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Feature-Based Induction
STEVEN A. SLOMAN

University of Michigan

A connectionist model of argument strength that applies to categorical argu-
ments involving natural categories and predicates about which subjects have few
prior beliefs is proposed. An example is robins have sesamoid bones, therefore
Jalcons have sesamoid bones. The model is based on the hypothesis that argument
strength is related to the proportion of the conclusion category’s features that are
shared by the premise categories. The model assumes a two-stage process. First,
premises are encoded by connecting the features of premise categories to the
predicate. Second, conclusions are tested by examining the degree of activation of
the predicate upon presentation of the features of the conclusion category. The
model accounts for 13 qualitative phenomena and shows close quantitative fits to
several sets of argument strength ratings. © 1993 Academic Press, Inc.

FEATURE-BASED INDUCTION

One way we learn about and function in the world is by inducing prop-
erties of one category from another. Qur knowledge that leopards can be
dangerous leads us to keep a safe distance from jaguars. Osherson, Smith,
Wilkie, Lopez, and Shafir (1990) examine the conditions under which a
property that is asserted of one or more categories will also be asserted of
another category by asking about the judged strength of categorical ar-
guments such as

Elephants love onions.
Mustangs love onions.

Therefore, Zebras love onions.

(a)

What degree of belief in the conclusion of such an argument is attributable
to the premises and what is the nature of the inductive inference?
Osherson et al. (1990) propose that the psychological strength of cate-
gorical arguments depends on *‘(i) the degree to which the premise cate-
gories are similar to the conclusion category and (ii) the degree to which
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the premise categories are similar to members of the lowest level category
that includes both the premise and the conclusion categories’ (p. 185).
Their model accounts for 13 qualitative phenomena and provides good
quantitative fits to the results of several experiments (corroborative data
are presented in Osherson, Stern, Wilkie, Stob, & Smith, 1991, and
Smith, Lopez, & Osherson, 1992).

This paper proposes an alternative, feature-based, model of this induc-
tive task. The model is expressed using some simple connectionist tools,
similar to those that have been used to model learning processes (e.g.,
Gluck & Bower, 1988). The main idea is that an argument whose conclu-
sion claims a relation between category C (e.g., Zebras) and predicate P
(e.g., love onions) is judged strong to the extent that the features of C
have already been associated with P in the premises. The automatic gen-
eralization property of distributed representations is exploited in order to
model the induction of predicates from one category to another (cf. Hin-
ton, McClelland, & Rumelhart, 1986). The model accounts for 10 of the
phenomena described by Osherson et al. (1990) and provides a more
accurate account of one of the remaining phenomena. A generalization of
the model, discussed near the end of the paper, is shown to be compatible
with the remaining 2 phenomena. The model also motivated 2 new phe-
nomena. Finally, the model is shown to provide good fits to argument
strength ratings.

Osherson et al.’s model is category-based in that it assumes that judg-
ments of argument strength depend on a stable hierarchical category
structure that is describable without reference to the attributes or features
of either category, such as the superset-subset relation that exists be-
tween Mammals and Elephants. Indeed, the primitive elements in Osh-
erson et al.’s (1990) model are pairwise similarities between categories at
the same hierarchical level. In Osherson et al. (1991), pairwise similarities
are derived from feature vectors. Nevertheless, their model remains cat-
egory-based in that features are used only to derive similarities between
categories at the same hierarchical level.

The present model is feature-based in that it assumes that argument
strength judgments depend on connection strengths between features of
the conclusion category and the property of interest without regard to any
fixed structural relations that may exist between whole categories. All
categories are represented as vectors of numerical values over a set of
features. The existence of a stable category-structure is not assumed by
the model because it is not necessary; all inductive processes depend
strictly on the features of premise and conclusion categories. Obviously,
people do have some knowledge about the hierarchical organization
among some categories. Many people know that Elephants are Mammals.
The assumption being made here is that this knowledge is represented in



FEATURE-BASED INDUCTION 233

a way distinct from the structures that normally support judgments of
categorical argument strength. Knowledge about category structure is not
generally used when engaging in the kind of inductive task under consid-
eration, although surely it is used some of the time.

The foregoing assumes a distinction between what might be called in-
tuitive and logical modes of inference (cf. Rips, 1990, for a parallel dis-
tinction between the loose and strict views of reasoning). This kind of
distinction has been implicit in much previous work on the psychology of
reasoning. When, for example, Kahneman and Tversky (1973) propose
that people employ a representativeness heuristic when making probabil-
ity judgments, they do not exclude the possibility that people can also
employ probability theory to make the same judgments. Judgments by
representativeness are for the most part intuitive, whereas the explicit
application of probability theory entails some logical thought (at least for
nonexperts). Sometimes the two forms of reasoning lead to different con-
clusions (e.g., Tversky & Kahneman, 1983). I cannot provide strict cri-
teria to discriminate occasions on which people will use one or the other
kind of reasoning, but some general guidelines do seem apparent. People
are more likely to use intuition when they lack relevant skill or knowledge
(especially about causal relations), when they have not been trained,
when they are short of time or will, when they feel no need to justify their
response, and when they have not been instructed to do otherwise. The
feature-based model is intended to capture an aspect of only the
“looser,”” intuitive form of reasoning. As a model of argument strength,
it presupposes that, given a fixed featural representation of each category,
category hierarchies are needed to describe only the logical reasoning
process, not the intuitive one. The similarity-coverage model can be con-
strued as a model of intuition only if one is willing to ascribe categorical
reasoning to an intuitive process.

A second difference between the two models is that only the category-
based model assumes that subjects explicitly compute similarity. The
feature-based model does assume a feature-matching process, but not one
that computes any empirically valid measure of similarity per se.

The paper proceeds as follows. The Osherson et al. (1990) model is
briefly described, followed by an introduction to the feature-based model.
Next, the feature-based model’s ability to account for each of the phe-
nomena described by Osherson et al. (1990), and some new ones, is
discussed. Osherson et al. (1990) point out that ‘‘the phenomena should
. . . be conceived as tendencies rather than strict laws determining con-
firmation.’" Because neither model expects all of the phenomena to hold
for every applicable argument, and because the large number of phenom-
ena limits the number of arguments that each phenomenon has been
tested on, much of the empirical support for the models rests on their
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ability to quantitatively fit subjects’ ratings of argument strength. The
penultimate section of the paper demonstrates that the current model
provides close fits to such data. Finally, I discuss the strengths and weak-
nesses of the two models and possible extensions of the feature-based
one,

The Similarity-Coverage Model of Argument Strength

My presentation of the category-based model will be terse, since my
aim is to focus on the feature-based model. Osherson et al. (1990) develop
their model using an extended pairwise similarity function, SIMg, defined
for a given subject S. They suppose the existence of SIMg(k;g) which
returns a real number between 0 and 1 reflecting the similarity between
any pair of elements k and g that are at the same hierarchical level within
some natural category. Osherson et al. (1990) extend SIMg in two ways.
First, they treat multiple-premise arguments by employing a notion of
similarity that obtains between several category members, &, . . . k,,, and
another category member, g, all of which reside at the same hierarchical
level. SIMg(k; . . . k,;g) is defined as MAX{SIMg(k,;2), . . .,
SIM(k,,;2)}. In other words, the similarity between &; . . . &, and g is
defined as the maximum of the n pairwise similarities between each of the
k’s and g. The MAX rule is important because it defines similarity using
a nearest-neighbor principle. As will become clear below, it implies that
an argument can be strong if the conclusion category is similar to only a
single premise category.

Second, Osherson et al. (1990) extend SIMg to treat cases in which
categories are not all at the same hierarchical level. If G is a category at
a higher level than &, . . . k,, SIMg(k, . . . k,;G) is defined as the aver-
age of

{SIMg(k; . . . k,;2)|S belicves that g is at the same level
as k; . . . k,, and that g belongs to G}.

“SIMg(%; . . . k,;G) is the average similarity that S perceives between &,
. . . k,and members of G at the level of &, . . . £, (Osherson et al., 1990,
p. 191).

Both the category and feature-based models of argument strength apply
to arguments, such as (a) above, that can be written schematically as a list
of sentences, P, . . . P,/C, in which the P, are the premises of an argument
and C is the conclusion, each with an associated category (cat). Osherson
et al.’s (1990) model consists of a linear combination of two variables
defined in terms of SIMg. The first variable, similarity, expresses the
degree of resemblance between premise categories and the conclusion
category. The second variable, coverage, reflects the degree of resem-
blance between premise categories and members of the lowest-level cat-
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egory that properly includes both the premise and conclusion categories.
Therefore, they refer to their model as the similarity-coverage model of
argument strength.

Denote [cat(P), . . ., cat(P,), cat(C)] as the lowest level category K
such that the category in each of P, . . . , P, and C is a subset of K. For
example, (Elephant, Zebra] = Mammal. The formal statement of the
stmilarity-coverage model is that for every person S there is a positive
constant B € (0,1) such that for all arguments A = P, ... P,/C, the
strength of A for S is given by

BSIMg(cat(P), . . . , cat(P,); cat(C))
+ (1 — B)SIMg(cat(P), . . ., cat(P,); [cat(P), . . ., cat(P,), cat(C)].

The arguments examined by Osherson et al. (1990) were all categorical
in that premises and conclusion all had the form *‘all members of Y have
property X°° where Y was a simple category (like Feline or Reptile) and X
remained fixed across the premises and conclusion within each argument
(cf. Rips, 1975). Categories all involved natural kinds, in particular the
hierarchy of living things. Predicates were chosen so that subjects would
have few prior beliefs about them, for instance *‘secretes uric acid crys-
tals.”” Osherson et al. (1990) dub these blank predicates, and point out
that their use permits theorists to focus on the role of categories in the
transmission of belief from premises to conclusion, minimizing the extent
to which subjects reason about the particular properties employed. Some
comments and speculation about modeling nonblank predicates can be
found in this paper’s concluding section. Otherwise, my discussion is
limited to blank predicates whose identity is irrelevant and therefore will
be generically referred to as ‘“‘predicate X.”’

Osherson et al. (1990) showed that their model accounts for 13 quali-
tative phenomena—described in detail below—and used similarity ratings
to generate predictions from their model that were highly correlated with
subjects’ ratings of argument strength in several experiments (see also
Smith et al., 1992, and Osherson et al., 1991), some of which will also be
described below. I now offer my alternative feature-based model.

THE FEATURE-BASED MODEL
Overview

We start with a set of input units to encode feature values and an output
unit to encode the blank predicate X. Consider the argument

Robins have X.
Falcons have X.

(b)

The process by which the feature-based model determines the strength
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of this argument is diagramed in Fig. 1. The state of the network before
presentation of the argument is illustrated in Fig. la. Because the argu-
ment’s predicate is blank, the unit representing it is initially not connected
to any featural units. Premises are then encoded by connecting the units
representing the features of each premise category to the predicate unit
allowing the category units to activate the predicate unit (Fig. 1b). To
encode the premise of Argument (b) for instance, the units encoding
features of Robins (a small number of binary features are used for expos-
itory purposes only) are connected to the blank predicate unit X. Had
there been more than one premise in Argument (b), the features of each
additional premise’s category would have been connected to unit X in
identical fashion. Second, conclusions are tested by determining the ex-
tent to which unit X becomes ‘‘activated’ upon presentation of the fea-
tures of the conclusion category (Fig. 1¢). In the example, this would be
accomplished by observing the activation value of unit X upon presenta-
tion of the features of Falcons which would be 0.5 because the predicate
unit is connected to one-half of the active category units.

Blank Predicate X
a O

Feature 1 Featurei Festure j Feature n

Robin 0 1 1 0

Blank Predicate X

b
Feature 1 Feature i  Feeture j Feature n
Rabin 0 1 1 ¢
---------- Blank Predicate X
C
Feature 1 feeaturei Festure j Featlure n
Falcon ! 0 1 0

F16. 1. Illustration of the feature-based model for the argument ‘‘Robins have property X,
therefore Falcons have property X.’’ (a) Before encoding premise ‘‘Robins have X." (b)
After encoding premise ‘‘Robins have X.’* (¢) Testing conclusion ‘‘Falcons have X.”
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I posit two rules, an encoding rule and an activation rule, which, along
with a set of feature vectors, completely determine the model’s predic-
tions. The encoding rule, Eq. 1 below, defines how connections are es-
tablished. The activation rule, Eq. 3 below, determines the value of unit
X (denoted a,). Because connection strengths depend on the values of
premise features, a, increases with the extent of shared features between
premise and conclusion categories. a, is defined to decrease with the
extent of features in the conclusion category alone.

