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Abstract

The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted

attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are

remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning.

However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired

algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this

research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists.

Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely

related to perceptrons, radial-basis-function neural networks and exemplar theories of categorization. Recent theoretical advances in

machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a

positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for

the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem

and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

r 2007 Elsevier Inc. All rights reserved.
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Machine learning is occupied with inventing computer
algorithms that are capable of learning. For example, a
machine that is equipped with a digital camera is shown
instances of handwritten digits. Imagine an application
where postal codes on letters have to be recognized so that
the letters can be sorted automatically. The machine is
shown many instances of each digit and has to learn to
classify new instances based on the experience with the old
ones. The prospect of not having to program a machine
explicitly but rather having a machine learn from examples
has attracted engineers to study learning since the early
days of artificial intelligence. In their quest for intelligent
machines early research was inspired by neural mechanisms
and ideas from reinforcement learning. However, for
practical applications researchers in machine learning also
need to take technical constraints (like scalability, robust-
ness and speed) into account. Furthermore, a good
understanding of what the algorithm does, perhaps even
with performance guarantees, would be very desirable if
the algorithm was to be used in practice. Usually these
constraints require techniques and insights from statistics,
optimization and complexity theory that make the algo-
rithm implausible as a psychological model of learning.
Nevertheless, some of the methods used in machine
learning are still strikingly similar to models that are
discussed in psychology. Many of the ideas about learning
that can be found in the machine learning literature are
certainly based on the same intuitions that psychologists
have.

Kernel methods, in particular, can be linked to neural
network models and exemplar theories of categorization.
Psychologically speaking, a kernel can often be thought of
as a measure for stimulus similarity. In a category learning
task it seems natural to assume that the transfer from old
to new stimuli will depend on their similarity. In fact, this
idea can be found throughout machine learning and
psychology. As categorization is an important cognitive
ability it has received a lot of attention from machine
learning and psychology. It is also in categorization models
that the similarity between machine learning methods and
psychological models becomes most obvious.

This paper is a tutorial on kernel methods for
categorization. These methods try to tackle the same
problems that human category learners face when they try
to learn a new category. Hence, we think that the
mathematical tools that are used in machine learning show
a great potential to be also useful for psychological
theorizing. Even if most of the solutions that machine
learning offers turned out to be psychologically implau-
sible, psychologists should still find it interesting to see how
a related field deals with similar problems—especially, as
machine learning methods are increasingly used for the
analysis of neural and behavioral data. At the very least,
this paper provides an introduction to these new tools for
data analysis. We find, however, that some of the methods
in machine learning are closely related to categorization
models that have been suggested in psychology. Briefly,
some kernels in machine learning are akin to a class of
similarity measures considered in psychology. This class of
similarity measures is based on Shepard’s universal law of

generalization and has been used extensively in exemplar
models of categorization (Kruschke, 1992; Nosofsky,
1986). Kernel methods are also like exemplar models in
other respects: They usually store all the exemplars they
have encountered during the course of learning and they
can be implemented in a neural network. In two related
papers we have used some of the results presented here to
clarify the relationship between similarity and general-
ization in categorization models and to resolve some
conceptual problems with popular models of similarity
(Jäkel, Schölkopf, & Wichmann, 2007a, 2007b). These
other two papers focus on the psychological aspects of
kernels, whereas in this paper we concentrate more on the
mathematical aspects.
There are several useful introductions to kernel methods

in the machine learning literature but none of them is
addressing psychologists directly—hence this paper. Most
of the technical material we present is based on two recent
books on kernel methods (Christianini & Shawe-Taylor,
2000; Schölkopf & Smola, 2002) and standard results in
linear algebra (e.g. Strang, 1988). We will assume that the
reader has had some previous exposure to linear algebra,
for example in the context of artificial neural networks or
psychometrics. However, in order to make the paper
accessible to a larger audience we included reminders of
relevant results throughout the text.
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Fig. 1. Each perceptron defines a hyperplane in a vector space. The weight

vector w is the normal vector of this hyperplane and the threshold y
defines the offset from the origin. On one side of the hyperplane (the side

that w points to) the inner product of all points with w is greater than y.
On the other side the inner product is smaller than y. In this example we

have chosen w and y so they can separate the circles from the crosses.
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1. Inner products

So what is a kernel? Kernels can be regarded as a non-
linear generalization of inner products. We will take a little
detour before explaining kernels and discuss the relation-
ship between inner products, perceptrons and prototypes.
This will set the stage on which kernels appear naturally to
solve non-linear classification problems.

1.1. Perceptrons

The perceptron can be considered the most basic of all
pattern recognition algorithms. It was conceived as a
simple model for learning in the brain (Rosenblatt, 1958).
A pattern x, in the form of n real numbers x1 to xn, is fed
into a neuron. The inputs are weighted by the synaptic
strengths w of the n connections to the neuron. There are n

real numbers w1 to wn that represent the synaptic strength
of each input. The neuron integrates all its weighted inputs
by summing them up:

hw;xi ¼
Xn

i¼1

wixi. (1)

If the excitation of the neuron is greater than a threshold
value y the neuron fires. The excitation is a linear
combination of the inputs. For this reason the perceptron
is also referred to as a linear classifier. Mathematically
speaking, the neuron calculates the standard inner product,
denoted with brackets h�; �i, of the vector x with the vector
w, both of which are elements in a n-dimensional vector
space. Inner products are also called dot products or scalar
products in linear algebra.

A vector space with an inner product h�; �i is a very rich
representation and has a natural measure of length and
angle that conforms to intuitions about Euclidean space.
The length or norm k � k of any vector w can naturally be
defined with the help of the inner product as

kwk2 ¼
Xn

i¼1

w2
i ¼ hw;wi. (2)

By using Pythagoras’ theorem one can find that this is in
agreement with Euclidean intuitions. All the familiar
properties of Euclidean space can be expressed in terms
of the standard inner product. The distance dð�; �Þ between
two points x and y in the space can then be defined as the
length of their difference vector

dðx; yÞ ¼ kx� yk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx� y;x� yi

p
. (3)

This distance can be used to define a metric on the space.
Moreover, the angle a between two vectors v and w can be
expressed as

cos a ¼
hv;wi

kvkkwk
. (4)

In particular, two vectors are perpendicular whenever their
inner product is zero.
Geometrically speaking, the weight vector together with
the threshold can be interpreted as the normal vector of a
hyperplane. Checking whether the inner product is bigger
than the threshold is equivalent to checking which side of
the hyperplane a pattern vector x falls on. In this way a
simple classification can be implemented by separating the
vector space into the two parts on both sides of the
hyperplane. This is illustrated in Fig. 1. The figure shows a
two-dimensional space and each point in the space defines
a possible pattern. There are two classes of patterns (circles
and crosses) and several instances of each class are shown.
A vector w pointing away from the origin is depicted
together with its hyperplane hw;xi ¼ 0, that is the set of all
points x that are perpendicular to w. If the inner product
between w and x is greater than zero the two vectors form
an angle that is less than 90�, hence w and x lie on the same
side of the hyperplane. It is possible to shift the hyperplane
along the vector w by changing the threshold parameter y.
In this example we have chosen w and y such that the
hyperplane that they define can correctly separate the
circles from the crosses. In general, the learning problem
for the perceptron is to find a vector w and a threshold y
that separates two classes of patterns as well as possible. It
is a very common view to see learning as adapting weights
in a neural network. There is a long list of learning
algorithms that try to accomplish this task of which the
perceptron learning algorithm is just one.

