater working 
memory requirements of the former task. The pattern of PD patients' performance suggests 
that the explicit deficit exhibited by these patients in past studies is likely related to an 
impairment in selective attention. That is, the unidimensional condition placed a greater 
emphasis on selective attention processes because optimal responding required that the 
participant ignore the irrelevant variation on the orientation dimension, whereas selective 
attention requirements were less in the conjunctive and disjunctive conditions because 
optimal responding required that the participant attend to both the spatial frequency and 
orientation dimensions. In contrast, working memory deficits do not appear to account for 
their explicit category learning deficits, a view that has also been supported by previous 
studies (Price, 2006). 
 

 

Figure 6. Accuracy for PD patients and NC subjects for (A) unidimensional, (B) conjunctive, and (C) 
disjunctive rule-based category learning conditions. 
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Taken together, previous work suggests that nondemented PD patients' impairments on 
traditional clinical rule-based tasks may be due to a deficit in shifting attentional set, whereas 
more recent studies that have used experimental measures suggest that their rule-based deficit 
may be associated with impairments in hypothesis generation and/or selective attention. 

 

IMPLICIT CATEGORY LEARNING 
 
As described above, three different classes of tasks have been used to investigate implicit 

category learning in PD patients: prototype distortion tasks and artificial grammar learning 
tasks; probabilistic learning tasks; and information-integration tasks. The results of studies 
using these three classes of tasks are discussed below. 

 
 

Prototype Distortion Learning and Artificial Grammar Learning Tasks 
 
The first implicit tasks to be discussed are the artificial grammar task and the prototype 

learning task (Posner & Keele, 1968; A. S. Reber, 1967). In the artificial grammar learning 
task, participants are presented strings of letters that conform to a particular grammatical 
structure and are asked to attend to these stimuli. After having been exposed to those stimuli, 
participants are told that the letter strings they were shown all conformed to a particular 
grammatical structure and that they are now going to be shown new stimuli, with some of 
those conforming to the grammatical structure and the others not conforming. The 
participants' task is to categorize these new stimuli as either conforming or not conforming to 
the grammatical structure. The prototype distortion learning task is somewhat similar to the 
artificial grammar learning task. Specifically, participants are typically exposed to 9-dot 
stimuli from a single category, where the stimuli are “high distortions” of a prototype display. 
Participants are not required to make a response during training, but are simply told to study 
each of the stimuli that are presented. After their exposure to the stimuli, participants are 
presented with the prototype, low distortions of the prototype, high distortions of the 
prototype (not seen during training), and "random" stimuli (consisting of a 9-dot display that 
are randomly organized). The participants task is to categorize the new stimuli and decide 
whether each item 'is' or 'is not' a member of the previously studied category.  

To our knowledge, all studies that have examined PD patients on either the artificial 
grammar learning or the prototype distortion learning tasks using the above methods have 
shown normal performances in patients relative to controls (P. J. Reber & Squire, 1999; J. 
Smith, Siegert, McDowall, & Abernethy, 2001; Witt, Nuhsman, & Deuschl, 2002b), although 
one study did report that patients were impaired after a second exposure to the test stimuli in 
an artificial grammar learning task (Peigneux, Meulemans, Van der Linden, Salmon, & Petit, 
1999).  

The finding of relatively spared performance on these tasks is consistent with the notion 
that learning under these conditions is primarily dependent on a perceptual priming system 
mediated by posterior visual cortices, including the occipital lobes and fusiform gyrus (P. J. 
Reber, Gitelman, Parrish, & Mesulam, 2003; Skosnik et al., 2002), brain regions that are 
relatively spared early in the course of PD. Such learning is believed to reflect a perceptual 
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form of learning that is not dependent on the striatum, and thus it may not be surprising that 
PD patients are unimpaired on such tasks. This is especially the case when there is only one 
structured category and the participant's task is to state during transfer whether the test item is 
a member or not a member of that category (often referred to as an A/not A task) (Ashby & 
Maddox, 2005).  