Throughout the paper, vectors will be represented by capital letters
(e.g., vector B) and their scalar elements will be represented by corre-
sponding lowercase letters subscripted by their ordinal position (e.g., b,
or b;).

Categories and Predicates

Every category, such as Robins, Mammals, or Animals, is identified
with a vector F of n real numbers from the closed {0,1] interval. For
instance, F(Robins) = (f{(Robins), . . ., f,(Robins)], where F(Robins) is
a vector encoding the feature values of Robins. The f; are variables which
represent a basis set of atomic features and are assigned individual feature
values, in this case those corresponding to Robins. Both the vector F and
the scalar f;’s could be subscripted by S, to indicate that F refers to a given
subject S’s representation of a category, because a category’s represen-
tation presumably varies from subject to subject. We could also index
representations by time. Such indices will be left implicit in what follows.

Feature values used for modeling can be derived by having subjects list
or rate features or attributes for each category. I do not assume that
vectors represent sets of necessary or sufficient features, nor that features
are independent of each other. I rather assume that they represent a large
number of interdependent perceptual and abstract attributes. In general,
these values may depend on the context in which categories are pre-
sented. I will assume however that category representations are fairly
constant within each of the experiments to be discussed. Notice that no
distinction is made between the nature of the representations of general
categories like Animals and specific categories like Robins.

Blank predicates will be identified with a single scalar variable. Be-
cause predicates can be semantically rich themselves, we may be tempted
to represent them as vectors as well. At this point, however, because all
predicates are blank, such a treatment would only serve to introduce an
unnecessary level of complexity. All the demonstrations below could be
altered to allow for a vector representation of predicates.

Network Architecture and Dynamics

The model of any single argument uses a network of » input units and
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a single output unit. Each input unit is assigned value qg; equal to f;, the
value of feature i of the category under consideration. So, upon presen-
tation of category Y, activation vector A(Y) = [afY),..., q, (V)] =
F(Y); the current stimulus A(Y) is set equal to the stored representation
F(Y). The activation of the output unit, a,, represents the willingness to
confirm predicate X of the input category. Upon presentation of a con-
clusion category, if the value of a, is high, then the argument is judged
strong; if low, then it is judged weak. Finally, connecting input units to
predicate unit X is a vector of weights, W = [w,, . .., w,]. All weight
values are restricted to the closed interval [0,1].

A, a,, and W are dynamic variables and should somehow be indexed by
their history. A is already indexed by the current input. W depends only
on encoded premises P, to P;. It will be indexed as W(P,, . . . , P;). When
encoding the jth premise in a multiple-premise argument, a, depends on
encoded premises P, to P; ; and input premise P;, in which case I will write
a(P/P,, ..., P.,). When testing a conclusion, a, depends on encoded
premises P, to P; and conclusion C, and 1 will write a (C/P,, . .., P). I
will compress the notation by not writing out predicates because they are
blank and therefore uninformative. For example, the strength of Argu-
ment (a) would be written a,(Zebras/Elephants, Mustangs). If no
premises have previously been encoded, the value of a, given premise P
as input will be denoted a,(P).

Encoding a Premise (Learning Rule)

To encode the category in a premise P, input units are set equal to the
feature values of the category in P, so that A(P) = F(P), and then weights
are changed according to the following delta rule (cf., Sutton & Barto,
1981) in which the network is learning to turn on unit X in the presence of
input from the category of P. Let the weight vector have some value
W(P,) where P, represents zero or more premises, then after encoding
premise P,

wi{Pg,P) = wiPy) + N[l — a (P/Py)lalP), N

where each A, is a scalar coefficient. To keep each weight between 0 and
1, I assume that a, does not exceed 1 and set

A= 1 — wiPy). @)

This removes the one free parameter we otherwise would have had. It
also ensures that weights never decrease.

An important property of this encoding rule is that it depends on the
activation of unit X. The extent to which each premise category activates
unit X is established before that premise is encoded. Encoding a premise
involves updating connection strengths. The amount of change that con-
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nection strengths undergo is proportional to the premise’s surprise value
[1 — a/(P/Py], or the extent to which the premise category does not
activate unit X given the premises already encoded.

Below, we will see that the strength of an argument in which the prem-
ise and conclusion categories are the same is 1; given some premise Y,
a (Y'Y) = 1. Because weight change is proportional to 1 — a,, a corollary
is that no weight change obtains after the first presentation of a repeated
premise. In other words, the model predicts that an argument with mul-
tiple presentations of the same premise will be equally as strong as an
argument with only a single presentation. The failure of such a prediction
would be startling and presumably due to some sort of pragmatic viola-
tion.

Activation Rule for Unit X

The activation of unit X depends on the premises P, to P; that have
already been encoded in the weights as well as the current input category
I which comes either from another premise or from the conclusion. The
activation rule is

WPy, ..., P) - AD
allP), ..., P) = : |A(I)|2j '

3)

where - means the dot or inner product, defined as U -V = Z7_,uv,,
which is a measure of the two vectors’ overlap. The vertical bars repre-
sent the length of a vector. By ‘‘magnitude,’’ I refer to the denominator
of (3), or length squared: |U]* = =7_,u; . In words, the activation of unit
X is proportional to the overlap between values of corresponding weights
and input elements and inversely proportional to the number and size of
input elements. When I is a conclusion category, a(I/P,, . .., P) is a
model of argument strength.

Because weights and activations are always greater than or equal to 0,
so is a,. Under certain unusual circumstances, a, may exceed 1. This will
occur if, for instance, the magnitude of the conclusion category vector is
small (see also the discussion of phenomenon x, premise~conclusion iden-
tity, below). In order to ensure a maximum value for the strength of an
argument, and to maintain the property that weights never decrease, the
activation rule could be extended to cut the value of a_ off at 1. This minor
extension of the model has not yet proven necessary and will therefore
not be implemented.

Psychological Interpretation of Activation Rule

Equation 3 states that the activation value of unit X increases with the
dot product of the current input and previous inputs as they are encoded
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in the weights by the learning rule. The interpretation is that a novel
predicate is affirmed of the current input category to the extent that it
shares features with other categories which are known to have the rele-
vant property. If we know that Robins have some property X, then to the
extent that Robins and Falcons have other properties in common, we will
judge that Falcons also have property X,

Equation 3 also states that the activation value of unit X is inversely
proportional to the magnitude of the current input. Magnitude is a mea-
sure of the number and size of the features in a category’s representation,
It is meant to capture the richness of a representation by indicating the
extent of salient features in the category. The magnitude of a represen-
tation would be determined by the category’s familiarity and complexity.
The claim is that our willingness to affirm a property of a category de-
creases with the amount we already know about that category, given that
the number of features the category shares with other categories that
possess that property is held constant.

The most straightforward test of the conclusion magnitude prediction
requires a specification of the features of some set of categories so that we
can measure their common features and magnitudes directly. Throughout
this paper, I will make use of feature ratings collected by Osherson et al.
(1991), who obtained ratings of ‘‘the relative strength of association”
between a set of properties and a set of mammals.' These ratings may not
be ideal for testing the feature-based model. A more appropriate judgment
task would instead have asked the subject about the relative prominence
of each property, or the extent to which the subject attends to property X
when thinking about Mammal Y. However, because these ratings are
obviously estimates of people’s knowledge about the relevant categories
and the model requires no detailed analysis of the features themselves in
any case, and because they were carefully collected and are clearly not
biased in favor of the feature-based model, they will serve us adequately
here.

I constructed pairs of one-premise arguments by choosing triples of
Mammal categories such that one Mammal shared an equal number of
features with both of the other categories but the two other categories
differed in their magnitudes. For example, according to Osherson’s
feature-ratings, Collies and Horses have about as many features in
common as Collies and Persian cats; i.e., F(Collies) - F(Horses) =
F(Collies) - F(Persian cats). But the representation of Horses is of greater

'] thank Daniel Osherson and Tony Wilkie for making these feature ratings available.
Subjects rated 48 mammals for 85 properties on a scale that started from 0 and had no
upperbound. Ratings were provided by 8 or 9 M.I.T. students for each mammal. The ratings
were linearly transformed to values in the [0,1] interval and then averaged.
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magnitude than that of Persian cats. |F(Horses)]> > |F(Persian cats)}>.
Consider the pair of arguments

All Collies produce phagocytes.
All Persian cats produce phagocytes.

(©)

and

All Collies produce phagocytes.
All Horses produce phagocytes.

(d)

According to the feature-based model, the weight vectors obtained by
encoding the premises of each argument will be identical because the
premises themselves are identical. The premise and conclusion categories
in the two arguments have the same measure of common features, so any
difference in strength between the two arguments must be attributable to
the difference in magnitude of their conclusion categories (this is further
explicated below, by Eq. 5). In particular, peopie should find Argument
(c) stronger than Argument (d) because it has a lower magnitude conclu-
sion category.

I asked 34 University of Michigan undergraduates to rate the convinc-
ingness of each of 20 arguments, 10 pairs of arguments that conformed to
this structure. Within a pair, premises were identical and shared an equal
measure of common features with the two conclusion categories (the
mean dot product between premise and larger magnitude conclusion was
5.31, essentially identical to the value for the smaller magnitude conclu-
sion of 5.32). But conclusions had different magnitudes (the mean of the
larger magnitudes was 10.74, the mean for the smaller was 7.66). Subjects
rated each argument on an interval scale in which 0 meant very uncon-
vincing and 10 meant very convincing (details of the experimental design
and procedure can be found in Appendix A).

For each pair, the argument with the smalier magnitude conclusion
category was rated as stronger (mean rating was 2.17) than that with the
larger magnitude conclusion category (mean of 1.65). This difference was
highly significant for these 10 argument pairs across subjects, #33) =
2.75, p < .01. The feature-based model has successfully predicted a rather
nonintuitive result: The strength of an argument can be increased by
choosing a conclusion category which has fewer features associated with
it, even when a measure of features common to the premise and conclu-
ston categories is held constant.

The magnitude prediction also finds support in people’s tendency to
generalize less from a member of an in-group to other in-group members
than from a member of an out-group to other out-group members (Quat-
trone & Jones, 1980). For example, Rutgers sophomores who were told
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that another Rutgers student had chosen to listen to classical music over
rock music gave lower percentage estimates that other Rutgers students
would also choose classical music relative to estimates they gave that
Princeton students would choose classical music after observing a Prince-
ton student do so. This tendency supports the current hypothesis since
people presumably know more about the category of people in their in-
group than in an out-group.

Feature Coverage

According to the model, argument strength is, roughly, the proportion
of features in the conclusion category that are also in the premise cate-
gories. For single-premise arguments in which features are all either 0 or
1, this statement is exact. An exact formulation for the general case is
provided by the geometric interpretation below. Intuitively, an argument
seems strong to the extent that premise category features ‘‘cover’’ the
features of the conclusion category, although the present notion of cov-
erage is substantially different from that embodied by the similarity-
coverage model.

Single-Premise Arguments

Before encountering an argument, weights are all equal to 0, indicating
that the network has no prior knowledge relevant to the property;i.e., the
property is blank. In other words, w{) = 0 for all i/, where the empty
parentheses indicate that nothing has been encoded. Therefore, using Eq.
3, the value of a, as the first premise is encoded is

_ WO - AR
“P) = TAEP
_ ZwiadPy)
~ ZadPy)?
= O’

and the value of each weight after encoding a single premise is

wiP) = w() + [1 = wOIlll = a,(P)lafP)
0+ (1~ 0)1 - 0)a(P)

a(P))

= f{Py. )

Therefore, the weight vector after encoding a single premise is identical to
the vector representing the category in the premise, W(P,) = F(P,). Fur-
thermore, the strength of an argument consisting of a single premise and
a conclusion is, using first (3) and then (4):
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W(P)) - F(C)
[FO)

_ F(Py - F©)

~ |FOP

a(C/Py) = 5

In sum, single-premise arguments depend only on the dot product of the
vectors representing premise and conclusion categories and, inversely, on
the magnitude of the conclusion category vector.