1.2. Prototypes

Take the psychologically rather than neurally motivated
example of a prototype learner (Posner & Keele, 1968;
Reed, 1972). The learning machine is given a set of patterns
A that are known to belong to one class and a set of
patterns B that are known to belong to another class. The
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prototype learner is usually understood as trying to extract
the central tendency of the two classes. Hence, to separate
A from B the arithmetic means of all examples in A and B

are calculated: a ¼ ð1=jAjÞ
P

a 2 A a and b ¼ ð1=jBjÞ
P

b 2 B b.
A new pattern x is classified as belonging to class A if it is
closer to a (the mean of A) than to b (the mean of B). We
can take ‘‘closer’’ to mean Euclidean distance in the vector
space in which the patterns are given. The Euclidean
distance between two points x and y is given by the square
root of the inner product of the difference vector with itself:
hx� y;x� yi (Eq. (3)). Therefore, a Euclidean prototype
classifier decides that a new stimulus x belongs to class A

whenever

hx� b̄;x� b̄i4hx� ā;x� āi,

hx; xi � 2hb̄;xi þ hb̄; b̄i4hx; xi � 2hā;xi þ hā; āi,

2hā;xi � 2hb̄;xi4hā; āi � hb̄; b̄i,

hā� b̄;xi4
1

2
ðhā; āi � hb̄; b̄iÞ,

hā� b̄;xi4y. ð5Þ

Remember that the definition of the inner product h�; �i
involves a sum and therefore it is linear in both arguments:
For all x, y and z it holds that hx; yþ zi ¼ hx; yi þ hx; zi
and also that hxþ y; zi ¼ hx; zi þ hy; zi. We have used this
property extensively in the above derivation. From the last
line of (5) it can be seen that the prototype classifier defines
a hyperplane in the input space just as the perceptron in
Eq. (1) does. The weight vector w is given by the difference
of the means ā� b̄ and the threshold y by the right-hand
side 1

2
ðhā; āi � hb̄; b̄iÞ. However, y is really just a bias

parameter that determines which of the two category
responses is preferred and might be chosen differently. The
crucial fact is that for the prototype classifier we take an
inner product with the difference vector of the means.
1.3. Positive definite matrices

The inner product defined in Eq. (1) is called the
standard inner product because it naturally arises in the
context of Euclidean spaces. In general, an inner product
h�; �i has to fulfill three formal properties that ensure that
the norm, distance and angle will behave as in Euclidean
space. First, it has to be symmetric: For all real-valued
vectors w and v it holds that hw; vi ¼ hv;wi. This reflects the
fact that the (absolute) angle between two vectors does not
depend on whether it is measured from w to v or from v to
w. Second, an inner product has to be linear in its
arguments, that is for a real number a and three vectors
u, v and w it holds that hau; vi ¼ ahu; vi and huþ w; vi ¼
hu; vi þ hw; vi. Because of the symmetry an inner product is
linear in both arguments. Third, an inner product has to be
positive definite. By positive it is meant that hw;wiX0 for
all w. Definiteness refers to hw;wi ¼ 0 if and only if w ¼ 0.
Positive definiteness is a natural requirement for a length
measure. Remember that the inner product of a vector with
itself hw;wi defines the square of the length of the vector
kwk2 and the squared length always has to be positive and
is only zero for the zero vector. It is easily verified that the
standard inner product (1) fulfills all three axioms.
The standard inner product is by no means the only

interesting inner product. A generalization that will be very
important in the following is given by

hw; viK ¼
Xn

i¼1

Xn

j¼1

wivjkij . (6)

Taking K to be a matrix with entries kij and
T to denote the

transpose of a matrix (rows and columns exchanged) the
definition can be written more elegantly as a matrix
multiplication

hw; viK ¼ wT Kv. (7)

If K is the identity matrix the standard inner product (1) is
recovered. In order for this definition to result in an inner
product the three axioms have to be fulfilled. Symmetry
depends on the symmetry of K. If kij ¼ kji for all i and j

then the definition in (6) will be symmetric. As a
consequence of the linearity of the sum it is immediately
clear that (6) is always linear. It remains to demand positive
definiteness. The inner product defined in Eq. (6) is positive
definite if the matrix K is positive definite, that is for all
vectors w the quadratic form that defines the squared
length of the vector kwk2 is positive,

wT KwX0, (8)

and zero if and only if w is zero. It is a standard result in
linear algebra that symmetric positive definite matrices can
be decomposed into principal components. Principal
component analysis (PCA) is used frequently in the
analysis of psychological data, for example covariance
matrices are positive definite and they are often subjected
to PCA. There is a rotation matrix U and a diagonal matrix
L that contains only positive eigenvalues such that
K ¼ UTLU . With this result the inner product (7) can be
rewritten as

hw; viK ¼ wT Kv

¼ wT ðUTLUÞv

¼ wT ð
ffiffiffiffi
L
p

UÞT ð
ffiffiffiffi
L
p

UÞv

¼ ð
ffiffiffiffi
L
p

UwÞT ð
ffiffiffiffi
L
p

UvÞ

¼ h
ffiffiffiffi
L
p

Uw;
ffiffiffiffi
L
p

Uvi.

Remember that for any two matrices A and B that can be
multiplied ðABÞT ¼ BT AT . By using U the vectors v and w

are rotated such that they coincide with the principal
components. After that they are rescaled using the diagonal
matrix

ffiffiffiffi
L
p

. In this coordinate system the inner product
hw; viK amounts to a standard inner product. In order for K

to implement an inner product all eigenvalues have to be
positive. Otherwise there could be vectors with a squared
length smaller than zero—clearly in contradiction with
Euclidean intuitions. Note also that if some eigenvalues
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Fig. 2. Whether a prototype classifier can separate two classes depends also on the inner product that is chosen. The left panel shows two classes (circles

and crosses) with highly correlated dimensions—in this case the standard inner product is not appropriate. The thick dashed line depicts the decision

bound for a prototype classifier when the standard inner product is used. The dotted line depicts a decision bound with a different inner product. This

inner product corresponds to the standard inner product in the space depicted on the right that can be obtained by rotating and rescaling the original

space.

Fig. 3. The crosses and the circles cannot be separated by a linear

perceptron in the plane.
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were zero than there would be vectors, other than the zero
vector, with a length zero. All this illustrates the close
connections between the standard inner product, Euclidean
space and positive definite matrices. Positive definite
matrices can define an inner product. If the coordinate
axes are rotated and rescaled appropriately this inner
product becomes a standard inner product and therefore
can induce a norm, a metric and angles that behave like the
familiar Euclidean ones.