A related explanation why PD patients may not be impaired on these tasks is that they 
use "observational" training in that participants are not given any information regarding 
category membership when the stimuli are presented during training. Indeed, a recent study 
demonstrated that PD patients are impaired on an artificial grammar learning task when 
learning is based on trial-by-trial feedback, but they are not impaired after simply observing 
the stimuli during training (J. G. Smith & McDowall, 2006). This issue will be discussed in 
greater detail below. 

 
 

Probabilistic Category Learning 
 
Another form of category learning that has been studied in patients with PD is 

probabilistic learning, in which a set of stimuli are probabilistically related to one of two 
outcomes. The most popular task that has been used with PD patients is the Weather 
Prediction Task (WPT), which requires subjects to learn to categorize stimuli (consisting of 
various cue combinations) that are probabilistically associated with one of two categorical 
outcomes-- 'rain' or 'sunshine' (Gluck, Oliver, & Myers, 1996). Previous studies using the 
WPT in PD patients have yielded mixed results. For example, the first study to examine PD 
patients on the WPT found a deficit in these patients early in training (the first 50 trials), 
whereas patients were normal later in training (Knowlton, Mangels, & Squire, 1996), a 
finding that was later replicated by other investigators (Witt, Nuhsman, & Deuschl, 2002a). 
In contrast, using a slightly modified version of the WPT, another study found that PD 
patients were impaired both early in training (the first 50 trials) as well as later in training 
(trials 100-150) (Shohamy, Myers, Grossman et al., 2004). Still, other studies have only 
identified deficits in PD patients after extensive training (>200 trials) (Shohamy, Myers, 
Onlaor, & Gluck, 2004). Finally, at least two studies have found that PD patients are not 
impaired on the WPT (Moody, Bookheimer, Vanek, & Knowlton, 2004; Price, 2005).  

One potential explanation as to these discrepant results is the recent finding of important 
individual differences as to how a participant might solve the WPT. To examine this issue, 
Gluck and colleagues (Gluck, Shohamy, & Myers, 2002) instantiated several different 
strategic approaches one could use when performing the WPT and applied this strategy 
analysis to PD patients' performances on this task (Shohamy, Myers, Grossman et al., 2004; 
Shohamy, Myers, Onlaor et al., 2004). The results were very interesting in that both PD 
patients and control participants tended to learn the WPT early on by memorizing stimuli 
with only a single cue present (referred to as a singleton strategy). As learning progressed, 
however, the majority of control participants tended to switch to 'multi-cue' strategy that 
required the integration of multiple cues within the display. In contrast, the PD patients 
tended to continue to use a singleton strategy that they had adopted during the early part of 
learning and failed to switch away to the more advantageous multi-cue approach. 
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Interestingly, in one study (Shohamy, Myers, Onlaor et al., 2004), PD patients and controls 
who switched to a multi-cue strategy did not differ on the WPT, suggesting that when 
patients can change to a more efficient strategy, they are able to apply it just as accurately as 
controls.  

The finding that PD patients are impaired on the WPT because of a failure to switch 
strategies is reminiscent of their deficit described above on the WCST. In fact, these results 
are in line with the finding that PD patients' deficits on the WPT have been associated with 
the number of perseverative errors on the WCST (Knowlton et al., 1996; Price, 2005). This 
observation again supports the notion that PD patients' impairment on the WPT may be more 
a failure to switch cognitive set than to learn probabilistic categorization rules. 

Another potentially important finding with the WPT comes from functional imaging 
data. In particular, functional imaging studies with normal participants indicate that learning 
the WPT is associated with activity in the striatum, medial temporal lobes, midbrain 
dopamine regions (i.e., the substantia nigra and ventral tegmentum), and the ventral striatum. 
In fact, Poldrack and colleagues (Poldrack et al., 2001; Poldrack, Prabhakaran, Seger, & 
Gabrieli, 1999; Rodriguez, Aron, & Poldrack, 2006) demonstrated an important dynamic 
when normal participants learn the WPT in that, as the task is performed across time, there is 
a shift from greater activation of medial temporal lobe regions (which are involved in explicit 
memory processes) to greater activation in the striatum. 

