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Prototypes in the Mist: The Early Epochs of Category Learning

J. David Smith and John Paul Minda
State University of New York at Buffalo

Recent ideas about category learning have favored exemplar processes over prototype
processes. However, research has focused on small, poorly differentiated categories and on
task-final performances—both may highlight exemplar strategies. Thus, we evaluated
participants' categorization strategies and standard categorization models at successive stages
in the learning of smaller, less differentiated categories and larger, more differentiated
categories. In the former case, the exemplar model dominated even early in learning. In the
latter case, the prototype model had a strong early advantage that gave way slowly. Alternative
models, and even the behavior of individual parameters within models, suggest a psychologi-
cal transition from prototype-based to exemplar-based processing during category learning
and show that different category structures produce different trajectories of learning through
the larger space of strategies.

Categorizing objects into psychological equivalence
classes is a basic cognitive task. Descriptions of categoriza-
tion long favored a generalized prototype principle (Homa,
Rhoads, & ChambUss, 1979; Homa, Sterling, & Trepel,
1981; Mervis & Rosen, 1981; Posner & Keele, 1968, 1970;
Rosch, 1973, 1975; Rosch & Mervis, 1975). Humans were
supposed to average their exemplar experience to derive the
category's prototype, compare new items to it, and accept
the items as category members if similar enough.

More recently, though, some have argued that prototypes
are an insufficient organizing principle for categories (Mur-
phy & Medin, 1985). Formal treatments have shown that
prototype models sometimes poorly describe humans' perfor-
mance (Medin & Schaffer, 1978; Nosofsky, 1987, 1992).
Empirical studies have challenged the prediction of prototype
theories that humans should find linearly separable categories
especially learnable (Medin & Schwanenflugel, 1981). As a
result, prototype-based descriptions of categorization perfor-
mance have been treated critically or marginalized (McKin-
ley & Nosofsky, 1995,1996; Nosofsky, 1991, 1992; Shin &
Nosofsky, 1992), and the literature has come to favor instead
a generalized exemplar principle in categorization.

This possibility, that humans store specific exemplars and
use these encapsulated episodes as comparative standards by
which to categorize new instances, is an important claim
about cognition. The more general the claim, the more
important. Yet existing explorations of this exemplar prin-
ciple have not mapped completely the domain of categoriza-
tion, with its limitless space of different category structures,
exemplar pool sizes, observer populations, performance
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conditions, and performance levels. Research must still
specify the appropriate extension of the exemplar principle
by evaluating, for example, whether different categorization
processes apply during different epochs of learning or for
different category structures. This article joins others in
exploring these two questions (Homa & Chambliss, 1975;
Homa, Dunbar, & Nohre, 1991; Homa et al., 1981; Nosof-
sky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Nosof-
sky, Palmeri, & McKinley, 1994). This exploration is
important because in both regards the literature may have
unintentionally exaggerated the generality of exemplar pro-
cesses in categorization.

Regarding different epochs of learning, participants often
receive extensive training before modeling occurs, with
training ending when they achieve a criterion of consecutive
correct responses or achieve above-chance performance on
all the training stimuli (Medin & Schwanenflugel, 1981;
Medin&Smith, 1981; Nosofsky, 1986). Then, the prototype-
based and exemplar-based descriptions of performance are
compared. This research strategy provides a static snapshot
of task-final, mature performance. However, at this stage of
learning, strong exemplar traces may have arisen, making
the exemplar model especially appropriate. Therefore, this
approach cannot show humans' first principles in categoriza-
tion or the early stages of their category learning. These will
have been paved over by long training with a restricted set of
exemplars, and they will be invisible in a static, end-of-
performance snapshot To see them, you need something more
like a video, a video that explores successive stages of learning
(see Estes, 1986a, p. 501). We provide such a video here.