1.4. Prototypes and orthogonality

As an example consider the following classification
problem. The left panel of Fig. 2 shows two categories
drawn from two Gaussian distributions. Each point is a
stimulus that is described by two dimensions. The
dimensions are highly correlated for both stimulus classes.
On a first glance a prototype learner will not find a good
decision bound to separate the two classes. The decision
boundary that results from the standard prototype
classifier is depicted as the thick dashed line. As the
decision boundary is orthogonal to the shortest connection
between the two means it cannot pay due respect to the
correlations in the classes. On a first glance one could think
that the problem is that the prototype classifier cannot deal
with correlation and therefore such a problem cannot be
solved by a prototype classifier. However, the problem
does not actually lie in the prototype classifier as such, it
lies in the inner product that is used to define orthogon-
ality. A prototype learner that does not fail for even the
simplest category structures should take the covariance of
the stimulus dimensions into account (Ashby & Gott, 1988;
Fried & Holyoak, 1984; Reed, 1972). If we take the inner
product h�; �iK to be given by a positive definite matrix K

that is the inverse of the covariance matrix of the classes we
get the right definition of orthogonality. The resulting
decision boundary is depicted as a dotted line. K is the
inverse of a positive definite matrix (covariance matrices
are always positive definite) and is therefore also a positive
definite matrix. Hence, it corresponds to the standard inner
product after rotating and scaling the space with the
matrices U and

ffiffiffiffi
L
p

. The middle panel in Fig. 2 shows the
rotated space and the right panel shows the space after
scaling. In this transformed space the prototype classifier
with the standard inner product can classify all stimuli
correctly.

1.5. Non-linear classification problems

A linear classifier like the perceptron is a very attractive
method for classification because it builds on strong
geometric intuitions and the extremely well-developed
mathematics of linear algebra. However, there are problems
that a linear classifier cannot solve—at least not directly. As
several psychological theories of categorization are based on
linear classifiers this issue has also attracted some attention
in the psychological literature (Smith, Murray, & Minda,
1997; Medin & Schwanenflugel, 1981). One example of a
problem that cannot be solved with a linear classifier can be
seen in Fig. 3. For a long time, the most popular approach
to solve non-linear problems like this one was to use a multi-
layer perceptron. Multi-layer perceptrons are known to be
able to approximate any function (Hornik, Stinchcombe,
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& White, 1989) and can be trained efficiently by using the
back propagation algorithm (Rumelhart, Hinton, & Wil-
liams, 1986, Chapter 8). The approach that will be presented
here is fundamentally different. The strategy is to use a non-
linear function to map the input patterns into a space where
the problem can be solved by a linear classifier. The
following toy-example illustrates this approach.

Fig. 3 shows examples from two classes (crosses and
circles) that cannot be separated by a hyperplane in the
input space (i.e. a straight line in two dimensions). Instead
of trying to classify the examples in the input space that is
given by the values x1 and x2 the data are transformed in a
non-linear way. Linear classification of the data is then
attempted in the transformed space. In machine learning
such a non-linear transform is called a feature map and the
resulting space a feature space. The term ‘‘feature’’ is
already heavily overloaded in psychology. Therefore we
will use the more neutral terms linearization function and
linearization space instead. The term linearization space
was used in an early paper on kernel methods (Aizerman,
Braverman, & Rozonoer, 1964). For example, consider the
following linearization function F : R2 7!R3

FðxÞ ¼

f1ðxÞ

f2ðxÞ

f3ðxÞ

0
B@

1
CA ¼

x2
1ffiffiffi

2
p

x1x2

x2
2

0
B@

1
CA. (9)

This transformation maps the example patterns to a three-
dimensional space that is depicted in Fig. 4. The examples
live on a two-dimensional manifold of this three-dimen-
sional space. In this space the two classes become linearly
separable, that is it is possible to find a two-dimensional
plane such that the circles fall on one side and the crosses
on the other side. This shows that with an appropriate non-
linear transformation of the input a simple linear classifier
Fig. 4. The crosses and circles from Fig. 3 can be mapped to a three-

dimensional space in which they can be separated by a linear perceptron.
can solve the problem. The linearization approach is akin
to transforming the data in data-analysis before fitting a
linear model. In the current example each hyperplane in the
linearization space defines a quadratic equation in the
input space. Hence, it is possible to deal with quadratic (i.e.
non-linear) functions by only using linear methods. In
general, the strategy is to preprocess the data with the help
of a function F such that a linear perceptron model is likely
to be applicable. Formally, this can be expressed as

hw;FðxÞi ¼
Xn

i¼1

wifiðxÞ, (10)

where n is now the dimension of the linearization space and
w is a weight vector in the linearization space. It is clear
that there is a wide variety of non-linear functions that can
be used to preprocess the input. In fact, this approach was
very popular in the early days of machine learning
(Nilsson, 1965). The problem is of course that the function
F has to be chosen before learning can proceed. In our toy
example we have only shown how one can use linear
methods to deal with quadratic functions but usually one
will not know in advance whether it is possible to separate
the data with a quadratic function. However, if F is chosen
to be sufficiently flexible, for example instead of a
quadratic function with only three coefficients one could
choose a high order polynomial with many coefficients,
then it may be possible to approximate even very
complicated decision functions. This comes at the cost of
increasing the dimensionality of the linearization space and
the number of free parameters. Therefore early machine
learning research has tried to avoid this. After Minsky and
Papert (1967) could show that some interesting predicates
cannot be separated by any finite dimensional perceptron,
not even by choosing a polynomial of a very high degree,
the promises of flexible, linear perceptrons seemed rather
dim for many practical applications. Only later did
researchers in machine learning discover that by using
kernels they could easily build infinite dimensional
perceptrons that seem powerful enough for all practical
purposes.

2. Kernels

The next section will introduce the kernel trick that
makes it possible to work with high dimensional (even
infinite dimensional) and flexible linearization spaces.

2.1. The kernel trick

There is an interesting observation about the lineariza-
tion function that was used in the foregoing example. The
standard inner product between two input vectors in the
linearization space can be calculated without having to
explicitly map the data into the linearization space. For
two points x and y in R2

hFðxÞ;FðyÞi ¼ x2
1y

2
1 þ 2x1x2y1y2 þ x2

2y2
2 ¼ hx; yi

2.
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A more general result can be proved. For an n dimensional
input space a class of popular and flexible linearization
functions is given by all monomials of degree d. A
monomial of degree d takes the product of d components
of an input vector x. E.g., for n ¼ 5 the following are
monomials of degree d ¼ 3: x3

1, x1x2x5 and x2
2x4. The

possible number of monomials is given by choosing d out
of n with replacement. The order does not matter because
of the commutativity of the product. However, for
simplicity let us consider a linearization function that takes
all nd possible ordered monomials. Thus, x1x2x3 is a
dimension in the new space but x2x3x1 would be another
dimension. For the linearization function F0 : Rn 7!Rnd

that
computes all ordered monomials it holds that

hF0ðxÞ;F0ðyÞi ¼
Xn

i1¼1

Xn

i2¼1

� � �
Xn

id¼1

xi1xi2 . . . xid
yi1

yi2
. . . yid

¼
Xn

i1¼1

xi1yi1

Xn

i2¼1

xi2yi2
� � �
Xn

id¼1

xid
yid

¼
Xn

i¼1

xiyi

 !d

¼ hx; yid .

Calculating the inner product in the linearization space
is the same as taking the inner product in the original
space and taking it to the power of d. Computationally,
this is an extremely attractive result. Remember that a
high number of dimensions is needed to make the
linearization space sufficiently flexible to be useful. If
calculated naively the computational effort of the inner
product in the linearization space scales with its dimen-
sions. However, this result shows that, in the case of a
monomial linearization function, it is not necessary to
explicitly map the vectors x and y to the nd dimensional
linearization space to calculate the dot product of
the two vectors in this space. It is enough to calculate the
standard inner product in input space and take it to the
power of d.