Importantly, a recent functional imaging study with PD patients performing the WPT 
demonstrated increased activation within the medial temporal lobe relative to controls, as 
well as decreased activation of the striatum (Moody et al., 2004). These findings, along with 
the results from those studies that examined strategic approaches in learning the WPT, 
suggest the possibility that, early in learning, PD patients may engage an explicit approach to 
solving the task that is mediated within the medial temporal lobe memory system, and fail to 
disengage that system in order to switch to a more optimal approach that is mediated within 
the striatum. 

 
 

Information-Integration Category Learning 
 
As described in the previous section, past studies that have attempted to examine implicit 

category learning in PD patients using the WPT tasks have yielded mixed results. However, 
even when PD patients have been shown to be impaired on such tasks as the WPT, a more 
detailed analysis of their deficits suggests that they may be impaired in switching away from 
an explicit rule in order to adopt an implicit rule, and not in implicit learning per se. In our 
studies of category learning, the use of the perceptual categorization task has allowed us to 
construct the categories in a manner where we are more certain that participants use either an 
implicit or explicit approach, but not both. In addition, the application of quantitative models 
has allowed us to further determine what approach a participant takes when learning the task. 

The results from one of our first category learning studies in PD indicated that 
nondemented patients are impaired in learning an implicit categorization rule, such as the one 
shown in Figure 3B (Maddox & Filoteo, 2001). However, in a subsequent study (Ashby et 
al., 2003), we found that PD patients were normal in learning an implicit information-
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integration rule. One important difference between the two studies was that in the Maddox & 
Filoteo (2001) study, the optimal rule that defined category membership was defined by a 
nonlinear relationship between the stimulus dimensions. In contrast, the optimal rule that 
defined category membership in the Ashby et al. (2003) study was based on a linear 
relationship between the relevant stimulus dimensions. Thus, the linearity of the rule might 
account for the discrepant findings in these two studies.  

To address this possibility, we conducted a third study in which implicit category 
learning in PD patients was examined using both a linear and a nonlinear rule to determine 
whether differences in the linearity of the categories would impact learning (Filoteo, 
Maddox, Salmon, & Song, 2005). In this study, we used single lines that varied in length and 
orientation (See Figure 3). In the nonlinear implicit condition, the optimal rule was defined 
by a nonlinear relationship between the length and the orientation of the line (Figure 3A), 
whereas in the linear implicit condition, the optimal rule was defined by a linear relationship 
between the two dimensions (Figure 3B). Although optimal learning for both the linear and 
the nonlinear categorization rules require implicit processes, it has been suggested that the 
nonlinear rule does so to a greater extent (Ashby et al., 2001). In particular, quantitative 
modeling of normal participants' performance suggests that nonlinear rules might 
theoretically require greater involvement of the striatum than linear rules. Thus, it was 
anticipated that PD patients would be more impaired on the nonlinear rule than the linear 
rule. 
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Figure 7. Percentage correct for PD patients and normal controls on (A) the linear information-
integration condition and (B) the nonlinear information-integration condition.  

The results from the two conditions are shown in Figure 7 and indicated that PD patients 
were impaired in the nonlinear condition (Figure 7B), but were normal in the linear condition 
(Figure 7A). These findings replicated our original study (Maddox & Filoteo, 2001) by 
identifying a deficit in PD patients in nonlinear implicit category learning. In addition, we 
also applied quantitative models to the participants' data in the linear and nonlinear condition 
to identify what approach (implicit or explicit) individuals used when learning these rules. 
Interestingly, only a fairly small percentage of the PD patients (55%) and control participants 
(65%) used an implicit approach in learning the linear rule, whereas the other participants in 
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the two groups used an explicit approach. In contrast, most of the PD patients (80%) and the 
control participants (80%) used an implicit approach in learning the nonlinear rule. 
Importantly, when we compared the PD patients and control participants who actually used 
an implicit approach in the nonlinear condition, we continued to observe a deficit in the 
patients, whereas the two subgroups in the linear condition did not differ. Thus, unlike PD 
patients' past performances on the WPT, the deficits we observed on measures of 
information-integration category learning do indeed suggest that PD patients are impaired in 
learning some implicit categorization rules. This especially seems to be the case when the 
rule is defined by a complex (i.e., nonlinear) relationship among the stimulus attributes, and 
such deficits may be related to the integrity of the striatum. 