Geometric Interpretation

By considering a geometric representation of the feature-based model,
we can state precisely the sense in which it posits that the strength of an
argument is equal to the proportion of the conclusion category’s features
that it shares with the premise categories. We require the notion of a
projection of vector W on vector F (ProjgW). Proj:W is a vector that can
be thought as the ‘‘F-component™ of W (see Fig. 2a). It is defined as

. W-F
ProjgW = —lflz—' F.
[(W - F)/|[F[] is a scalar so that ProjgW is a vector with the same direc-
tion as F that can differ in length. Given an argument with premises

P, ..., P, japplications of the encoding rule will produce weight vector

Length (Proj g W)
%5 Temgh (B
b F(Collies)

& F(Horses)

Proj F(Horses}):(couies)

Fi1G. 2. Geometric interpretation of the feature-based model in terms of projections. (a)
General case. (b) Illustration of single-premise argument.
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W(P,, . .., P). Given conclusion C and conclusion category vector F(C),
Eq. 3 tells us that the strength of the argument is
WE,, ..., P) - FC)
al(C/Py, ... ,P) = IF(C)FJ

The weights are a (nonlinearly derived) representation of the premises.
Therefore, the projection of the weights onto the conclusion category
vector is a representation of the featural components of the premises that
are also in the conclusion. It corresponds to those features that are shared
by the conclusion category and any of the premises as they are encoded
in the weights. Substituting argument strength into the definition of the
projection shows that

ProjeyW(P,, . . ., P) = a,(C/P,, ..., P) FC).

By calculating the lengths of the two vectors (one on each side of the
equation) and rearranging, we see that

ProjryW(P;, . . ., P)
alC/Py, ..., P) = Froleey IF(é)l -

In words, the strength of an argument is equal to the proportion of the
length of the conclusion category vector that is spanned by the length of
the projection of the weight vector onto the conclusion category vector.
In this sense, argument strength is the proportion of features in a conclu-
sion category that are also in the premise categories.

In the previous section, we saw that the weight vector used to deter-
mine the strength of a single-premise argument is identical to the vector
representing the premise category. Therefore, as depicted in Fig. 2b, the
strength of a single-premise argument is simply the proportion of the
length of the conclusion category vector that is spanned by the length of
the projection of the premise category vector onto the conclusion cate-
gory vector. One interpretation of Fig. 2b is that an argument is strong to
the extent its conclusion can be ‘‘justified’’ or ‘‘explained’’ by its
premises relative to the total amount that must be justified or explained,
i.e., relative to the number of features that the conclusion category is
known to possess.

Definition of Similarity

As mentioned above, the feature-based model does not assume that
similarity is computed in the course of making argument strength judg-
ments. Nevertheless, in order to make contact with the phenomena to be
described, a theoretical measure of the similarity between two category
vectors is required. This model of similarity does not reflect any of the
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computations performed by the feature-based model. It functions only to
represent phenomena described in terms of similarity in a language com-
patible with the feature-based model.

Perhaps the simplest measure of similarity would be the dot product
between the two category vectors, an indicator of the categories’ common
features. One disadvantage of the dot product is its sensitivity to the
magnitudes of its operands. Consequently, I define the similarity (sim) of
two categories D and E using a measure of correlation between the vec-
tors F(D) and F(F), specifically the cosine of the angle between them:

F(D) - F(E)
[F(D)| [F(E)| *

The virtues of this measure are that it captures most of the properties
normally attributed to similarity judgments and its relation to the feature-
based model is simple mathematically. This will facilitate many of the
demonstrations below concerning phenomena involving similarity judg-
ments.

As a model of similarity, Equation 6 shares with Tversky’s (1977) con-
trast model the assumption that similarity is proportional to two catego-
ries’ common features and inversely proportional to their distinctive fea-
tures. I compared the two models by correlating their predictions of the
similarities between 1128 mammal pairs using the Osherson et al. (1991)
feature ratings. The correlation was 0.97 between the values given by Eq.
6 and those of an additive version of the contrast model which gave equal
weight to common and distinctive features. Clearly the models are closely
related. Equation 6 differs from the general contrast model in assuming
similarity to be a symmetric relation and in assigning self-similarity, the
similarity between a category and itself, the maximum value of 1. Neither
of these assumptions will play a role in the explanations I provide below
for any of the phenomena. I am not claiming that Eq. 6 is the best model
of similarity available. The intention of Eq. 6 is only to describe a relation
which, when it holds, has certain consequences for the feature-based
model. It serves as a link between the model and phenomena described in
terms of similarity.

Since F(D) and F(E) may depend on the context in which they are
presented, sim(D,E) may vary. Because I assume that category represen-
tations are constant within each of the experiments to be discussed, sim-
tlarities should not vary either. Notice that, unlike Osherson et al.’s (1990)
SIMj  function, the similarity between any two categories is well-defined,
even categories usually thought to reside at different hierarchical levels.

PHENOMENA CONSISTENT WITH BOTH MODELS
Osherson et al. (1990) and Smith et al. (1992) review, propose, and

sim(D,E) = (©6)
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provide empirical support for several phenomena concerning the vari-
ables that influence argument strength. Since the phenomena are intended
to describe tendencies, as opposed to laws, we should expect counterex-
amples to exist, as both models predict. In fact, the phenomena them-
selves can generate opposing expectations for certain arguments (e.g.,
phenomenon i below, similarity, versus phenomena ii and iii, premise
diversity). Because of this fuzziness in the sets of arguments to which
they apply, the phenomena are presented by example, and I demonstrate
how the feature-based model accounts for each of these examples. Each
phenomenon is illustrated with one or more contrasting pairs of argu-
ments in which the first argument is stronger than the second.

Osherson et al. (1990) distinguish among general, specific, and mixed
arguments. Arguments are general if premise categories are all properly
included in the conclusion category, for example

Mice have X.
Antelopes have X.

Mammals have X.

Arguments are specific if any category that properly includes one of the
premise or conclusion categories also properly incudes the others, for
example

Pigs have X.
Antelopes have X.

Aardvarks have X.

Here, Mammal properly includes Pigs, Antelopes, and Aardvarks. An
argument is called mixed if it is not general or specific, for example

Mice have X.
Flamingoes have X.

Mammals have X.

Each of these argument types raises slightly different concerns for the
similarity-coverage model. This led Osherson et al. (1990) to distinguish
phenomena that differ only in the type of argument to which they apply.
Because the feature-based model does not distinguish the representation
of a general category from that of a specific category in that all categories
are represented as vectors of features, many of these concerns do not
arise. I therefore will limit my demonstrations to only one of the argument
types, but maintain the counting scheme employed by Osherson et al. to
number phenomena in order to facilitate comparison between the models.
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i. Premise—Conclusion Similarity (Specific)

Arguments are strong to the extent that categories in the premises are
similar to the conclusion category (Rips, 1975). The following exemplifies
the phenomenon for single-premise arguments:

A. B.
German shepherds have X. German shepherds have X.

Collies have X. is stronger than Chihuahuas have X.

Sixty-one of 64 University of Michigan undergraduates chose the first
argument as more convincing (p < .0001).? Similarity ratings were also
collected from 63 of these subjects. The mean similarity rating between
German shepherds and Collies was 5.30, significantly higher than that
between German shepherds and Chihuahuas (3.88), #(62) = 7.38, p <
.0001. The feature-based model attributes this phenomenon to feature
coverage: Due to their greater similarity, German shepherds cover more
features of Collies than they do of Chihuahuas. A more formal analysis
follows.

To obtain argument strengths, the first step is to encode the premise
German shepherds (GS) have X. From (4), W(GS) = F(GS). The second
step is to test the conclusion. From Eq. 5, the strength of Argument A is

F(GS) - F(Collies)
|[F(Collies)|?

a(Collies/GS) =

The strength of Argument B is derived similarly with the result that

F(GS) - F(Chihuahuas)
|F(Chihuahuas)|?

a,(Chihuahuas/GS) =

One way that we can determine whether the feature-based model makes
the right prediction is to compute argument strengths from empirically
determined estimates of category features and then compare these
strengths to the obtained ones. I used Osherson et al.’s (1991) ratings to

2 The blank predicate used for both this argument and the multiple-premise example was
“‘produce THS by their pituitary.’’ Unless noted otherwise, the data reported were gathered
from students who were given questionnaires which asked them to either choose between
pairs of arguments or rate single arguments according to their convincingness. A pair of
arguments bearing no relation to any tested argument was provided as an example and
briefly discussed to clarify the meaning of ‘‘convincingness.’” Subjects were asked to con-
sider each argument on its own merit, ignoring all information other than the facts presented.
Following the argument strength task, similarity ratings were collected from the same stu-
dents on a 7-point scale where 1 was ‘‘not at all”” and 7 was “‘very’’ similar. Students went
through the questionnaire at their own pace and were given as much time as they desired.
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estimate F(GS), F(Collies), and F(Chihuahuas), and computed that
F(GS) - F(Collies) = 7.5 and F(GS) - F(Chihuahuas) = 6.8; the former
pair of categories have more common features. Furthermore, [F(Collies)|?
= 7.7, slightly less than |F(Chihuahuas)|”> = 8.0. Mainly because German
shepherds and Collies have more common features than do German shep-
herds and Chihuahuas, the feature-based model correctly predicts that
a,(Collies/GS) > a,(Chihuahuas/GS).

A more general formulation of the model’s predictions can be obtained
by examining its relation to Eq. 6, our model of similarity. Consider
categories A, B, and C such that sim(A,B) > sim(A,C) or, from Eq. 6,

F4) - FB)  F(4) - F(O)
[F(A)| [F(B)| ™ [F(4)] [F(C)|’

which implies

F4) - FB)  F(4) - F(C)
[F(B)| IF(O)|

)

What are the implications of this inequality for the relative strength of the
arguments A have X, therefore B have X and A have X, therefore C have
X? The strength of the former argument is

F(A) - F(B)
a(B/A) = W by Eq. 5,
F(A) - F(O) o .
> [FO)] [FB)| by substitution with Eq. 7,
F(A) - F(C) )
= lF(C)IZ if !F(C)l = IF(B){
= a,(C/A) by Eq. 5.

a,(C/A) is the strength of the second argument. So as long as |[F(C)| =
|F(B)|, the argument involving the more similar pair of categories will be
stronger. In most cases, this argument will be stronger even if |[F(B)| >
|[F(C)|. To see this, observe that rearranging Eq. 7 gives

F(A) - FB) > [F&) F(A) - F(C)
IF(C)| '

In words, A and B have more common features than A and C relative to
the ratio of the magnitudes of B and C. If A and B have sufficiently many
more common features than A and C, if F(A) - F(B) is sufficiently greater
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than F(A) - F(C), then the right-hand side of this inequality will remain
smaller even if we square the coefficient |F(B)|/|F(C)|. In this case, we
have that

[F®)|)?
F(A) - F(B) > [lF(C)I] F(A) - F(O).

If this condition does hold, then by dividing both sides by [F(B)|*, we have
that a,(B/A) > a (C/A), or the first argument is stronger, even if |[F(B)| >
|F(C)|. The critical condition for the similarity phenomenon to hold is that
the features of the more similar conclusion category are better covered by
the premise category. If the features of the two more similar categories
have enough overlap, they will produce a stronger argument regardless of
the magnitude of the conclusion category.

As an illustration of the power of this analysis, I now provide a coun-
terexample to the similarity phenomenon that is consistent with both the
feature-based model and Eq. 6, the model of similarity. Consider the pair
of arguments

Fact: Bobcats have sesamoid bones.
Conclusion: Moles have sesamoid bones.
Fact: Bobcats have sesamoid bones.
Conclusion: Rats have sesamoid bones.