The function kðx; yÞ:¼hFðxÞ;FðyÞi ¼ hx; yid is our first
example of a kernel, the so-called polynomial kernel.
Intuitively, kernels can provide a way to efficiently
calculate inner products in higher dimensional lineariz-
ation spaces. They also provide a convenient non-linear
generalization of inner products. With the help of a
kernel, it is easy to build non-linear variants of simple
linear algorithms that are based on inner products.
This is called the kernel trick in the machine learning
literature.

Take as an example the prototype classifier, again.
Instead of taking the mean in input space, like in Eq. (5),
one can construct a prototype classifier in the linearization
space. We will take the threshold y to be a free parameter
that we can tune to account for biases. For the left-hand
side we now want to take the mean in the linearization
space, that is the mean after we applied the mapping F. To
decide whether x belongs to class A we also map x to the
linearization space and check that

1

jAj

X
a 2 A

FðaÞ �
1

jBj

X
b 2 B

FðbÞ;FðxÞ

* +
4y,

1

jAj

X
a 2 A

hFðaÞ;FðxÞi �
1

jBj

X
b 2 B

hFðbÞ;FðxÞi4y,

1

jAj

X
a 2 A

kða; xÞ �
1

jBj

X
b 2 B

kðb;xÞ4y, ð11Þ

where as before A and B are sets of patterns from two
classes and the linearity of the inner product and the sum
were used.
The input space could be a 16� 16 matrix of pixel

values, that is a 256 dimensional space. The linearization
space could be all monomials of degree 10. Mapping the
inputs to the linearization space and calculating the mean
there would be prohibitive as the mapping of each input to
this space takes a large number of dimensions. Despite the
high number of dimensions it is possible to use a prototype
classifier in the linearization space by taking advantage of
the kernel trick. By using the kernel trick it is not necessary
to calculate the mean in the linearization space but a
prototype classifier can still be used by using Eq. (11).
In psychology, monomial linearization functions have

been used before, for example, in the configural-cue model
by Gluck and Bower (1988). They used a linear perceptron
with monomial features for modeling the categorization
data of Shepard, Hovland, and Jenkins (1961). They also
noted that increasing the number of input dimensions with
monomials increases the capabilities of a perceptron
similar to increasing the number of hidden units in a
multi-layer perceptron—however, in an inelegant way
because the number of monomials increases drastically
with the number of features. Therefore, the number of
weights that have to be adapted also increases drastically.
The above result shows that it is possible to calculate the
response of a perceptron, for example when the weights are
adapted by using the prototype rule (but also using other
learning rules), without actually having to compute all
monomials. In fact, neither the monomials nor the weights
in the linearization space have to be computed to evaluate
the prototype-perceptron in Eq. (11).
2.2. Reproducing kernel Hilbert space

Every linearization function F defines a kernel function
via

kðx; yÞ ¼ hFðxÞ;FðyÞi. (12)

It is always possible to define a kernel by choosing a
linearization function F and an inner product. The
function kð�; �Þ can be evaluated by explicitly mapping
patterns to the linearization space and calculating the inner
product in the linearization space. However, as the example
of the polynomial kernel has shown, sometimes it is not
necessary to actually compute F. It is natural to ask under
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what circumstances does a function kð�; �Þ implement an
inner product in a linearization space and what does the
corresponding linearization space and linearization func-
tion look like. As it turns out there is a well-developed
branch of mathematics that deals with these questions:
Functional analysis. In short the answer is that if kð�; �Þ is a
symmetric and positive definite kernel then k implements
an inner product in a linearization space. Constructing a
linearization space and an inner product for a positive
definite kernel is the purpose of this section.

First, the introduction of some notation is required. For
a set of patterns x1 to xN and a function kð�; �Þ of two
arguments the kernel matrix is the matrix that collects all
pairwise applications of k to the patterns. Let us denote
this N �N matrix with K and denote the entry in the ith
row and jth column with kij then

K with kij ¼ kðxi; xjÞ

is called the kernel matrix or Gram matrix for the patterns
x1,y, xN . A real and symmetric function kð�; �Þ, that is a
function with the property kðx; yÞ ¼ kðy;xÞ, is called a
positive definite kernel if for all choices of N points the
corresponding kernel matrix K is positive semi-definite, that
is for all N-dimensional vectors w

wT KwX0. (13)

Note that for a matrix to be positive semi-definite we do
not require that equality only holds for w ¼ 0 (as opposed
to the definition of a positive definite matrix, see Eq. (8)).
As K is only positive semi-definite it can have eigenvalues
that are zero and does not have to be full rank. This
definition of a positive definite kernel seems confusing
because for a kernel to be positive definite we require the
corresponding kernel matrices to be positive semi-definite.
However, the definition we give is the usual definition used
in machine learning and therefore we will use it, too
(Schölkopf & Smola, 2002).

With the definition of a positive definite kernel in mind, it
is possible to construct a vector space, an inner product, and
a linearization function such that the kernel condition (12) is
fulfilled. In the following, these three steps are demonstrated
in a purely formal way. After that, the formal steps are
illustrated by an example, using the Gaussian kernel.

2.2.1. Step 1: constructing a vector space

The vector space will be a space of functions constructed
from the kernel. Let kð�;xÞ denote a function that is taken
to be a function of its first argument with a fixed second
argument. The vector space is then defined as all functions
of the form

f ðxÞ ¼
XN

i¼1

wikðx;xiÞ. (14)

Each function in the space is a linear combination of kernel
functions kð�;xiÞ and can be expressed by some set of N

patterns x1; . . . ; xN with real coefficients w1; . . . ;wN . It is
important to realize that these N patterns could be different
for different functions. All functions are linear combina-
tions of kernel functions given by k and because they are
linear combinations they define a vector space—functions
can be added and multiplied with scalars. When functions
are added potentially all the kernel functions of the two
added functions need to be included in the expansion of the
summed function but the sum will still be in the vector
space.
The expansion of f given in Eq. (14) might not be unique.

There is no requirement in the definition of f that the kernel
functions need to be linearly independent. If they are not
independent then the same function can be expressed in
different ways. The function space is the span of the
generating system of functions. If there is an infinite
number of potential independent kernel functions then the
vector space is infinite dimensional, even though each
function f can be expressed by a finite sum.
2.2.2. Step 2: constructing an inner product

Next we will equip this vector space with an inner
product. A possibly infinite dimensional vector space with
an inner product is called a pre-Hilbert space. If the limit
points of all Cauchy sequences are included in the space,
the space is completed and turned into Hilbert space

proper. Completeness is, for example, important for
defining unique projections. We will ignore these techni-
calities here (but see Schölkopf & Smola, 2002) and simply
note that Hilbert spaces can be thought of as the possibly
infinite dimensional generalization of Euclidean spaces.
Take a function f with an expansion given by Eq. (14) and
let gðxÞ ¼

PM
i¼1 vikðx; yiÞ be another function from this

space then we can define the inner product between the two
functions f and g as

hf ; giH ¼
XN

i¼1

XM
j¼1

wivjkðxi; yjÞ. (15)

In order to distinguish the inner product in Hilbert space
from the normal inner product in Euclidean space we have
added the little index H. We have to show that this
definition is indeed an inner product. First we have to show
that it is well-defined. The particular expansions of f and g

that are used in the definition might not be unique, as
mentioned above. Fortunately, the definition (15) does not
depend on the particular expansions of f and g that are
used to calculate the inner product. To see this, let f ðxÞ ¼PN0

i¼1w
0
ikðx;x

0
iÞ and gðxÞ ¼

PM0
i¼1v0ikðx; y

0
iÞ be two new

expansions of f and g that are different from the ones
used in the definition of the inner product (15). They will,
however, result in the same inner product because