Although the results of our previous studies suggest that nondemented PD patients are 
primarily impaired in learning nonlinear implicit categorization rules but not linear rules, two 
recent studies have not supported this observation. Price (Price, 2005) found that PD patients 
were impaired in learning a linear implicit rule, a finding that is not consistent with that of 
Ashby et al. (2003). Price (2005) argued that the different findings in her study and those in 
Ashby et al. might be due to the categories in her study being less complex as compared to 
the other two studies. However, this explanation does not account for the results of our 
studies (Filoteo, Maddox, Salmon et al., 2005; Maddox & Filoteo, 2001) in which the 
categories were more complex than those in Price's (2005) study. As such, the nature of this 
discrepancy awaits further study. 

Other studies have also found somewhat conflicting results. Schmitt-Eliassen and 
colleagues (Schmitt-Eliassen, Ferstl, Wiesner, Deuschl, & Witt, 2007) administered a 
nonlinear information-integration task similar to the one used by Maddox and Filoteo (2001) 
but, in contrast to our results, these authors did not find any differences between PD patients 
and controls. However, it is important to point out that neither the PD patients nor controls in 
the Schmitt-Eliassen et al. study displayed a large amount of learning; likely owing to the 
design of the study in that the task alternated blocks of trials in which feedback was either 
given or not give following a participant's response. This floor effect could have made it 
more difficult to detect differences between the PD patients and normal control participants.  

The majority of the studies to date that have examined PD patients on information-
integration category learning tasks have demonstrated that these patients are impaired when 
the rule is nonlinear. In theory, such rules likely place more demands on the striatum relative 
to linear rules because the former rules require a greater degree of representation, and this 
could explain why PD patients are primarily impaired in nonlinear learning. 

 
 

Impact of Feedback on Implicit Category Learning in PD 
 
The studies described above suggest some inconsistencies in the literature regarding 

whether PD patients are impaired in implicit category learning. Specifically, several studies 
have shown that PD patients are not impaired on prototype distortion or artificial grammar 
learning tasks, whereas most studies have suggested that PD patients are impaired on 
probabilistic and information-integration category learning tasks. One explanation that has 
been put forward to account for these discrepant findings is that PD patients are primarily 
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impaired on category learning tasks in which feedback is necessary for learning (P. J. Reber 
& Squire, 1999). That is, tasks such as the prototype distortion or artificial grammar learning 
tasks do not require participants to learn based on trial-by-trial feedback, but rather 
participants learn under observational training conditions in which they simply view the 
stimuli and often perform an orienting task. In contrast, the probabilistic and information-
integration category learning tasks used in past studies almost exclusively relied on trial-by-
trial feedback during the acquisition of the categories. Because a dopamine reinforcement 
signal is believed to underlie trial-by-trial learning, and PD patients have decreased levels of 
dopamine, the differences in how participants are trained on these various tasks might 
account for these discrepant findings. 

In support of this possibility, recent studies have shown that PD patients are primarily 
impaired on certain category learning tasks under trial-by-trial learning conditions but not 
under observational training conditions. For example, Shohamy and colleagues (Shohamy, 
Myers, Grossman et al., 2004) demonstrated that PD patients are impaired on a version of the 
WPT when training was done through trial-by-trial feedback, whereas their patients were 
normal when they observed the stimulus cues with the associated category label and were 
asked to explicitly remember the associations. Similarly, a recent study by Schmitt-Eliassen 
et al. (2007) identified normal observational learning in a PD group using the same implicit 
category structure as in one of our previous studies (Maddox & Filoteo, 2001). As described 
above, although Schmitt-Eliassen et al. did not identify any substantial learning in patients or 
controls using trial-by-trial feedback, our previous study demonstrated that PD patients were 
impaired under feedback conditions. Taken together, these studies provide support for the 
possibility that PD patients are primarily impaired when the acquisition of the categories is 
based on feedback following each response, but not when it is based on simply observing the 
stimuli and the associated category labels, and that these differences may be related to 
alterations in the dopamine system in PD. 