(e)

®

According to the judgments of 40 University of Michigan students, the
similarity of Bobcats and Moles, which averaged 3.10, was not signifi-
cantly different from the mean similarity rating of Bobcats and Rats
(2.95), 1(39) = 1.03, ns. Equation 6 expresses this fact as

F(Bobcats) - F(Moles) _ F(Bobcats) - F(Rats)
|F(Bobcats)| [F(Moles)| ~ |F(Bobcats)| |F(Rats)| ’

which implies

F(Bobcats) - F(Moles) B F(Bobcats) - F(Rats)
|[F(Moles)| B |F(Rats)|
According to Osherson et al.’s (1991) feature ratings, more properties
were rated as having a higher strength of association to Rats than to
Moles, |F(Rats)] > |F(Moles)|, which is consistent with the claim that

people’s representation of Rats is, on average, richer than that of Moles.
In conjunction with the equality immediately above, this implies

F(Bobcats) - F(Moles) - F(Bobcats)  F(Rats)
[F(Moles)[? [F(Rats)?
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or that, according to the feature-based model, Argument e should be
stronger than Argument f and 26 of 40 of the students chose it the stronger
(p < .05 by a binomial test of the probability of achieving a value of 26 or
greater).® This pattern of data was replicated with a separate group of
subjects. In short, the feature-based model was able to predict a case in
which one argument was stronger than another, despite apparently equal
category similarity, by virtue of the relative magnitudes of their conclu-
sions.

The problem is more complicated with two-premise argument pairs
such as

A. B.
German shepherds have X. German shepherds have X.
Dalmatians have X. Dalmatians have X.

is stronger than

Collies have X. Chihuahuas have X. ’

in which both German shepherds and Dalmatians are more similar to
Collies than to Chihuahuas (60 of 64 students chose Argument A as the
stronger one. The mean similarity of Dalmatians and Collies was judged
to be 4.94, significantly greater than that of Dalmatians and Chihuahuas of
3.86, 1(63) = 6.08, p < .0001). The explanation for the premise-
conclusion similarity phenomenon with multiple premises is conceptually
identical to that for the single-premise case. Argument strength is pro-
portional to the dot product of the conclusion category vector and the
weight vector encoding the premises. The more features shared by the
conclusion and premise categories, the greater will be this dot product.
Let GS stand for German shepherds, D for Dalmatians, C for Collies, and
Ch for Chihuahuas. In Appendix B, I show that we can write the strength
of Argument A as

a,(C/GS,D) =
F(GS) - F(C) + [1 — a(D/IGS)I[F(D) - F(C) — Z f(GS)HD)f(C)]
[F(C)?
F(GS) - F(C) F(D) - F(C)
= "FOr + [1 — a(D/GS)] “TFCP
Z fAGS){D)f(C)

The strength of Argument B, derived in identical manner, is

3 All p values reported below corresponding to choice proportions will refer to binomial
tests.
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F(GS) - F(Ch) F(D) - F(Ch)
[FChP + {1 - a(D/GS)] [FChP

S fAGS)IfAD)fACh)
[F(Ch)}?

a(Ch/GS,D) =

~ [1 = a.(D/GS)]

Argument strength increases with the featural overlap of both premise
categories to the conclusion category as projected in their dot products
(e.g., F(GS) - F(C)and F(D) - F(C) in Argument A). It decreases with the
extent to which premise and conclusion categories all share features as
projected in the three-term products (e.g., Zf(GS)(D)f{C)). This holds
because a premise only increases belief in a conclusion to the extent that
the features its category shares with the conclusion category are not
redundant; i.e., they are not also shared by other premise categories.
Because feature values are all restricted to be less than or equal to one, an
argument’s three-term product is necessarily less than or equal to that
argument’s dot product terms. Because of the large number of dimensions
assumed to be involved, and because features are not necessarily binary,
only in very unusual cases would equality hold.

According to Osherson et al.’s (1991) feature ratings, the required con-
ditions are satisfied for this example and the feature-based model predicts
that Argument A is stronger than B.* To see why we expect the similarity
phenomenon to generally hold for two-premise arguments, let GS, D, C,
and Ch represent generic categories in which GS and C are more similar
than GS and Ch, while D and C are more similar than D and Ch. Then,
according to the reasoning for single-premise arguments, the two dot
product terms in Argument A will normally be greater than the corre-
sponding terms in Argument B. Even if the three-term product is smaller
in Argument B than Argument A, the difference is unlikely to be as great
as the combined difference in the dot products. Moreover, unlike the first
dot product term, the effect of the three-way product is diminished by the
coefficient preceding it [1 — a,(D/GS)]. Therefore, as long as the magni-
tude of the C vector is not too much greater than that of the Ch vector,
Argument A is likely to be stronger than Argument B.

Analytic derivations are too complicated to detail for three or more
premise arguments. Their patterns, however, show a clear generalization
of the one- and two-premise cases and the same intuitions hold. Although
this increase in derivational complexity with the number of premises may
be considered a drawback of the feature-based model, note that the com-
putational complexity of the model is only linearly related to the number

4 R(GS) - F(C) = 7.5 > F(GS) - F(Ch) = 6.8, F(D) - F(C) = 6.2 > F(D) - F(Ch) = 5.6,
SAGSYDNAC) = 3.3 > SAGSYDYACh) = 3.1. [FIO)F = 7.7 < |[FCh)? = 8.5.
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of premises. The same encoding rule, Eq. 1, is applied iteratively to each
premise. Perhaps more important, the conceptual complexity of the
model is unrelated to the number of premises. The same rules are applied
for the same reasons to any argument, whether it has one or many
premises. Arguments are deemed strong in all cases if the weights ob-
tained after encoding the premises cover the features of the conclusion
category. Although I will not discuss them analytically, the model’s pre-
dictions for the three-premise case show good fits to data, as discussed in
the section on quantitative tests below.

ii and iii. Premise Diversity (General and Specific)

The less similar premises are to each other, the stronger the argument
tends to be. An example of a pair of general arguments satisfying premise
diversity is

A. B.
Hippos have X. Hippos have X.
Hamsters have X. Rhinos have X.

is stro than .
stronger Mammals have X.

Mammals have X.
For an example of a pair of specific arguments, substitute Giraffes for
Mammals (cf. Osherson et al., 1990). The account of the specific case
follows from that of the general one. The feature-based model attributes
the diversity phenomenon, again, to feature coverage. More diverse
premises cover the space of features better than more similar premises
because their features are not redundant, and therefore are more likely to
overlap with features of the conclusion category and more likely to be
encoded. More precisely, (i) featural overlap between dissimilar premise
categories and a conclusion category will tend to be less redundant than
the overlap between similar premise categories and a conclusion cate-
gory; and (ii) weight changes are greater during encoding of a dissimilar
premise than a similar premise (dissimilar premises have more surprise
value). A more formal analysis follows.
The similarity of Hippos and Rhinos is greater than that of Hippos and
Hamsters. In the discussion of Phenomenon i, similarity, I showed that
this leads us to expect

a,(Rhiros/Hippos) > a,(Hamsters/Hippos). 8)

Let Hi stand for Hippos, Ha for Hamsters, M for Mammals, and R for
Rhinos. As shown in Appendix B, we can write the strength of Argument
A as
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a,(M/Hi,Ha) =
F(Hi) - FM) + [l — a(Ha/H)}[F(Ha) - FM) ~ 2 f(Hi)f(Ha)f{M)]

[EM)f?
and the strength of Argument B as
a,(M/Hi,R) =
F(Hi) - FM) + [1 — a(R/HDJ[F(R) - FM) - X f(HI)f(R)f(M)]
IFQVD® '

Cancelling like terms, we see that Argument A is stronger than Argument
B if and only if

(1 - a(Ha/H)][F(Ha) - F(M) - X f(Hi)f(Ha)f(M)}
> [1 ~ a(RAHDIF(R) - FM) — Z f(H)f(R)f(M)]. ®

Inequality 8 states that [1 — a,(Ha/Hi)] > [1 — a, (R/Hi)], so the first term
on the left hand side of Condition 9 is greater than the first term on the
right. F(R) - F(M) is a measure of the features that Rhinos have in com-
mon with the mental representation—the prototype perhaps—of the
Mammal category. Most of us comparing these arguments do not know
substantially more about Rhinos than about Hamsters, which is consis-
tent with Osherson et al.’s feature ratings, |[F(R)| = 2.6 < [F(H)| = 3.0.
Moreover, Rhinos are not more typical Mammals than are Hamsters, as
evidenced by both the rarity of horned mammals with plated skin, and
typicality judgments showing that in fact Hamsters are more typical.> We
can expect, therefore, that for most of us F(R) - F(M) is not substantially
greater, and probably less, than F(Ha) - F(M). The only remaining differ-
ence between the two sides of the inequality lies in the three-way product
terms Zf(Hi)f,(Ha)f,(M) and Zf(Hi)f(R)f{(M). The value of these terms
would tend to be proportional to premise similarity because the more
features two-premise categories share, the more likely that features will
be shared by all of the premise and conclusion categories. Because the
premises of Argument B are more similar, Zf(Hi)f{R)f{M) is likely to be
greater than Zf(Hi)f,(Ha)f{M). So a bigger quantity is being subtracted on
the right-hand side and Condition 9 is therefore likely to hold. More
precisely, Argument A will be stronger than Argument B for every subject
for whom it does hold.

Feature Exclusion (New Phenomenon)

The feature-based model predicts a boundary condition on the diversity
phenomenon. A premise category that has no overlap with the conclusion

3 Unpublished data collected by Tony Wilkie.
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category should have no effect on argument strength even if it leads to a
more diverse set of premises. Consider the arguments

Foxes require trace amounts of magnesium for reproduction.
Deer require trace amounts of magnesium for reproduction.

Weasels require trace amounts of magnesium for reproduction. &)
and

Foxes require trace amounts of magnesium for reproduction.

Rhinos require trace amounts of magnesium for reproduction. M

Weasels require trace amounts of magnesium for reproduction.

The second argument indeed has a more diverse set of premises than the
first; the similarity between Foxes and Rhinos was rated significantly
lower than the similarity between Foxes and Deer (2.02 and 4.00, respec-
tively, 1(45) = 10.00; p < .001). Nevertheless, the feature-based model
predicts that Argument g will be stronger than Argument h because Rhi-
nos and Weasels have so few features in common, the dot product of their
feature vectors was only 3.0 in the feature ratings collected by Osherson
et al. (1991), relative to Deer and Weasels (dot product of 5.5). Let F be
Foxes, R be Rhinos, and W be Weasels. The derivation in Appendix B
tells us that the argument strength of 4 is

a(W/F,R) =
F(F) - F(W) + [1 = a(R/F)JIFR) - FW) — 2A(F)f(R)FW)]
[F(W)}? '

If F(R) - F(W) is negligible, then so is Zf(F)f(R)f{W) since it is always
positive but less than F(R) - F(W) which implies that

F(F) - F(W)
[F(W)?
= a(W/F).

a(W/F,R) =

In other words, Rhinos contribute little strength to the argument, even
though Foxes and Rhinos compose a diverse set. To test this analysis, 1
asked 46 University of Michigan undergraduates to choose the stronger of
Arguments g and h. As predicted, 41 of them chose g (p < .0001).

The similarity—coverage model can explain this result by assuming that,
even though the premises in h had greater diversity, they had less cov-
erage. If Rhinos have few similar neighbors, they may not add much to
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the coverage of the lowest-level category that includes both premises and
conclusion.® To derive the prediction from the similarity—coverage model,
we need first to define the lowest-level category both with and without
Rhinos as a premise (presumably Mammals in both cases) and then com-
pute coverage using similarity ratings between every member of this low-
est-level category and each premise category. To derive the prediction
from the feature-based model, we need to know that the feature overlap
between the premise and conclusion categories is small.

I have replicated the above demonstration using different pairs of ar-
guments. Here is one more example:

Fact: Foxes secrete uric acid crystals.
Fact: Beavers secrete uric acid crystals.

Conclusion: Chihuahuas secrete uric acid crystals. @
Fact: Foxes secrete uric acid crystals.
Fact: Humpback whales secrete uric acid crystals. 6

Conclusion: Chihuahuas secrete uric acid crystals.