XN

i¼1

XM
j¼1

wivjkðxi; yjÞ ¼
XN

i¼1

wigðxiÞ

¼
XN

i¼1

XM 0

j¼1

wiv
0
jkðxi; y

0
jÞ
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¼
XM 0

j¼1

v0j f ðy
0
jÞ

¼
XN 0
i¼1

XM 0

j¼1

w0iv
0
jkðx

0
i; y
0
jÞ. ð16Þ

Therefore, (15) is indeed well-defined. To show that it is an
inner product it also has to be symmetric, linear in its
arguments and positive definite. As k is symmetric in both
arguments the above definition is also symmetric. It is
obviously linear because of the linearity of the sum.
Positive definiteness means that hf ; f iHX0 where equality
only holds for f ¼ 0. Note that hf ; f iH ¼ wT Kw by
definition. As the defining property of a positive definite
kernel is that the kernel matrix K is always positive semi-
definite (Eq. (13)), it is immediately clear that hf ; f iHX0.
Definiteness is a bit more tricky but it can be proved that
for all positive definite kernels definiteness of (15) holds
(Schölkopf & Smola, 2002). Hence, all positive definite
kernels can define an inner product in the above way. This
may also justify calling these kernels positive definite.
2.2.3. Step 3: constructing a linearization function

Each kernel function kð�;xÞ with a fixed x is trivially
contained in the vector space. It is simply an expansion
with only one kernel function and a weight of one.
Therefore, the inner product (15) of this function with a
function f that has N coefficients wi and kernel functions
kð�; xiÞ is

hkð�; xÞ; f iH ¼
XN

i¼1

wikðx; xiÞ ¼ f ðxÞ, (17)

by the definition of the function space (Eq. (14)). This is a
remarkable fact: The inner product with the function kð�; xÞ
evaluates the function f at point x. Therefore kð�;xÞ is also
called the representer of evaluation. Another remarkable
property directly follows from the definition of the inner
product (15)

hkð�; xÞ; kð�; yÞiH ¼ kðx; yÞ, (18)

because each of the two kernel functions has a simple
expansion with just one summand and a coefficient of one.
Due to these two properties the linear space of functions as
given in Eq. (14) with the above dot product h�; �iH is called
a reproducing kernel Hilbert space (RKHS) in functional
analysis (if it is completed).

Now, a linearization function can be defined in the
following way FðxÞ:¼kð�;xÞ. Because of the reproducing
property the kernel condition kðx; yÞ ¼ hFðxÞ;FðyÞiH holds
for this linearization function. The linearization space is a
space of functions over the x. The linearization function
that was constructed maps each point x in the input space
to a function kð�;xÞ in the linearization space.

Remember what is accomplished by this. Starting from a
positive definite kernel a vector space, an inner product and
a linearization function were constructed such that the
kernel condition (12) holds. If the kernel is easy to calculate
then by means of the kernel it is possible to calculate inner
products in the linearization space without actually
mapping the points x and y into it. Understanding this
trick opens up a box of new non-linear tools for data
analysis. Any method where the linearization space only
occurs in inner products of the form (12) can benefit.
In fact, there is now a long list of familiar linear methods
that have been kernelized. This list includes kernel
principal component analysis (Schölkopf, Smola, & Mül-
ler, 1998) and many others (Schölkopf & Smola, 2002).
2.3. Gaussian kernel example

The Gaussian kernel has frequently been used in
psychology to model the similarity between two mental
representations x and y (Nosofsky, 1986, 1990; Ashby &
Maddox, 1993). It is defined as

kðx; yÞ ¼ exp�kx�yk2 . (19)

A standard result in functional analysis is that the
Gaussian kernel is a positive definite function and that
any kernel matrix K resulting from the Gaussian kernel is
always full rank (Schoenberg, 1938; Schölkopf & Smola,
2002). We will not prove these two facts but we will take
them for granted in what follows. The fact that the kernel
matrices are always full rank and therefore positive definite
(and not just semi-definite) is important and should be kept
in mind.
2.3.1. Step 1: constructing a vector space

As a vector space we take all functions that can be
expressed as a linear combination of Gaussian kernel
functions (see Eq. (14)). One example of such a function is
shown in Fig. 5. The Gaussian functions are depicted
with dotted lines. Their height is scaled with the weight wi

that each function receives in the sum. Summing the
Gaussian functions results in the solid functions. It is easy
to imagine that by changing the weights and adding more
Gaussian functions very different functions can be
implemented or at least approximated. While each function
is a finite sum, the space includes all functions that can be
expressed in this way with infinitely many different choices
for Gaussian functions. In fact, there are uncountably
many choices because each point on the axis is a potential
candidate for a Gaussian function centered on this point.
For this reason this vector space does not have a finite
dimensional basis. It is not possible to describe all
functions that are spanned by the Gaussian functions with
a finite number of basis functions. We have an example of
an infinite dimensional space—that however in many
respects is similar to the ordinary finite dimensional vector
spaces that are the subject of linear algebra. For example,
this infinite dimensional space can also be equipped with an
inner product.
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Fig. 5. An example of a function from the linear function space defined in

Eq. (14). Each function in the space is a linear combination of generating

functions that are given by the kernel: f ðxÞ ¼
PN

i wikðx; xiÞ. Here we have

depicted seven Gaussian basis functions as dotted lines. Their height is

proportional to their weight wi. The sum of these is shown with the solid

line. All functions that can be expressed as such a linear combination of

kernel functions are in the function space.
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2.3.2. Step 2: constructing an inner product

Eq. (15) defines an inner product that can be used. With
the inner product on the function space it is possible to
define a norm and a metric on the space in the same way as
it is done in Euclidean spaces. One can even calculate
angles between functions. Let us, for illustration, calculate
the angle between two Gaussian functions. This is done in
the same way as in Euclidean spaces (see Eq. (4)). First
note that each Gaussian function has a trivial expansion in
the function space. It is simply itself with a weight of one.
The norm of a Gaussian function is one because

kkð�;xÞk2 ¼ hkð�; xÞ; kð�;xÞi ¼ kðx; xÞ ¼ exp�kx�xk2 ¼ 1,

(20)

which is only using the definition of the inner product (15)
and the Gaussian kernel. Therefore, the cosine of the angle
between two Gaussian functions is directly given by the
inner product. As two Gaussian functions each have an
expansion with only one weight that is set to one their inner
product is hkð�;xÞ; kð�; xÞi ¼ kðx; yÞ, which is of course the
reproducing property (18). Hence, kðx; yÞ can be inter-
preted as the cosine of the angle between two Gaussian
functions centered on x and y, respectively. This has
interesting consequences. For two non-identical points x

and y it holds that 14kðx; yÞ40. Therefore, the angle
between two Gaussian functions lies between 0� and 90�.
The further two Gaussians are apart the greater is their
angle. Functions that are far apart are almost orthogonal.
This makes sense because they span different parts of the
function space. But as no two Gaussians are completely
orthogonal it also means that the Gaussian functions do
certainly not form an orthogonal basis of the function
space. We have noted before that for the Gaussian kernel
the kernel matrices (that collect all pairwise inner products
of the Gaussians) are always full rank, hence any number
of Gaussian functions are always linearly independent.