Additional evidence suggesting a role of dopamine in feedback-based learning comes 
from Frank and colleagues (Frank, Seeberger, & O'Reilly R, 2004). In their study, PD 
patients were tested 'on' dopaminergic medication or 'off' dopaminergic medication on a 
probabilistic category learning task using trial-by-trial feedback. Three different pairs of 
individual stimuli were presented to participants during training and participants had to select 
one of the two stimuli as being correct. Each of the stimuli had different probabilities 
associated with the correct response-- importantly, for stimulus pair A-B, stimulus A was 
associated with the correct response 80% of the time, whereas stimulus B was associated with 
the correct response 20% of the time. Because of the probabilistic nature of the task, 
participants could potentially learn to choose stimulus A over stimulus B for the A-B pairings 
either because they learned from positive feedback when selecting stimulus A, or they 
learned from negative feedback when selecting stimulus B. To differentiate these two 
possibilities, the investigators presented a transfer phase in which no feedback was given and 
participants were shown novel pairings of stimuli in which the A and B stimuli were never 
presented together. If participants learned about the task during acquisition based more on the 
positive feedback after having selected the A stimulus, they should be more likely to select 
the A stimulus in the pairings presented during transfer, whereas if they learned about the 
task during acquisition based more on negative feedback after having selected the B stimulus, 
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they should avoid the B stimulus during transfer and select the other stimuli that were paired 
with the B stimulus. Interestingly, the results of that study indicated that PD patients 'on' 
medication were more likely to select the A stimulus during transfer, suggesting that they 
learned the task during acquisition based on positive feedback. In contrast, PD patients 'off' 
medication were more likely to avoid the B stimulus, suggesting that they learned the task 
during acquisition based more on negative feedback. These results have important 
implications for not only understanding the potential impact that dopamine might play on 
various forms of category learning in PD, but also provide some insight into the complexity 
of the nature of feedback in category learning. Certainly, this study raises the question as to 
whether the category learning results described above are dependent on whether PD patients 
were tested when 'on' medication. 

 
 

CLINICAL APPLICATIONS OF  
CATEGORY LEARNING TASKS IN PD 

 
A highly important goal in determining the clinical utility of category learning in PD is to 

identify whether such measures are sensitive to current cognitive deficits and predictive of 
future cognitive decline in nondemented PD patients. Predicting the rate of cognitive decline 
in patients with PD can have important implications for both clinical management and 
treatment strategies. Most past studies have attempted to predict the rate of cognitive decline 
in patients with PD using a variety of symptom and disease variables including older age at 
disease onset, predominant rigidity/akinesia motor symptoms, and psychiatric symptoms 
(Aarsland et al., 2001; Hobson & Meara, 2004; Levy et al., 2000). Some success has been 
achieved in predicting cognitive decline in patients with PD on the basis of their current level 
of cognitive functioning. In particular, a number of studies have shown that poor performance 
on traditional clinical measures of executive function predicts subsequent global cognitive 
decline in these patients. This predictive relationship has been shown using such executive 
function measures as the Stroop test and measures of verbal fluency (Dujardin et al., 2004; 
Jacobs et al., 1995; Janvin, Aarsland, & Larsen, 2005; Levy et al., 2002; Mahieux et al., 
1998). In addition, previous studies have shown that indices from the WCST can be 
predictive of future dementia in PD (Woods & Troster, 2003), suggesting the possibility that 
category learning task may be sensitive to cognitive decline in these patients.  

To further determine the potential clinical utility of PD patients’ category learning 
deficits, we re-examined their nonlinear implicit category learning deficit described above by 
computing the percentage of patients who were at least 1.5 standard deviations below the 
mean of the controls (representing at least a mild impairment) and compared this percentage 
to the percentage of patients who were at least 1.5 standard deviations below the 
standardization sample on more traditional clinical executive-function measures, such as the 
WCST and verbal fluency tests. As noted above, past work has shown that these measures are 
the best predictors of future cognitive decline and dementia in PD. The results indicated that 
60% of the nondemented PD patients were at least mildly impaired on the nonlinear implicit 
category learning task, whereas only 6% were impaired on the WCST (perseverative errors), 
0% on the letter fluency test, and 0% on the category fluency test. For the nonlinear implicit 
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task, there was a .91 positive predictive value (i.e., the probability that an individual has PD 
given they are impaired on the task), and a .74 negative predictive value (i.e., the probability 
that an individual does not have PD given they were not impaired on the task). These 
findings suggest that measures of implicit category learning hold great promise for detecting 
subtle cognitive deficits early in the course of the PD and may be more sensitive than 
traditional neuropsychological measures. 