In this regard, our research is allied to other studies that
have evaluated performance in different stages of category
learning (Ann & Medin, 1992; Estes, 1986b; Homa et al.,
1991; Medin, Wattenmaker, & Hampson, 1987; Nosofsky,
Kruschke, & McKinley, 1992; Nosofsky, Palmeri, & McKin-
ley, 1994; Regehr & Brooks, 1995). However, whereas some
of this research (Ahn & Medin, 1992; Medin et al., 1987;
Regehr & Brooks, 1995) has adopted a distinctive sorting
paradigm, here we adopt a typical categorization paradigm.
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Whereas previous research (Ahn & Medin, 1992; Medin et
al., 1987; Nosofsky, Palmeri, & McKinley, 1994; Regehr &
Brooks, 1995) has focused on rule-based descriptions, here
we focus on the value of prototype-based descriptions for
describing category learning. Moreover, previous research
has suggested that participants' progression of strategies
might be general across different category structures (i.e.,
with poorer or better category differentiation, with smaller
or larger exemplar pools—see, e.g., Nosofsky, Gluck, et al.,
1994; Nosofsky, Palmeri, & McKinley, 1994). Here we
analyze the domain of category structures more finely and
examine the idea (Homa et al., 1981; Reed, 1978; Smith,
Murray, & Minda, 1997) that different category structures
foster different trajectories of learning. Finally, previous
research has tried to show the general superiority of one
class of model over another (Estes, Campbell, Hatsopoulos,
& Hurwitz, 1989; Nosofsky, 1992; Nosofsky, Gluck, et al.,
1994; Nosofsky et al., 1992). This emphasis on global fit
misses the possibilities that we focus on here—that at
different points in learning, participants occupy different
positions in the larger space of categorization strategies and
that some of these differences have theoretical implications.

Regarding different category structures, those typically
used have favored exemplar-based processes because they
have featured small exemplar pools (about four items per
category) and poorly differentiated categories (Medin, Dewey,
& Murphy, 1983; Medin & Schaffer, 1978; Medin &
Schwanenflugel, 1981; Medin & Smith, 1981; Nosofsky,
1986, 1989, 1991; Nosofsky, Gluck, et al., 1994; Nosofsky,
Palmeri, & McKinley, 1994). Medin and Schwanenflugel
(1981, p. 365) understood that this kind of category structure
can engender a unique task psychology and specialized
strategies. It can even turn a seeming categorization task into
an identification task in which participants associatively pah-
whole exemplars and their category labels but have no sense
of coherent categories in doing so. This may happen because
exemplar memorization is easier and more obvious when
few exemplars repeat frequently (Homa & Chambliss, 1975;
Homa, Cross, Cornell, Goldman, & Shwartz, 1973; Homa et
al., 1979, 1981). This may happen because less differenti-
ated categories weaken the urge to form prototype-based
clusters of exemplars. By either account, exemplar-based
strategies should dominate for sparse and difficult category
structures, and the literature confirms that they do. However,
this approach cannot show the categorization strategies
humans favor when they face larger, better differentiated
categories. We evaluate these strategies here.

In this regard, our research is allied to that of Smith et at
(1997). They analyzed performance when participants learned
both smaller, less differentiated categories and larger, more
differentiated categories. The former categories produced
performance profiles that were fit profoundly better by an
exemplar-based model than by a prototype-based model.
The latter categories produced many performance profiles
that the standard exemplar model failed in systematic ways
to capture and that the prototype model fit better. Accord-
ingly, we consider participants* categorization strategies, and
the potential of different categorization models for capturing
these strategies, for both kinds of category structures.

In this article, we describe four category-learning experi-
ments that examine the path that participants trace through
the larger space of categorization strategies as they learn,
and we consider how different formal models describe this
trajectory. Early in learning, participants show strategies that
standard exemplar models accommodate poorly but that
simple prototype-based descriptions of categorization accom-
modate well. Late in learning, exemplar-based models and
exemplar-based descriptions of categorization come into
their own. These results illuminate humans' early ap-
proaches to category learning and the changing character of
performance during learning. They also suggest that the
progression of strategies during category learning is strongly
affected by different category structures.