2.3.3. Step 3: constructing a linearization function

The linearization function F maps points from the space
in which x is defined to a space of functions over all
possible x. In the example of the Gaussian kernel this
means that we map a point x to the function kð�; xÞ, a
Gaussian function centered on x. In a psychological setting
imagine x to be the representation of a stimulus in some
perceptual space. Imagine further that k is interpreted as a
similarity measure. The further two stimuli are apart the
less similar they are and this relationship is captured in the
Gaussian kernel. Mapping a stimulus x to the function
kð�;xÞ means replacing a stimulus with its similarity to all
other stimuli. Representation in this RKHS is literally
representation of similarities (Edelman, 1998). In a
companion paper we discuss some consequences of this
observation in more detail (Jäkel et al., 2007b). Here, it
suffices to say that calculating similarity by a Gaussian
function is the same as taking an inner product in the
corresponding RKHS that was constructed above.

2.4. Prototypes and exemplars

Let us stay with the example of the Gaussian kernel (19)
for a while. Keep in mind that in a psychological setting the
Gaussian kernel kðx; yÞ is interpreted as the similarity
between two stimuli x and y. To see the potential of the
RKHS view of the Gaussian kernel for psychological
theorizing, imagine we construct a prototype classifier in
RKHS according to inequality (11). Let us assume that the
bias parameter y is set to zero. In this case, for a prototype
classifier in the linearization space we decide that x belongs
to class A and not to class B if FðxÞ is closer to the mean of
the stimuli in A than in B. This can be done by checking
that

1

jAj

X
a 2 A

kða;xÞ4
1

jBj

X
b 2 B

kðb; xÞ, (21)

that is the mean similarity of x to all exemplars of class A is
bigger than the mean similarity to all exemplars of class B.
The left side of the inequality (if appropriately normalized)
can be interpreted as a kernel-density estimate for the class
density of A (Ashby & Alfonso-Reese, 1995). It can also be
interpreted as an estimate for the degree that a new x

belongs to A. In any case, this is the most basic exemplar
model of categorization, but it was derived from a
prototype classifier.
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1However, note that K might be close to singular in practice.
2One important difference between tuning curves being modeled by

a Gaussian and psychological similarity that is often also modeled by

a Gaussian is of course that similarity is calculated between mental
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2.5. Infinite dimensional perceptrons

Remember that the reason why we introduced the kernel
trick was that a flexible preprocessing is needed so that a
linear classifier can solve many non-linear categorization
problems. In the previous section we examined the
prototype classifier in an infinite dimensional function
space, in this section we examine linear perceptrons in such
a space. It will turn out that a linear classifier in an infinite-
dimensional space can separate all possible stimuli in
two classes.

Formally, a perceptron with a preprocessor F is given by
an inner product of the pattern x mapped to a linearization
space and a vector w in the same space: hw;FðxÞi. Let us
choose the infinite dimensional linearization space to be the
RKHS that is associated with a suitable kernel, for
example the Gaussian kernel. The perceptron in this
RKHS is then defined by the inner product between two
functions. The pattern x is preprocessed by the function
FðxÞ:¼kð�;xÞ which maps x to the function that describes its
similarity to all other stimuli. The role of the weight vector
w in the classical perceptron (10) is taken by the coefficients
for a function in the RKHS. Let us denote this function
with f. As before—see Eq. (17)—we denote the coefficients
that f takes in the expansion given by the kernel functions
with w. With this notation an infinite dimensional
perceptron can be written as

hf ;FðxÞiH ¼ hf ; kð�;xÞiH ¼
XN

i¼1

wikðx; xiÞ ¼ f ðxÞ. (22)

As kð�;xÞ is the representer of evaluation (17), the inner
product of f with the pattern x mapped to the linearization
space is just f evaluated at x. If f ðxÞ is greater than a
threshold the pattern x is categorized as one class otherwise
as the other class.

The learning problem for an infinite-dimensional percep-
tron is then to find a suitable function f in the RKHS that
can categorize the patterns under consideration correctly.
It may seem that this is a difficult problem because we have
to find a function in an infinite dimensional space rather
than a weight vector in a finite dimensional space as for the
perceptron. However, there is a simple solution for f. Say, a
subject wants to learn to discriminate between two
different categories of stimuli. The subject is given a
training set of N exemplars x1,y, xN . Each stimulus has a
class label that we denote with y1,y, yN . The class label yi

for pattern xi can be either þ1 or �1, depending on which
category xi belongs to. We will treat the categorization
problem like a regression problem. The aim of the category
learner is to find a function f defined on the perceptual
space such that f ðxÞ is þ1 whenever x belongs to one class
and �1 when x is in the other class. Instead of searching for
the best function in the whole RKHS we will only consider
a subspace of all functions in the RKHS and show that in
this subspace there is a function that can solve the
regression problem perfectly. The subspace we consider is
all linear combinations of the kernel functions on the
exemplars:

f ðxÞ ¼
XN

i¼1

wikðx;xiÞ. (23)

The output of this function can be thought of as calculating
a weighted similarity to all exemplars. This function is a
linear combination of kernel functions. As all kernel
functions are in the RKHS their linear combinations are
also in the RKHS. Therefore, for a fixed set of N exemplars
their linear combination spans a subspace of the RKHS
that is at most N-dimensional. We refer to this subspace as
the span of the exemplars. The span of the exemplars seems
to be a only a small subset of all the functions in the infinite
dimensional RKHS but it contains a function that solves
the regression problem perfectly.
Finding a function f of the form (23) that solves the

regression problem means finding weights w1; . . . ;wN for
the exemplars such that for all j: f ðxjÞ ¼ yj. We introduce
an N-dimensional vector y for the N labels. As we are only
interested in the values that the function f takes on the
exemplars xj (with j from 1 to N) we only need to evaluate
(23) at these values:

PN
i¼1 wikðxj ; xiÞ. Let us use a vector w

for the weights and using the same notation as before we
write K for the matrix that collects all pairwise evaluations
of k on the exemplars. Hence, the weights that we seek
should solve y ¼ Kw. If K has full rank—as the Gaussian
kernel for example guarantees—then K is invertible and

w ¼ K�1y. (24)

There is a unique vector of weights that solves the
classification problem perfectly. If K has full rank this is
always possible irrespective of the set of exemplars and
their category labels.1 As there is a solution in the span of
the exemplars we do not need to work with the infinite
dimensional RKHS to find a solution for the categoriza-
tion problem in the RKHS.

2.6. Neural networks

The solution to the categorization problem that was
discussed in the previous section can be understood as a
weighted similarity to the exemplars. Exemplar models like
this one can be implemented as a neural network. Imagine
a cell that by means of learning has become sensitive to a
particular stimulus y—it’s preferred stimulus. It will still
fire if another stimulus x is sufficiently similar to the
preferred stimulus. The way that the firing rate of the cell
changes with changes in the stimulus is described by its
tuning curve that can be modeled by a function like the
Gaussian kernel.2 A simple one layer neural network with
several cells that are tuned to certain exemplars, x1 to xN , is
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Fig. 6. A RBF-network calculates a weighted sum over the responses of N

cells with ‘tuning curves’ given by k.
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depicted in Fig. 6. Each cell responds to a stimulus x

according to its tuning curve, given by k. The activity of all
cells is collected by an output neuron that computes a
weighted sum of its inputs. The function that this network
implements was already given in Eq. (23).