The diversity between the premises of Argument j is greater than that in
Argument i; the rated similarity between Foxes and Humpback whales
was 2.24, significantly lower than that between Foxes and Beavers (4.16),
1(57) = 10.97, p < .001. Nevertheless, 56 of 59 students chose i. The
feature-based model predicted this on the basis of the observation that the
dot product between the feature vector associated with Humpback
whales and that associated with Chihuahuas was only 2.0.

iv. Premise Typicality (General)

The more typical premise categories are of the conclusion category, the
stronger is the argument (Rothbart & Lewis, 1988). For example,

A. B.
Wolves have X. Oxen have X.

Mammals have X. is stronger than Mammals have X.°

¢ Supporters of the similarity—coverage model cannot appeal to greater similarity between
the premises and conclusion of Argument g relative to Argument h to explain this result.
According to that model, overall similarity is given by the maximum of the pairwise simi-
larities between each premise category and the conclusion category. Yet, only 1 of 46
subjects rated Deer more similar to Weasels than Foxes to Weasels. With regard to the
following demonstration, only 7 of 39 subjects rated Beavers more similar to Chihuahuas
than Foxes to Chihuahuas. Excluding these subjects from the analysis has no effect on the
pattern of data.
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where Wolves are more typical of the category Mammals than are Oxen.’

By virtue of the typicality of Wolves, their similarity to Mammals is
greater than the similarity of Oxen to Mammals. Therefore, from Eq. 6,

F(Wolves) - F(Mammals)
|F(Wolves)| |[F(Mammals)|
S F(Oxen) - F(Mammals)

|F(Oxen)| |[F(Mammals)|
= sim(Oxen,Mammals).

sim(Wolves,Mammals) =

Tversky (1977) proposed that the features of more typical items are
more salient or prominent. The typicality phenomenon can be derived
directly from the difference in similarity for those pairs of categories that
satisfy a weaker condition, namely that the representation of the more
typical category is at least as rich as that of the more atypical category.
This condition will hold for most readers for this example because Wolves
tend to be more familiar than Oxen. Osherson et al.’s (1991) feature
ratings also provide support, |[F(Wolves)| = 3.4 > |F(Oxen)| = 3.2. This
condition, along with the inequality above, implies that

F(Wolves) - F(Mammals) S F(Oxen) - F{Mammals)
|[F(Mammals)[* |F(Mammals)[?

(10)

Notice that Eq. 10 will hold as long as Wolves have more features in
common with Mammals than Oxen do, regardless of their respective mag-
nitudes. Taken generally, condition 10 will obtain whenever a typical
category has more in common with its superordinate than does an atypical
category. To derive the strength of Argument A, we use Eq. §:

F(Wolves) - F(Mammals)
|[F(Mammals)|?

a,(Mammals/Wolves) =

The strength of Argument B is

F(Oxen) - F(Mammals)
|[F(Mammals)[?

a,(Mammals/Oxen) =

The inequality in Eq. 10 dictates that a (Mammals/Wolves) > a,(Mam-
mals/Oxen) or that Argument A is stronger than Argument B.
As an illustration of this analysis, [ provide an example in which argu-

7 The blank predicate was ‘‘use serotonin as a neurotransmitter.”’ Twenty-nine of 39
students chose the first argument (p < .01). The mean typicality judgment for Wolves as
Mammals was 5.23, for Oxen it was only 4.85, #(38) = 2.84, p < .0l.
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ment strength is derived using categories which are equally similar to a
superordinate, but which differ in their magnitudes. Consider the argu-
ments

Fact: Bobcats have potassium in their cerebral fluid.
Conclusion: Mammals have potassium in their cerebral fluid.

(k)

and

Fact: Weasels have potassium in their cerebral fluid.
Conclusion: Mammals have potassium in their cerebral fluid.

M

Bobcats and Weasels were judged to be equally similar to Mammals (4.74
and 4.87, respectively; t < 1). According to Eq. 6,

F(Bobcats) - F(Mammals)
|F(Bobcats)| [F(Mammals))|
F(Weasels) - F(Mammals)
~ |[F(Weasels)| [F(Mammals)|
= sim(Weasels,Mammals).

sim(Bobcats,Mammals) =

However, Osherson et al.’s (1991) feature ratings indicate that Bobcats
have a richer representation than Weasels, |[F(Bobcats)| = 3.4 > [F(Wea-
sels)| = 2.5, which implies, in conjunction with the equality in similari-
ties, that Bobcats and Mammals have more features in common than
Weasels and Mammals or that

F(Bobcats) - F(Mammals) - F(Weasels) - F(Mammals)
|F(Mammals)|? |F(Mammals)[? ’

or a,(Mammals/Bobcats) > a,(Mammals/Weasels). Argument k should be
stronger than argument | and 32 of 39 subjects judged it to be (p < .0001).
The feature-based model successfully predicted how comparable similar-
ity judgments can combine with unequal magnitude estimates to make one
argument stronger than another.

v and vi. Premise Monotonicity (General and Specific)

Adding a premise whose category is new and chosen from the lowest
level category that includes both the categories of the old premises and
the conclusion will increase the strength of an argument. A pair of general
arguments that satisfy premise monotonicity is



258 STEVEN A. SLOMAN

A. B.

Sparrows have X. Sparrows have X.
Eagles have X. Eagles have X.
Hawks have x. .

Birds have X. is stronger than Birds have X.

An example of a pair of specific arguments satisfying premise monoto-
nicity would be obtained by substituting ‘‘Ravens’’ for *‘Birds’’ in both
arguments. The analysis below would apply equally well. Premise mono-
tonicity holds whenever the conclusion category shares values on one or
more features with the additional premise category that it does not share
with the other premise categories. Specifically, the new premise category
must include features of the conclusion category whose corresponding
weights are not already at their maximum value after encoding the old
premise categories.

More formally, the strength of Argument A is

a,(Birds/Hawks,Sparrows,Eagles) =
W(Hawks,Sparrows,Eagles) - F(Birds)
|F(Birds)|? ’

and the strength of Argument B is

. W(Sparrows,Eagies) - F(Birds)
a,(Birds/Sparrows,Eagles) = [F(Birds)P .

Recall that weights are never decreased (assuming a, < 1). Adding a new
premise will always increase weights connected to features of its category
that are not already at their maximum value. Therefore, for each i,

w{Hawks,Sparrows,Eagles) = w/(Sparrows,Eagles),
which implies that

W(Hawks,Sparrows,Eagles) - F(Birds)
|F(Birds)|*
W(Sparrows,Eagles) - F(Birds)
|F(Birds)|* )

=

In terms of a,, or argument strength,
a,(Birds/Hawks,Sparrows,Eagles) = a,(Birds/Sparrows,Eagles)
and strictly greater whenever

{W(Hawks,Sparrows,Eagles) — W(Sparrows,Eagles)] - F(Birds) > 0.
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Although the contribution to argument strength provided by the new
premise may be small, it is necessarily nonnegative. The model therefore
predicts that when the monotonicity phenomenon is evaluated over a
large number of subjects, some tendency to prefer the argument with the
larger number of premises should be observed.

vii. Inclusion Fallacy (One Specific and One General Argument)

Shafir, Smith, and Osherson (1990) demonstrate that, counter to nor-
mative prescription, arguments with more general conclusions can some-
times seem stronger than arguments with identical premises but specific
conclusions:

A. B.
Robins have X. Robins have X.

Birds have X. is stronger than Ostriches have X. °

The feature-based model explains this phenomenon by appealing to
greater coverage by the premise category of the features of the general
category (Birds) than of the specific category (Ostriches). The account
follows directly from that of phenomenon i, similarity, on the assumption
that Robins are more similar to Birds than they are to Ostriches. This is
precisely the assumption made by Osherson et al. (1990). The feature-
based model makes no distinction between the representation of general
and specific categories; both are represented as feature vectors. There-
fore, any of the model’s logic that applies to one kind of category will
apply equally to the other.

viii, Conclusion Specificity (General)

When premise categories are properly included in the conclusion cat-
egory, arguments tend to be stronger the more specific is the conclusion
category. Corroborating data can be found in Rothbart and Lewis (1988).
This is illustrated by the following example because Birds is more specific
than Animals, and because Sparrows and Eagles are Birds which are in
turn Animals

A, B.
Sparrows have X. Sparrows have X.
Eagles have X. Eagles have X.

is stronger than

Birds have X. Animals have X.

This phenomenon follows from i, premise—conclusion similarity, when-
ever the more specific category is more similar than the more general
category to the premise categories. Instances of Birds tend to be more
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similar to the category of Birds than to the more general category of
Animals (cf. Smith, Shoben, & Rips, 1974), implying that Birds are more
similar to Sparrows and Eagles than Animals are so that Argument A will
be stronger than Argument B.

However, categories k levels apart are not always more similar than
categories more than k levels apart (Smith et al., 1974). If a premise
category is more similar to a more general category, the feature-based
model expects the conclusion specificity phenomenon to reverse as long
as the magnitude of the vector corresponding to the more general cate-
gory is not too large. For instance, Chickens are more similar to Animals
than to Birds for some people. The model predicts that the Argument
““Chickens have X, therefore Animals have X”* will be stronger for these
people than ‘‘Chickens have X, therefore Birds have X.”” Evidence for
just this type of event is provided by the inclusion fallacy. Gelman (1988)
has offered an alternative explanation for conclusion specificity which
appeals to the relative homogeneity of categories at different levels.

ix. Premise—Conclusion Asymmetry (Specific)

This phenomenon, first discussed by Rips (1975), involves single-
premise arguments. Switching premise and conclusion categories can lead
to asymmetric arguments, in the sense that the strength of P/C will differ
from that of C/P. An example is provided by Osherson et al. (1990):

A. B.
Mice have X. h Bats have X.
Bats have X. stronger than Mice have X. °

Those authors, along with Rips (1975), attribute the phenomenon to
differences in typicality. People are assumed to be more willing to gen-
eralize from a typical instance to an atypical instance than from an atyp-
ical instance to a typical instance. According to the similarity—coverage
model, this is because typical instances provide greater coverage of the
lowest-level category that includes both the premise and conclusion cat-
egories. The phenomenon follows if Mice are assumed more typical than
Bats of some common category, such as Mammals.

The feature-based model attributes the phenomenon to differential rich-
ness of category representations (which is likely to be correlated with
typicality). From Eq. 5, we write the strength of Argument A as

F(Mice) - F(Bats)
|F(Bats)|? ’

a,(Bats/Mice) =

and the strength of Argument B as
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F(Bats) - F(Mice)
[F(Mice)f?

a.(Mice/Bats) =

Because their numerators are identical, the relative strength of the two
arguments depends entirely on the relative magnitudes of their conclusion
categories. On the one hand, Bats have distinctive properties that would
tend to increase the richness of their representations, like having wings,
being nocturnal, and living in caves. On the other hand, we know a lot
about Mice because they are so familiar (e.g., they have long tails, they
eat cheese, we have a more precise idea of their appearance) and this
gives us confidence that they possess common mammalian properties that
we know about (e.g., they probably have normal sensory and motor sys-
tems). In any case, the relative magnitudes of the two categories’ repre-
sentations are an open (and difficult) empirical question, the complexity
of which cannot be addressed with simple feature ratings.

However, categories do exist which will let us both make reasonable
guesses as to the relative magnitude of their representations and also pit
the two explanations for the asymmetry phenomenon against each other.
Given a pair of categories D and E in which the representation of D is
richer than that of E but E is more typical than D of the lowest-level
category that properly includes them both, the argument D/E should be
stronger than E/D. The similarity~coverage model predicts the opposite.

I chose six such pairs of categories (Killer whales and Weasels, Kan-
garoos and Wolverines, Chickens and Orioles, Penguins and Finches,
Tomatoes and Papayas, and Cucumbers and Guavas). In each case, the
first category is less typical of the lowest-level inclusive category than the
second (Mammals, Mammals, Birds, Birds, Fruit, and Fruit, respec-
tively), but it is more familiar and subjects are likely to have more detailed
knowledge of it.® I constructed two arguments from each pair of catego-
ries by having each category serve as both premise and conclusion cate-
gory and asked subjects to rate the convincingness of each argument on
a scale from 0 to 10 (see Appendix A for the design and procedure).