At the time of our first evaluation of the PD patients on the nonlinear implicit task, we 
also administered the Mattis Dementia Rating Scale (MDRS; Mattis, 1988), which is a 
measure of global cognitive functioning that has been used successfully in this population in 
both clinical and research settings (G. G. Brown et al., 1999). At that time, the PD patients 
did not differ from controls on the MDRS, despite their impairment in the nonlinear 
condition. To further examine the potential clinical utility of PD patients' implicit category 
learning deficit, we conducted a follow-up study (Filoteo, Maddox, Song, & Salmon, 2007) 
in which re-administered the MDRS to 85% of the patients who participated in our previous 
study (mean time between evaluations = 1.6 years) and examined whether performances in 
the nonlinear and linear conditions predicted future cognitive decline. At the time of our first 
evaluation, the PD patients' mean MDRS total score was 139.0 and at the time of the second 
evaluation, their mean score was 134.2. The results were very striking in that performance in 
the final block of the nonlinear condition was highly predictive (r=-.78; 61% of the variance) 
of future decline on the MDRS, whereas poorer performance on the WCST was less 
predictive of decline (r=.42; 18% of the variance). Importantly, none of the patients were 
considered to be demented at the time of their second evaluation and accuracy performance in 
the nonlinear condition did not correlate with patients' initial MDRS scores.  

In a follow-up regression analysis, we also determined that performance on the nonlinear 
implicit task still predicted subsequent cognitive decline even after age, gender, motor 
impairment, mood, baseline performance on the MDRS, and performance on the WCST were 
taken into account. The finding that performance on the nonlinear implicit task predicted 
future cognitive decline above that predicted by baseline MDRS scores is important because 
it suggests that implicit category learning provides additional predictive value above and 
beyond baseline neuropsychological evaluations.  
We also examined whether our quantitative analyses would provide any additional predictive 
information regarding global cognitive decline. We found that PD patients whose data on the 
nonlinear task were best fit by one of the implicit models declined less on the MDRS than 
those whose data were best fit by an explicit model. This difference is depicted in Figure 8. 
Most importantly, we determined whether the inclusion of the model-based analyses could 
help predict decline on the MDRS above and beyond what was predicted by accuracy 
performance alone. As noted above, final block accuracy in the nonlinear condition predicted 
61% of the variance associated with future decline on the MDRS. To examine this issue, we 
conducted a stepwise regression analysis in which we predicted change on the MDRS by first 
entering final block accuracy and then in the next step entering whether a patient's 
performance was best fit by an implicit or an explicit model. The inclusion of this latter 
variable predicted a significant additional 15% of the variance above and beyond the 61% 
predicted by accuracy level alone. Thus, using a single category learning task, we were able 
to predict 76% of the total variance associated with future cognitive decline in a 
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nondemented PD sample after a mean follow-up of just 1.6 years. These results clearly 
establish the clinical utility for the use of quantitative modeling for a better prediction of 
global cognitive decline in nondemented PD patients. 
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Figure 8. Decline on the Mattis Dementia Rating Scale in PD patient subgroups whose data were best 
fit by an implicit model or an explicit model.  

 

Overall, these results are promising and indicate that the nonlinear implicit task is more 
sensitive to current and future cognitive impairment in nondemented PD patients than 
traditional neuropsychological tests, and that performance on at least one implicit task 
appears to offer unique predictive information above and beyond that which is provided by 
more traditional measures.  

 
 

CONCLUSIONS 
 
Our understanding of the nature of category learning deficits in patients with PD has not 

only taught us a great deal about the conditions under which these patients are impaired on 
such tasks, but has also informed us as to the role of various brain regions that are likely 
involved in normal category learning. Based on the understanding of the pathology 
associated with PD, it appears that the striatum plays an important role in various forms of 
category learning. In addition, we are now at a point where our understanding of these 
deficits is also starting to help us to predict future cognitive decline (and likely dementia), 
suggesting that a deeper understanding of the category learning impairments in these patients 
will likely have important clinical utility. 
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