In the neural network literature a function of the
distance between two stimuli is called a radial basis
function (RBF) kernel. The Gaussian kernel is the most
prominent example for a radial basis function. As neural
tuning curves are often found to have a shape like a radial
basis function, RBF-networks have repeatedly been
advocated as a model for brain function by Poggio and
coworkers (Poggio, 1990; Poggio & Bizzi, 2004; Poggio &
Girosi, 1989). They have also studied the link to reprodu-
cing kernel Hilbert spaces. From a mathematical view-
point the problem they are addressing is the learning of an
unknown function. Their approach motivates the use of
kernels from a function approximation and regularization
view.
Fig. 7. Stimuli from two categories are classified by an exemplar networks
3. Regularization

By using the exemplar network with as many free
parameters as stimuli it is always possible to find weights
such that the network can classify all training stimuli
perfectly. The price for this flexibility is the danger of
overfitting. A network may learn to categorize all training
stimuli perfectly but only because it has learned the stimuli
by heart. Any regularity in the data is overlooked in this
way and therefore the network will not be able to
(footnote continued)

representations whereas tuning curves are usually based on physical

measurements.
generalize. An example for overfitting is shown in Fig. 7.
Crosses and circles depict exemplars from two different
categories. The two categories are defined by two over-
lapping Gaussian probability distributions. As we know
the distributions that generate the stimuli we can calculate
the optimal decision boundary which for two Gaussians is
a quadratic function (Ashby & Maddox, 1993). The dashed
line is this optimal decision boundary. The grayscale values
depict the function f that was obtained by calculating
exemplar weights with a Gaussian kernel as given in
Eq. (24). The solid line is the contour line where f ðxÞ ¼ 0.
On one side of this contour line the infinite dimensional
perceptron would classify stimuli as belonging to one class,
on the other side stimuli are classified into the other class.
It can be seen that all training stimuli are categorized
correctly. The resulting decision boundary is obviously not
very reasonable, and also very different from the optimal
decision boundary. Intuitively speaking, the decision
boundary that the exemplar network calculates is too
complicated. The regression function f should not be
allowed to vary so wildly and the decision boundary should
be smoother and less complicated.
One popular strategy to avoid overfitting is regulariza-

tion (Bishop, 1995; Schölkopf & Smola, 2002; Poggio &
Smale, 2003). In regularization there is an additional
constraint on the function f that is sought: The function
should not only fit the data it should also be smooth and
not too ‘‘complex’’. To this end a penalty term is
introduced that penalizes functions for being complex.
Many modern model selection criteria can be seen as
penalizing complexity (Pitt, Myung, & Zhang, 2002).
Instead of only minimizing the error on the training
exemplars, which can always be done perfectly, the error
plus a penalty term is minimized. The penalty term is also
called regularizer.
as given in Eqs. (23) and (24). The solution is overfitted, that is the training

stimuli can be categorized perfectly but generalization to new stimuli will

be poor. The optimal decision boundary for this category learning

problem is shown as a dashed line.
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Let us denote the error that a function f makes on the
training exemplars with cðf Þ. Possible examples for such a
cost function are the number of misclassifications or the
mean square error. If we denote the penalty term by O then
the function that one seeks to minimize becomes

Lðf Þ ¼ cðf Þ þ Oðhf ; f iHÞ. (25)

The penalty term is chosen as a strictly increasing function
O of kf k2H ¼ hf ; f iH, the squared norm of the function in
the RKHS that the kernel defines. The learning problem is
now understood as trying to find a function f that
minimizes L.

3.1. The representer theorem

Ideally, one would like to find the function f that
minimizes the regularized error L over all functions in the
RKHS. Perhaps surprisingly, the optimal function can be
represented as an expansion of the exemplars as given in
Eq. (24). This result is called the representer theorem. It
shows that for a large class of problems the optimal
solution over all functions in the RKHS lies in the span of
the exemplars. If the aim of a function learner (be it a brain
or a machine) is to minimize a regularized loss then it
makes sense to restrict the learning mechanism to an
exemplar network of the form (23). The proof that is given
by Schölkopf, Herbrich, and Smola (2001) is short, and it
illustrates the power of the RKHS-view of kernels.

As f is in the RKHS we can split it up into a part f k that

lies in the span of the exemplars (23) and a part f ? that is
orthogonal to it. For the first term cðf Þ in the regularized

loss function Lðf Þ we need to evaluate f ¼ f k þ f ? only on
the exemplars x1,y, xN . Remember that kðxi; �Þ is the
representer of evaluation for xi and therefore (see Eq. (17))

f ðxiÞ ¼ f kðxiÞ þ f ?ðxiÞ ¼ f kðxiÞ þ hf
?; kðxi; �ÞiH.

The second term is zero because by definition f ? is
orthogonal to kðxi; �Þ. Hence, the cost function cðf Þ is

independent of f ?. For the penalty term note that

Oðhf ; f iHÞ ¼ Oðhf k; f kiH þ 2hf k; f ?iH þ hf
?; f ?iHÞ

¼ Oðhf k; f kiH þ hf
?; f ?iHÞ.

For a minimizer of L the orthogonal part f ? has to be zero.

To see this assume f is a minimizer but f ? is not zero. As O
is strictly increasing L can be decreased by choosing f ? to
be zero and hence f was not a minimizer—in contradiction
to the assumption. Therefore, the best function in the
whole RKHS is given by an expansion of the exemplars
(23).

The importance of the representer theorem is that if the
regularizer can be cast as a strictly increasing function O of
hf ; f iH then the optimal solution over the whole RKHS is a
linear combination of kernel functions centered on the
exemplars. Therefore, it is not necessary to work in the
infinite dimensional function space to find the best function
in it. To find the best function one only has to adjust the
exemplar weights. Furthermore, the single best function
can often be found analytically or with simple numerical
procedures. In fact, kernel methods in machine learning are
often derived by starting from a regularized loss and
providing a method that can find an optimal solution in the
span of the exemplars. All this makes exemplar networks
so attractive for machine learning and perhaps this can also
provide a theoretical justification for assuming a psycho-
logical mechanism that is based on storing exemplars.
Exemplar models in psychology simply assume that all
exemplars are stored without giving a rational explanation
why this should be done. If the objective of a subject could
be phrased in terms of a regularized loss of the above form
(as it is often done is statistics and machine learning) then,
as we know that the optimal solution lies in the span of the
exemplars, we would have an argument for using exemplar
models in the first place.

3.2. Regularization example

To understand the rationale behind regularization better
and to appreciate the representer theorem it is helpful to
look at a more concrete example.
Let us assume the learning proceeds by trying to find a

regression function f that minimizes a certain loss Lðf Þ that
has two components: One component cðf Þ that depends on
the error on the training stimuli and a component
Oðhf ; f iHÞ that penalizes the function’s complexity (see
Eq. (25), above). As a measure for the error that the learner
makes on the training examples we will take the mean

square error: cðf Þ:¼
PN

j¼1ðf ðxjÞ � yjÞ
2. The squared loss is

not the most reasonable loss function for a categorization
problem. However, it has been used in psychology before
and might be justified by the Rescorla–Wagner rule (Gluck
& Bower, 1988). ALCOVE, a prominent exemplar model,
for example, uses a different loss function (Kruschke,
1992). Intuitively, it seems better to minimize misclassifica-
tions directly and from a statistical view-point one would
want to minimize the negative log likelihood. However, we
have chosen to minimize the mean square error because it
is conceptually easier. For the penalty term O we have
chosen the simple case where it is linear with a positive
parameter l. The loss function (25) then becomes