For five of the six pairs, the argument with the less typical premise and
lower magnitude conclusion category (e.g., Chickens have X, therefore
Orioles have X) was judged more convincing (mean of 3.12) than the
argument with the more typical premise and greater magnitude conclusion
category (e.g., Orioles have X, therefore Chickens have X; mean of 2.93).
The sole exception was the pair involving Killer whales and Weasels.
Although the judgments were in a direction that supported the feature-

8 The Wolverine is the University of Michigan mascot and therefore could be more fa-
miliar to our subjects than the Kangaroo. However, informal questioning of the participants
suggested otherwise.
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based model, the overall difference was not statistically significant for
these item—pairs across subjects, #(33) = 1.54, ns. The experiment may
not have had enough power to detect a real difference between the two
types of arguments. Using a larger number of arguments with familiar but
nonexplainable predicates, Sloman and Wisniewski (1992) have found an
asymmetry effect in which subjects preferred arguments with a lower
magnitude conclusion category. Another possibility is that both represen-
tational richness and typicality influence argument strength and that they
had opposite effects in this experiment. Typicality may influence perfor-
mance to the extent that subjects’ reasoning is logical and not intuitive.
They may employ an inferential step of the form “'If the property is true
of such a representative member of the category, then it is likely to be true
of all category members,”” an inference that is nicely captured by the
similarity—-coverage model.

x. Premise—Conclusion Identity

Phenomena x and xi were dubbed ‘‘limiting-case phenomena’’ and pos-
ited by Osherson et al. (1990, 1991) without experimental evidence. Prem-
ise~conclusion identity states that arguments with identical premises and
conclusions are perfectly strong, i.e., they have maximum argument
strength:

Pelicans have X.
Pelicans have X.

is perfectly strong.

According to the feature-based account, the strength of this argument is

F(Pelicans) - F(Pelicans)
|[F(Pelicans)[?
Zf«(Pelicans)f(Pelicans)

- [F(Pelicans)P?
|F(Pelicans)?

~ [F(Pelicans)[?

= 1.

a,(Pelicans/Pelicans) =

Certain unusual conditions exist which could cause a, to take on values
greater than 1. This will occur if the weight vector has the same or a
similar direction as the input vector and a greater magnitude. An example
of an argument leading to such a situation would be

Pelicans have X.
Flamingoes have X.

Pelicans have X.
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The psychological strength of such an argument is not obvious, and may
require detailed analysis. We can either ignore these degenerate cases or,
as suggested earlier, extend the definition of a, so that its maximum value
is 1, with the result that no argument can be stronger than one with
identical premises and conclusions.

PHENOMENA THAT DISTINGUISH THE TWO MODELS

The category-based and feature-based models differ with respect to
three of the phenomena described by Osherson et al. (1990) as well as a
new one.

xi. Premise-Conclusion Inclusion

The second limiting-case phenomenon stipulated by Osherson et al.
(1990), and predicted by their model, states that arguments in which the
conclusion category is subordinate to the premise category are perfectly
strong:

Animals have X.
Mammals have X.

is perfectly strong. (m)

This phenomenon has an obvious logical justification. To the extent one
knows and applies the category-inclusion rule, such arguments are per-
fectly strong. As phenomenon vii, the inclusion fallacy, suggests how-
ever, rules consistent with the logic of argument are not always applied.
The feature-based account predicts that, to the extent that use of such
rules is not overriding the postulated associative process, such arguments
will not always be perfectly strong. Rather, they will depend on the fea-
tural overlap between premise and conclusion categories and the richness
of the conclusion category representation. The strength of Argument m is

F(Animals) - F(Mammals)
|F(Mammals)[?

a,(Mammals/Animals) =
# 1.

The numerator will increase as the extent of common features between
the premise and conclusion categories increases, and therefore so will
argument strength. The feature-based model predicts that, given most
models of similarity, premise—conclusion inclusion arguments should
vary with the similarity of premise and conclusion categories. The cate-
gory-based model predicts that, since all such arguments are perfectly
strong, no such variation should take place. A test of these different
predictions is embodied in the experiments described in support of the
next phenomenon.
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Inclusion Similarity (New Phenomenon)

The strength of an argument in which the conclusion category is prop-
erly included in the premise category varies with the similarity of the two
categories. I asked subjects to select the stronger of the following argu-
ments:

1A.
Animals use norepinephrine as a neurotransmitter.

Mammals use norepinephrine as a neurotransmitter.

1B.
Animals use norepinephrine as a neurotransmitter.

Reptiles use norepinephrine as a neurotransmitter.

Forty-four of 50 subjects chose Argument A (p < ,001). Also, Animals
were judged significantly more similar to Mammals (mean similarity judg-
ment was 5.7 on a 7-point scale) than to Reptiles (4.5 out of 7), #49) =
5.24, p < .001. Subjects did not find these choices overwhelmingly diffi-
cult to make. The mean rating of confidence in choice of argument was 4.5
on a 7-point scale. 1 also asked subjects to choose between

2A.
Birds have an ulnar artery.

Robins have an ulnar artery.

2B.
Birds have an ulnar artery.

Penguins have an ulnar artery. ’

Again, the consistency in choice behavior was remarkable. Thirty-eight
of 40 subjects chose A (p < .001). Also, Birds were judged significantly
more similar to Robins (6.5) than to Penguins (4.6), 1(38) = 6.46, p < .001.
Again, subjects did not, on average, find the task extremely difficuit.
Mean confidence ratings in their choice were 4.6. Finally, and toward an
examination of the phenomena in a different domain, I asked subjects
which of the following they found stronger;

3A.
Furniture cannot be imported into Zimbabwe.

Tables cannot be imported into Zimbabwe,

3B.

Furniture cannot be imported into Zimbabwe.
Bookshelves cannot be imported into Zimbabwe,




FEATURE-BASED INDUCTION 265

Thirty-three of 39 subjects chose A (p < .001). Similarity judgments
between Furniture and Tables (6.2) were significantly higher than those
between Furniture and Bookshelves (5.3), 1(38) = 3.69, p < .001. Again
subjects were not overly strained by the choices they were asked to make;
mean confidence was 3.9.

The preceding demonstrations suffer from a limitation imposed by the
forced-choice task. The task required subjects to choose one or the other
argument. Subjects could have based their choice on similarity, even
though both arguments seemed perfectly strong, only to satisfy the task
requirements. I therefore tried to replicate the inclusion similarity phe-
nomenon using a rating task which did not make the task demands of the
forced-choice procedure.

I gave 60 undergraduates at the University of Michigan the same six
arguments as above (1A, 1B, 2A, 2B, 3A, and 3B) and asked them how
convincing they found each one. To make their rating, subjects circled
one of the integers from 1 (not at all convincing) to 10 (very convincing).
In general, we would expect the strength of arguments satisfying premise—
conclusion inclusion to be relatively high because categories usually share
many features with their subordinates.

The mean convincingness rating for Argument 1A (Animals therefore
Mammals) was 7.50, significantly greater than the mean rating for Argu-
ment 1B (Animals therefore Reptiles) of 5.88, 1(59) = 5.07; p < .001. The
same pattern held for the second pair of arguments (Birds therefore Rob-
ins versus Birds therefore Penguins). Mean convincingness ratings were
9.45 and 6.73, respectively, #(59) = 7.35; p < .001. The third pair also
showed the phenomenon. The mean for 3A (Furniture therefore Tables)
of 9.32 was significantly higher than the mean for 3B (Furniture therefore
Bookshelves) of 8.53, #(59) = 2.86; p < .01. The argument with the more
similar categories was judged significantly more convincing in all three
cases. Similarity judgments replicated the patterns reported above.

Perhaps subjects failed to realize that each category was meant to sub-
sume all members of that category. For example, they might have inter-
preted ‘‘Mammals have X’ as ‘‘some Mammals have X." So I clarified
the meaning of each statement by preceding each premise and conclusion
category by the quantifier *‘all,” for example ‘‘All animals use norepi-
nephrine as a neurotransmitter.”’ I asked a new group of 46 students to
rate the convincingness of the six modified arguments.

I obtained an identical pattern of judgments. The mean convincingness
ratings for the first two arguments (all Animals therefore all Mammals and
all Animals therefore all Reptiles) slightly increased to 7.54 and 6.00,
respectively, #(45) = 3.02; p < .01. For the second pair of arguments (all
Birds therefore all Robins versus all Birds therefore all Penguins), corre-
sponding means were 9.59 and 6.41, ((45) = 6.76; p < .001. Finally,
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the mean for 3A (all Furniture therefore all Tables) was 8.35, whereas the
mean for 3B (all Furniture therefore all Bookshelves) was 7.91, #45) =
3.24; p < .001. Even when categories were explicitly quantified to include
all category members, convincingness ratings were consistent with the
model in all three cases.

The inclusion similarity phenomenon can be demonstrated in a different
way. Instead of varying similarity by varying the conclusion category, we
can vary the specificity of the premise category. Consider the two pairs of
arguments

4A.
All birds require trace amounts of magnesium for reproduction.

All sparrows require trace amounts of magnesium for reproduction.

4B.
All animals require trace amounts of magnesium for reproduction.

All sparrows require trace amounts of magnesium for reproduction.

and

5A.
All dogs produce THS by their pituitary.

All German shepherds produce THS by their pituitary.

5B.
All mammals produce THS by their pituitary.

All German shepherds produce THS by their pituitary. *

The first argument in each pair contains categories that share more
common features than the corresponding second argument. This claim is
supported by the similarity judgments of 44 subjects, who judged Birds
and Sparrows (mean of 6.32) to be more similar than Animals and Spar-
rows (mean of 4.57), ((43) = 7.76; p < .001, and who also judged German
shepherds to be more similar to Dogs (mean of 6.36) than to Mammals
(mean of 4.59), 1(43) = 6.22, p < .001. The feature-based model therefore
predicts that subjects should rate Argument A of each pair as stronger.
Indeed, the mean convincingness rating for 4A was 9.11, significantly
greater than the mean for 4B of 8.11, #(43) = 2.34, p < .05. The premise
specificity prediction was further supported by the second pair of argu-
ments: SA was rated significantly more convincing than 5B, mean ratings
were 9.23 and 7.61, respectively, #(43) = 3.17, p < .01.

These demonstrations support the feature-based model which predicts
the strength of arguments satisfying premise~conclusion inclusion to be
proportional to coverage of the conclusion category’s features by the
premise category, and therefore correlated with similarity, and refute the
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category-based model which cannot explain these data without auxilliary
assumptions. One such auxilliary assumption® is to suppose that, in de-
composing the premise category, subjects sample some of its subcatego-
ries and these tend to be the more typical. Upon incorporating this
assumption, the category-based model will no longer predict premise~
conclusion inclusion and will no longer always predict premise—
conclusion identity.

xii and xiii. Nonmonotonicity (General and Specific)

As described with respect to the premise monotonicity phenomena (v
and vi), the feature-based model never expects additional premises to
decrease the strength of an argument. Osherson et al. (1990) show that
this can happen however. Adding a premise that converts either a general
or a specific argument to a mixed argument can decrease the strength of
that argument. For example,

A. B.
Crows have X. Crows have X.
Peacocks have X. Peacocks have X.

Rabbits have X.
Birds have X.

- is st er th:
Birds have X. 18 stronger than

Similarly,
A. B.
Flies have X. Flies have X.
. b Orangutans have X.
Bees have X. Is stronger than Bees have X.

Osherson et al. (1990) explain these effects by invoking their concept of
coverage. Flies cover the lowest-level category including Flies and Bees,
namely Insects, better than Flies and Orangutans cover the lowest-level
category including Flies, Orangutans, and Bees, namely Animals. A sim-
ilar analysis applies to the other nonmonotonicity example. The feature-
based model cannot explain the resuit.

One possible explanation for nonmonotonicities, consistent with a vari-
ant of the feature-based model, is that the features of the unrelated cat-
egory compete with the features of the other premise categories. Features
may be weighted by the number of premise categories that they are con-
sistent with so that features shared by all categories would have the most
influence on belief in the conclusion. Features appearing in only one

? Suggested by Ed Smith.
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premise category of a multiple-premise argument could reduce argument
strength if this category shared few features with (i) the other premise
categories, for it would reduce the influence of their features, and (ii) the
conclusion category, because it would then provide little additional fea-
ture coverage itself. Both of these conditions are met in the examples of
nonmonotonicity above in that, for instance, Orangutans share few fea-
tures with either Flies or Bees.