Lðf Þ ¼
XN

j¼1

ðf ðxjÞ � yjÞ
2
þ lhf ; f iH,

where yj is the value that the function should output on

exemplar xj . The parameter l can be thought of as

controlling the trade-off between a good fit and the
penalty.
Above we have—perhaps a bit hand-wavingly—referred

to the effect of regularization as penalizing ‘‘complexity’’.
We can understand what the regularization in Eq. (25) does
by looking at the form of the penalty term which depends
on the squared norm hf ; f iH of the function f. Because
of the representer theorem the optimal function is of the
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Fig. 8. The same categorization problem as in Fig. 7 but this time a

regularized solution is shown. The regularized decision boundary (solid

line) is quite close to the optimal decision boundary (dashed line).
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form (24) and we can rewrite the squared norm of the
optimal function as

hf ; f iH ¼
XN

i¼1

wikðxi; �Þ;
XN

j¼1

wjkðxj ; �Þ

* +
H

¼
XN

i¼1

XN

j¼1

wiwjhkðxi; �Þ; kðxj ; �ÞiH

¼
XN

i¼1

XN

j¼1

wiwjkðxi;xjÞ

¼ wT Kw,

where we have used the linearity of the inner product and
the reproducing property. In the regularizer the weights of
the function f are multiplied by the similarity of the
respective exemplars. In order to make two very similar
exemplars output very different function values it is
necessary to use very big exemplar weights. As large
weights for similar exemplars can only be achieved at a
high penalty the regularized function respects the similarity
measure better than the non-regularized solution in Fig. 7.

As we know by the representer theorem that the optimal
function is of the form (24) minimizing Lðf Þ is equivalent to
finding exemplar weights w such that

Lðf Þ ¼
XN

j¼1

XN

i¼1

wikðxi;xjÞ � yj

 !2

þ lðwT KwÞ

¼ ðKw� yÞT ðKw� yÞ þ lðwT KwÞ

¼ wT ðKK þ KlÞw� 2yT Kwþ yT Ky

is minimal. The optimal weights can be found analytically
by differentiating this quadratic loss function with respect
to w. Setting to zero to find the optimum leads to the
following solution for w:

2ðKK þ KlÞw� 2Ky ¼ 0,

ðKK þ KlÞw ¼ Ky,

ðK þ lIÞw ¼ y,

w ¼ ðK þ lIÞ�1y.

The Hessian of the quadratic function L is given by
ðKK þ KlÞ. If the Hessian is a sum of two positive definite
matrices it will be positive definite itself. In this case the
solution for w is the unique minimum. A regularized
solution for f for the same problem as in Fig. 7 is shown in
Fig. 8. The regularized solution is less complicated and
looks more reasonable than the non-regularized solution.

The regularized solution is also known as ridge regres-
sion. The non-regularized solution (24) can be recovered
from ridge regression by setting the regularization para-
meter l to zero. In this case the weights are simply
calculated by taking the inverse of K. In the case where l is
large and ðK þ lIÞ is dominated by the diagonal matrix lI

the weights all have the same absolute value and only vary
in their sign. The decision boundary in this case is identical
to the kernel density estimators given in Eq. (21). In this
extreme the decision boundary is only determined by the
similarity measure and not by the exemplar weights. Hence,
the regularization parameter l makes it possible to choose
a solution that is in-between the two extremes: A weight
based solution (24) that will always overfit and a similarity
based solution (21) with all exemplar weights set to the
same value. By allowing this extra flexibility it is often
possible to achieve a better generalization performance
than by relying on similarity alone. Of course, the value of
the regularization parameter l has to be chosen wisely. In
machine learning this is considered as a model selection
problem. One way to find a suitable regularization
parameter is by using cross-validation and this is what
we have done in Fig. 8, too (Pitt et al., 2002; Schölkopf &
Smola, 2002). Both, the chosen kernel and the regulariza-
tion parameter, will determine how well the classifier will
generalize to new patterns. It is in the construction of the
kernel, however, that engineers can use their insights about
a classification problem and their intuitions about the
similarity of patterns.

4. Conclusions

We have introduced kernel methods as they are used in
machine learning. The most important results here are the
kernel trick and its link to reproducing kernel Hilbert
spaces. On the way we have hinted to parallels with
psychological theories. First, kernel methods can be
implemented as a one-layer neural network. Second, the
Gaussian kernel can be interpreted as a similarity measure
and representation of the stimuli in a RKHS can be seen as
representing the stimuli via their similarity to all other
stimuli. Third, the most simple exemplar model of
categorization is a prototype classifier in this RKHS.
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Fourth, regularization can be used to avoid overfitting.
And fifth, the representer theorem shows that the best
regularized function in RKHS can often be found in the
span of the exemplars.

In a companion paper (Jäkel et al., 2007b), we describe
how the RKHS framework arises naturally from Shepard’s
universal law of generalization. Shepard’s law is closely
related to geometric models of similarity and multi-
dimensional scaling. Geometric models have been heavily
criticized by Tversky and co-workers (Beals, Krantz, &
Tversky, 1968; Tversky, 1977; Tversky & Gati, 1982). One
of their major criticisms concerns the assumption of the
triangle inequality that is implicit in all geometric models.
However, from the data that is available the triangle
inequality is unproblematic as an assumption as long as it
is not paired with a second assumption that is known as
segmental additivity. The RKHS provides an elegant
framework for metric models without segmental additivity.

From this tutorial it should be obvious that exemplar
models and kernel methods are based on the same ideas.
Their relationship is discussed in greater detail in another
forthcoming paper (Jäkel et al., 2007a). Briefly, two very
prominent exemplar models, the Generalized Context
Model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992),
both make use of kernels but in different ways. Only
ALCOVE can be mapped directly to a machine learning
method and even exhibits some regularization.

We imagine other potential uses for the mathematical
tools we have presented. First of all, we hope that this
tutorial opens up the recent machine learning literature for
more psychologists. Many of the data analytic methods
presented in machine learning could be used in psychol-
ogy—irrespective whether they use the RKHS framework
that was the focus here. For example, machine learning
methods have been used in psychophysics (Graf, Wich-
mann, Bülthoff, & Schölkopf, 2006; Wichmann, Graf,
Simoncelli, Bülthoff, & Schölkopf, 2005) and we believe
that many more applications will follow. With regard to
Hilbert spaces one can be skeptic whether the infinite
dimensional machinery is really necessary for psychological
modeling. However, there are many cases where the data
that are collected are in terms of functions and therefore
naturally described with methods similar to the ones
described here (Ramsay & Silverman, 1997). Furthermore,
several other authors have recently suggested to use infinite
dimensional spaces in the theoretical analysis of behavior
(Drösler, 1994; Townsend, Solomon, & Smith, 2001;
Zhang, 2006). In the laboratory, stimuli are almost always
defined by a small number of independent variables, and
those are the stimuli that we used as examples in this paper.
In these examples the approach was to map stimuli from a
space with a small number of dimensions to an infinite
dimensional space. More realistic stimuli will vary in a
plethora of ways and not just along a small number of well-
defined dimensions. Infinite dimensional spaces could be
attractive for describing such natural stimuli—take for
example the features of a face, the shape of a leaf, or the
spectrum of a light source. Also the number of channels
that humans use to analyze these stimuli might be very
large—too large to enumerate them explicitly. The tools we
presented in this tutorial might be useful for this enterprise.
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