One implication of this hypothesis is that examples of nonmonotonic-
ities should be observable in which the lowest-level inclusive category for
both arguments is the same but the two feature-overlap conditions just
described are met nevertheless. The similarity-coverage model could not
explain such cases because it assumes that the lowest-level superordinate
for the argument with the greater number of premises is at a higher level
than the superordinate for the other argument. Preliminary data directed
at this issue were collected by asking subjects to rate the convincingness
of five pairs of arguments (see Appendix A). Each pair consisted of a
single-premise specific argument such as

All crocodiles have acidic saliva.
All alligators have acidic saliva.

and a two-premise argument constructed by adding a premise category
that, in the experimenters’ judgment, had relatively few features in com-
mon with the other premise or the conclusion categories but came from
the same lowest-level superordinate category as both the other categories
(Reptiles in this example). For instance,

All crocodiles have acidic saliva.
All king snakes have acidic saliva.

All alligators have acidic saliva.

In each of the five cases nonmonotonicities were observed. The con-
vincingness of the single-premise argument was rated as significantly
higher (mean of 5.62) than that of the two-premise argument (mean of
4.98), 1(33) = 2.87; p < .01, Nonmonotonicities were obtained using
arguments whose categories apparently have the same lowest-level su-
perordinate. To argue that subjects did use different (and nonobvious)
superordinates for the arguments within each pair is to assume that cat-
egory hierarchies are much less rigid and more idiosyncratic than the
similarity~coverage model would suggest, at least in its simplest, most
elegant form. If the hierarchies that subjects use are highly variable, and
especially if they are context-dependent, then they may not provide any
explanatory power beyond that of a featural description.

The feature-based model could be revised in a number of ways to
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implement this ‘‘feature-competition’’ idea. One particularly simple way
would be to allow for weight decay to be added to the encoding ruie by
introducing to Eq. 1 a forgetting parameter +y taking on some value be-
tween 0 and 1. The revised encoding rule would be

wiPo.P) = ywiPy) + [1 — ywi{Pll! — a (P/P)la(P). (1)

Equation 11 is a generalization of the original encoding rule in that we
obtain Eq. 1 by setting v = 1. It affords us a means of reducing the value
of each weight by some proportion prior to its updating for each premise.
Weight decay is useful when training feedforward connectionist networks
for reasons other than those proposed here (Krogh & Hertz, 1992). The
effect of weight decay on the feature-based model would be to reduce the
influence of earlier premise features as subsequent ones are encoded.
Weights corresponding to premise features unique to earlier premises
would thereby decay while those common to earlier and later premises
would have their representations bolstered, thus giving greater weight to
features appearing in more than one premise.

The simplicity of the model of single-premise arguments, Eq. 5, is a
direct result of the assumption that subjects know nothing about the re-
lation between category features and the blank predicate, or that weights
have initial value 0. According to Eq. 11, ¥ would thus be multiplied only
by 0 when encoding the first premise. Therefore, adding weight decay
would have no effect on the model of single-premise arguments. Careful
choice of ¥y would lead to a model whose predictions were substantially
unaffected in most other respects as well. For instance, we could make v
depend on the value of the output unit’s current activation, while ensuring
that its lowerbound was vy, and its upperbound was 1:

Y = Yo + Y18(P/Py),

where 0 <y, < land+y, + v, = 1. Such a model would have the following
characteristics: (i) An immediately repeated premise would not affect
argument strength. The strength of the argument P/C would be identical to
that of P,P/C. (ii) We would expect nonmonotonicities whenever a prem-
ise category shared few features with both the earlier premise and the
conclusion categories. For instance, given categories A, B, and C for
which F(A) - F(B) = 0 and F(B) - F(C) = 0, the argument A/C would be
stronger than the argument A,B/C. (iii) The only difference between this
model and the original one would have to do with the weight each one
gives to the different serial premise positions. This is discussed at greater
length in the next section. The only phenomena that have been discussed
that involve only multiple-premise arguments and are therefore necessar-
ily affected by this change are diversity, feature exclusion, and of course
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monotonicity and nonmonotonicity. Adding weight decay to the model
would obviously decrease the relative frequency of monotonicities to
nonmonotonicities. Accounts of diversity and feature exclusion can be
developed for any order of premises, so changing the weight of the var-
ious serial positions would have unsystematic effects on these phenom-
ena, effects that would be small in any case.

Order Effects

The feature-based and similarity-coverage models differ with respect to
their predictions about the effect of premise order. Because the original
feature-based model uses the delta rule of Eq. 1, premises are encoded
only to the extent that they are surprising. Smali differences would there-
fore sometimes be expected between an argument of the form A,B/C and
one of the form B,A/C. For instance, if the set of features of the category
in B were properly included in the set of features of the category in A,
then the latter argument would be predicted to be slightly stronger than
the former. The similarity—-coverage model does not identify premises
with their order of presentation, and so expects no effect of premise
order.

However, adding weight decay to the feature-based model complicates
its predictions concerning premise order. As well as expecting the sur-
prisingness principle to sometimes decrease the impact of later premises,
we now expect that weight decay will decrease the impact of earlier
premises. Although predictions will depend to some degree on the extent
of commonalities between all the categories within each argument, the
major determinant of order effects will be the relative values of v and the
measure of surprisingness (1 — a,). More empirical work is necessary to
sort these issues out.

QUANTITATIVE TESTS OF THE MODEL

To provide further empirical tests of the feature-based model, numer-
ical predictions generated by the model were correlated with subjects’
judgments of argument strength. Because the feature-based model has no
free parameters, all we need to derive predictions is a set of categories,
each with an associated feature list. Again, I used the ratings of strength
of association between 85 properties and 48 mammals that Osherson et al.
(1991) collected. These strength ratings can encourage subjects to judge a
category as associated to properties that are not salient aspects of the
subjects’ conception of the category, as exemplified by the positive judg-
ments between Sheep and has tail or is weak. Judgments of relative
strength of association in this sense lead to some overestimation of the
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value of features that are only weakly represented. I therefore applied a
varying cutoff to the feature ratings, setting all values to 0 that were below
a specified cutoff value.

Predictions of the feature-based model were calculated from the feature
ratings using Eqs. 1, 2, and 3. Judgments of argument strength were
obtained from data published in Osherson et al. (1990) and Smith et al.
(1992). Five data sets were used, all involving arguments of the form
described above. Categories were from the set of Mammals. The first set
involved 15 two-premise-specific arguments, each with a different blank
property (Smith et al., 1992, Table 4). The conclusion category was ai-
ways Fox. Premise categories consisted of all possible pairs from the set
(Dog, Hamster, Hippo, Mouse, Rhino, and Wolf). Because I did not have
feature ratings for Dog, 1 used the ratings for German shepherd, on the
assumption that a German shepherd is a highly typical dog. Smith et al.
asked 30 University of Michigan undergraduates to estimate the proba-
bility of the conclusion on the assumption that the premises were true.

Cutoff values were varied from 0 to 1 in increments of 0.01. However,
cutoff values close to | eliminated all or most of the data thereby render-
ing the feature ratings meaningless. I therefore did not consider cutoff
values sufficiently close to 1 that category representations were all iden-
tical. Correlations were calculated between the model’s predictions using
feature ratings calculated for each cutoff value and subjects’ probability
estimates.

Feature ratings were obtained by averaging over subjects at one uni-
versity (MIT) and argument strength ratings by averaging over subjects at
a different university (Michigan). The only parameter varied was the cut-
off value. Nevertheless, the mean correlation was 0.91 between the mod-
el’s predictions and mean probability judgments, taken over all cutoff
values less than 0.71. The maximum correlation was 0.96, achieved at
cutoffs of 0.58 and 0.59. The magnitude of these correlations bodes well
for the feature-based model.

By way of comparison to the similarity-coverage model, Smith et al.
(1992) report a multiple correlation of 0.93 between (i) the same strength
judgments as above and (ii) similarity and coverage terms estimated from
a different group of 30 University of Michigan undergraduates. Strictly
speaking, the correlations obtained by the two models are incomparable.
The similarity-coverage model derives argument strength predictions
from similarity judgments. Both argument strength and similarity ratings
require subjects to directly compare premise and conclusion categories.
The feature-based model derives argument strength predictions from fea-
ture ratings. Unlike argument strength ratings, feature ratings require
subjects to evaluate the constituent attributes or components of a cate-
gory. So judging argument strength and similarity are much more similar
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tasks than are judging argument strength and rating features. Because
correlations are partly just reflections of the similarity between two tasks,
we would expect those obtained for the similarity-—coverage model to be
higher. In Osherson et al. (1991), similarities were derived from the same
feature vectors as those 1 employ. The maximum correlation reported
between theoretical and empirical similarity judgments was 0.64. Using
these theoretical {(feature-based) similarity judgments to predict argument
strength judgments would surely have appreciably reduced the correla-
tions obtained by the similarity-coverage model.

The second data set examined was identical to the first (probability
Jjudgments collected from the same 30 subjects), except that the conclu-
sion category was Elephant instead of Fox (Smith et al., 1992, Table 4).
The mean correlation between the data and predictions of the feature-
based model was 0.86, taken over all cutoffs below 0.78. The maximum
correlation was 0.97, achieved at cutoffs around 0.76. Smith et al. (1992)
report a multiple correlation of 0.96 between the two estimated terms of
their model and probability judgments.

The third data set again consisted of two-premise-specific arguments
(Osherson et al., 1990, Table 5). This time the conclusion category was
Horse. Only those arguments were considered that used premise catego-
ries for which I had feature ratings (Chimp, Gorilla, Mouse, Squirrel,
Seal, Elephant, and Rhino). This allowed me to model 21 of 36 arguments
reported by Osherson et al. (1990). Argument strength data consisted of
mean rankings from 20 subjects of 36 arguments in terms of the likelihood
of the conclusion given the premises.

Correlations between the model’s predictions and mean argument rank-
ings were substantially lower than the correlations reported above in
which data came from probability judgments, but still significantly posi-
tive. The mean correlations for all cutoff points below 0.73 was 0.29. The
maximum was 0.59 (at cutoff 0.60). Osherson et al. (1990) were able to
calculate the multiple correlation between their estimated similarity and
coverage terms and confirmation scores based on all 36 arguments. Sim-
ilarity and coverage terms were estimated from similarity rankings pro-
vided by a different group of 40 subjects. They obtained a multiple cor-
relation of 0.96, substantially higher than those found with the feature-
based model. Their correlation could be higher because their data were
more reliable due to the larger number of arguments they modeled.

Two data sets were available for quantitative tests of the model for
general arguments. Osherson et al. (1990, Table 4) report confirmation
scores for 45 three-premise general arguments in which the conclusion
category was Mammal. Scores were mean rankings from 20 subjects over
all 45 arguments of the likelihood of the conclusion given the premises. I
had feature ratings for premises from 21 of these arguments. Feature
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values for the category Mammal were estimated by assigning feature i of
category Mammal the maximum value of feature i over the available set
of 48 Mammals.'®

Based on 21 arguments, the mean correlation was 0.71, taken over
cutoffs less than 0.73. The maximum correlation was 0.83, which oc-
curred at cutoff 0.29. Based on all 45 arguments, Osherson et al. obtained
a correlation between their model’s predictions and the data of 0.87, using
the same similarity scores as those of the immediately preceding experi-
ment.

Finally, probability estimates for 15 two-premise general arguments in
which the conclusion category was Mammal were reported by Smith et al.
(1992, Table 2). Estimates were made by 30 University of Michigan un-
dergraduates. Again, I substituted German shepherd for Dog and used the
maximum rule to obtain feature values for Mammal.

The mean correlation was 0.56 across all cutoff scores below 0.78. The
maximum correjation obtained was 0.77, occurring at cutoff 0.04. The
correlation obtained by Smith et al. between their model’s predictions
estimated from similarity ratings provided by a different group of Univer-
sity of Michigan students and probability estimates was higher, 0.92.

The correlations between model and data lend credence to the feature-
based model for several reasons, despite the similarity—coverage model’s
higher showing in 3 out of 5 cases. First, as noted above, the similarity—
coverage model derives its predictions from similarity judgments of ob-
jects at the same ontological level as argument strength judgments,
namely categories, and the feature-based model derives them from ob-
jects at a reduced descriptive level, namely features. This gives the sim-
ilarity—coverage model a relative advantage. Second, the data were not
used to estimate any parameter intrinsic to the model, neither a learning
nor an activation parameter. One parameter was used, one that affected
which of 85 features were used to represent categories. To model specific
arguments, the similarity—coverage model requires a parameter specifying
the relative weight of the similarity and coverage terms. Third, feature
values which provided the feature-based model’s predictions were esti-
mated using subjects from one population, whereas ratings of argument
strength were provided by subjects from a different population. Fourth,
for reasons given above, the feature ratings were not optimal for testing
the feature-based model. Fifth, lacking subjects’ direct judgments, feature
ratings had to be estimated for two categories (Dog and Mammal). Fi-

9 The use of mean feature ratings for Mammal had littie impact on the correlations
obtained. However, because of the large number of feature values of 0, mean ratings tended
to give Mammal very small feature values which caused argument strengths to be too high,
rarely less than 1.
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nally, correlations for the feature-based model were generally high across
a spectrum of cutoff values, as attested to by the generally high means.

DISCUSSION

I have described a simple model that accounts for a variety of phenom-
ena regarding people’s willingness to affirm a property of some category
given confirmation of the property in one or more categories. The model
implements the principle that one’s willingness is given by the proportion
of the category’s features that are associated with the property; i.e., the
proportion of features that are covered by the categories known to pos-
sess the property. The model accounts for 10 phenomena described by
Osherson et al. (1990). It motivated empirical work suggesting that an-
other one of their phenomena, premise—conclusion inclusion, does not
hold in general although a related phenomenon predicted by the current
model only, inclusion similarity, does. An experiment was reported to
suggest that a generalization of the feature-based model may provide a
more direct account of the two remaining phenomena, the nonmonoto-
nicities. The model successfully predicted two new phenomena: feature
exclusion, a reversal of the diversity phenomenon in which one of the
more diverse premises fails to contribute to feature coverage, and cate-
gory richness, in which an argument with a lower magnitude conclusion
category is judged stronger than one with a higher magnitude. Preliminary
data were also reported that were in a direction supporting the feature-
based model’s explanation for the asymmetry phenomenon. Finally, the
feature-based model showed high correlations between its predictions and
ratings of argument strength.

The feature-based model has two primary components that are proba-
bly not equally important in determining argument strength. Feature over-
lap, the dot product term in the feature-based model, seems to be gener-
ally more influential than representational richness, the magnitude term.
Feature overlap played a role in all but one of the demonstrations of the
various phenomena, premise—conclusion asymmetry. On the other hand,
only four of the phenomena depended on vector magnitude, namely, cat-
egory richness, typicality, asymmetry, and premise~conclusion identity.
The relative weight of the dot product and magnitude terms in determin-
ing argument strength is related to the ratio of their variabilities. If, for
instance, the magnitude of every representation were the same, then mag-
nitude would play no role in determining argument strength. The variabil-
ity in feature overlap among arguments may well be substantially greater
than the variability in representational richness. The range of magnitude
variation could be restricted by limited attention which may act to con-
strain the number of salient features of a category.
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The Feature-Based View Versus the Category-Based View

Broadly construed, the category-based view of induction is not neces-
sarily inconsistent with the feature-based view. Even if a feature-based
model were consistent with a wide variety of data under many different
conditions, a category-based model might still capture, in an easy-to-
understand way, some large and important set of phenomena. Categories
surely provide a useful level of abstraction. The category-based view has
the distinct advantage of requiring only pairwise similarity ratings to gen-
erate quantitative predictions. The feature-based view is limited by the
difficulties inherent in gathering reliable and complete sets of feature
values for individual categories. On the other hand, the category-based
view, by virtue of its abstractness, may be unable to capture all the
subtleties of induction. A category-based model which appeals to rela-
tions among categories is not necessarily derivable from a feature-based
model which appeals to relations among category attributes.

In terms of the specific models of concern here, the category-based and
feature-based models differ in several respects. First, they suggest differ-
ent ways of classifying the phenomena. The similarity-coverage model
motivates a distinction between phenomena whose explanation relies on
similarity—the prototype being the similarity phenomenon—versus phe-
nomena whose explanation is premised on differences in coverage—the
prototype being diversity. The feature-based model attributes both of
these phenomena to a single factor, the degree of match between the
premise categories as encoded in the weights and the conclusion cate-
gory. A distinction more compatible with the feature-based model would
separate phenomena explained in terms of the relative degree of match
between weights and conclusion categories, the term in the numerator of
Equation 3, with phenomena explained in terms of the relative degree of
richness of the conclusion category, the denominator of the argument
strength model. The asymmetry phenomenon is the prototype of the latter
class.

Second, the two models differ with respect to their toleration of flexi-
bility in our representations of categories. The feature-based model al-
lows for extreme flexibility; the set of features representing a category
could be highly context-dependent. By assuming a stable category hier-
archy, the category-based model expects some rigidity. To the extent that
new categories must be identified to explain new data, the usefulness of
the similarity—coverage model is suspect. For example, what is the low-
est-level category that includes ducks, geese, and swans? Is it birds,
water-birds, web-footed birds? How do we deal with categories that are
not natural kinds such as ad hoc categories (Barsalou, 1985), like birds
found in national parks? The feature-based model requires only a set of
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features for each category. On the other hand, to the extent we can appeal
to an established category hierarchy, the featural description of individual
categories might become unnecessarily tedious.

The models also differ with respect to the explanatory burden they put
on different parts of an argument. Both models emphasize the relation
between premise and conclusion categories. However, whereas the fea-
ture-based model puts some weight on characteristics of the conclusion
category in isolation (by computing its magnitude), the similarity-
coverage model gives weight to characteristics of the premise categories
(by computing their coverage of a category that includes them).

Finally, the feature-based model has a computational advantage. All
the model needs in order to derive argument strengths for a new category
are its features. The similarity—coverage model requires similarity ratings
(possibly derived from features) between the new category and each old
one at the same hierarchical level, and the re-calculation of coverage
values for all categories that include the new one.

In sum, we may be mistaken to interpret the success of Osherson et
al.’s (1990) similarity—coverage model as implying the existence of two
psychological processes which operate on pairwise similarity judgments,
one of which computes overall similarity and the other coverage. Their
pair of theoretical constructs may be only approximate abstract descrip-
tions of more microlevel processing mechanisms.

The Problem of Nonblank Predicates

Some nonblank predicates do not seem fundamentally different from
blank ones. Sloman and Wisniewski (1992) show that familiar predicates
behave like blank ones when subjects cannot explain their relation to the
categories of an argument. But cases of this sort are probably rare. The
most important advantage of the feature-based view, and of the model
proposed here in particular, is the direction it suggests for generalizing to
arguments involving a range of nonblank predicates. One such direction
would be to model some nonblank predicates as consisting of features,
some of which have preexisting connections to features of premise and
conclusion categories. One implication of this move would be that
premises would influence argument strength only to the extent that they
are surprising in relation to prior knowledge; that they inform people of
links between features of conclusion categories and predicates that they
do not already know.

A second implication of this type of feature-based model for nonblank
predicates is that arguments will tend to be judged strong given a strong
prior belief in their conclusion (for supporting evidence, see Lord, Ross,
& Lepper, 1979). The model expects argument strength to be high when-
ever the weight vector is highly correlated with the conclusion category
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vector, whether those weights come from the premises of the argument or
from prior knowledge. The model predicts, therefore, that people will
have trouble ignoring prior knowledge. (This is irrelevant when predicates
are blank because, by definition, no prior beliefs exist.) However, prac-
ticed subjects may be able to evaluate a conclusion before and after
encoding premises, and use the difference between the two outcomes as
their measure of argument strength. Moreover, arguments like

Tables have legs.
Therefore, people have legs.

may be judged weak despite prior belief in the conclusion because the
meager amount of overlap between the features of tables and those of
people is so obvious.

A second direction involves generalizing the notion of feature cover-
age. Some nonblank predicates may have the effect of selecting those
features of a category that are particularly relevant. Consider the argu-
ment

Tolstoy novels make good paperweights.
Michener novels make good paperweights.

Whatever your feelings and knowledge about literature, the only features
of both kinds of novels that are relevant to this argument have to do with
size, shape, and weight. An important and unanswered question is how
those features become available to us so effortlessly. Indeed, some fea-
ture selection of this sort may be going on even with the ‘‘blank’ pred-
icates of this paper. The predicates are just about all biological in kind,
not really entirely blank after all, and so other biological properties of the
categories may have greater weight than nonbiological properties. This
may be why we seem, sometimes, to respond to these arguments on the
basis of taxonomic knowledge. Animal taxonomies are certainly informa-
tive about biological properties. But once the relevant features for each
category of an argument are selected, feature coverage may become the
principle determining argument strength. (The example argument is a
strong one because the relevant features of Michener novels are covered
by Tolstoy novels.) And the feature-based model would still be a con-
tender as a way to implement that principle. These issues will have to be
clarified before we can expect a feature-based model for nonblank prop-
erties to offer much insight.

CONCLUSION

The feature-based model provides for a new perspective on argument
strength. By using rules normally associated with models of learning (the
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delta rule and activation rule), it gives substance to the view that the
process of confirming an argument is intimately related to concept learn-
ing. Encoding a premise is viewed as a process of linking new properties
with old concepts. Testing a conclusion is described as a process of ex-
amining the extent to which the new links transfer to other concepts. The
study of confirmation, for better or for worse, becomes an aspect of the
study of generalization.

APPENDIX A

Thirty-four undergraduates from two psychology classes at the Univer-
sity of Michigan participated for prize money (a lottery was held after
each session). They were tested in two groups of 17 students each. Each
subject rated the strength or convincingness of 57 arguments. Twenty
arguments were constructed to examine the effect of conclusion magni-
tude, 12 to investigate asymmetries, and 10 for nonmonotonicities. The
remaining 15 arguments were used to investigate phenomena not reported
in this paper. Every category of every argument was preceded by the
word ‘‘all.”” Each premise was preceded by ““FACT:"” and each conclu-
sion by “THEREFORE:”’

Subjects received the following instructions: ‘‘Each piece of paper you
have has an argument on it; i.e., a fact or series of facts followed by a
conclusion. Please rate the convincingness of each of the arguments on a
scale from 0 to 10. A rating of 0 means you find the argument completely
unconvincing (or very weak) whereas a rating of 10 means you find the
argument completely convincing. Do not be concerned if some of the
terms seem unfamiliar to you, just rate the strength of each argument to
the best of your ability. Each argument should be treated separately. In
each case, please assume that the facts you are given are true. We would
like to know how much those facts lead you to believe the conclusion.”
Special care was taken to separate the arguments within each pair used to
test asymmetry and nonmonotonicity because the structure of these pairs
is necessarily more apparent to subjects than the structure of the conclu-
sion magnitude pairs. The asymmetry and nonmonotonicity arguments
were combined with 11 other arguments and divided into two groups
(groups A and B), with half of the arguments for each phenomenon in
each group. The order of arguments within each of these groups was
counterbalanced such that each argument appeared approximately an
equal number of times in each serial position. The order in which phe-
nomena were tested was the following: Subjects saw 10 conclusion mag-
nitude arguments, 2 fillers, group A, 10 more conclusion magnitude ar-
guments, 2 more fillers, and then Group B.
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APPENDIX B

I derive the model of argument strength for two premise arguments
involving categories D, E, and C,

D have X.
E have X.

C have X.

Equation 4 tells us that, after encoding premise category D, the weights
are W(D) = F(D). The activation of unit X upon presentation of category
E is, from Eq. §,

F(D) - F(E)

a(ED) = =T

Using Eqgs. 1 and 2, each weight i after having encoded both premise
categories is

w{D,E) = w(D) + [l — wD)I[1 — a,(E/D)] f(E)
fD) + (1 - (DIl - a(E/D)] f(B).

To calculate the strength of the argument, we see how much category C
now activates unit X:

a,(C/D,E) = W(D,E) - F(C)/|F(C)]
_ZfOC) + Z{1 - fDIlI ~ aED)AENO}

[F(C)[?
_ F(D)- F(©) + [1 ~ a(EMD)F(E) - F(C) — SADWAEN(C)]
[FO)? '
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