From a formal perspective, this trajectory through strat-
egy space during category learning is sometimes so pro-
nounced that both the dominant prototype and exemplar
models fail to capture it completely. From a psychological
perspective, this trajectory can be simply and productively
hypothesized to reflect a progression from a strong reliance
on prototypes to a strong reliance on exemplar memoriza-
tion. Both perspectives encourage models and theories of
categorization that incorporate prototype-based and exemplar-
based representations and processes. Both perspectives
encourage the idea that prototypes and exemplars have
changing roles and influences during the different stages of
category learning and during the learning of different
category structures.

Experiment 1

Experiment 1 explored the possibility that participants'
early information-processing strategies may be fit better by
assuming prototype-based categorization than by assuming
exemplar-based categorization. To this end, participants'
performance at different stages of category learning was
modeled using the basic and most prominent prototype and
exemplar models. We predicted that the basic exemplar
model would fit performance better late in learning, as it has
in many previous studies. We wondered whether the basic
prototype model would fit performance better early in
learning. Experiment 1 included both linearly separable (LS)
and not linearly separable (NLS) category structures because
there is continuing interest in both. (LS categories are those
that can be partitioned by a linear discriminant function, and
for which one can simply sum up the evidence offered
separately by each feature of an item and use that sum to
correctly decide category membership.)

Two methodological aspects of Experiment 1 arranged a
balanced comparison between models. First, Smith et al.
(1997) found that prototype models and exemplar models fit
best equal numbers of performance profiles when better
stocked, better structured categories were used. Therefore,
Experiment 1 adopted these category structures and asked
whether different models have a selective advantage during
different epochs of learning. Second, Smith et al. found that
aggregating data over participants before modeling placed
the prototype model at an inherent disadvantage, camouflag-
ing its good fit to the performances of many individual
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participants. Therefore, Experiment 1 featured the modeling
of individual performance profiles.

Method

Participants. Thirty-two students participated to fulfill a course
requirement.

Stimuli and category structures. The present category struc-
tures were made possible by using six-dimensional stimuli. The
stimuli were pronounceable six-letter nonsense words (CVCVCV).
Many articles have been devoted to stimulus materials like these,
making this a well-understood class of ill-defined category in the
literature, and one that has allowed the replication of categorization
phenomena found with other stimuli (Jacoby & Brooks, 1984;
Smith & Shapiro, 1989; Smith, Tracy, & Murray, 1993; Smith et
al., 1997;Whittlesea, 1987; Whittlesea, Brooks, &Westcott, 1994).
By focusing on these stimulus materials in Experiments 1-3, we
made the critical variations of category structure and exemplar-set
size within one stimulus domain so that our comparisons were as
interpretable as possible. By using more pictorial materials in
Experiment 4, we generalized the principal results.

Stimulus generation began with the creation of four prototype
pairs (kafitdo-nivety, gafuzi-wysero, banuly-kepiro, lotina-
gerupy). The first and second members of each pair were desig-
nated as Stimulus 0 0 0 0 0 0 and Stimulus 1 1 1 1 1 1 , respectively.
These prototypes were created randomly but with several con-
straints to ensure the pronounceability of all stimuli, the ortho-
graphic appropriateness of all stimuli, the identical syllabification
of all stimuli, and the roughly equal use of all vowels. For example,
q (which needs two vowels), c (whose pronunciation depends on
the following vowel), and a final e (that can change syllabification)
were disallowed. Each prototype pair contained six different
vowels and six different consonants. Appendix A shows the LS and
NLS category structures and sample stimulus sets.

Each LS category contained one prototype, two stimuli with five
features in common with the prototype, and four stimuli with four
typical features. There were no exception items. The LS similarity
relations were thus fairly homogeneous, with all items sharing a
majority of features with their prototype and clustered around it in
six-dimensional stimulus space. A prototype strategy, using an
additive rule that summed across independent attributes, could
allow perfect categorization if used perfectly.

Each NLS category contained one prototype, five stimuli with
five features in common with the prototype, and one stimulus with
five features in common with the opposing prototype. The similar-
ity relations in the NLS categories were heterogeneous because
they contained a group of similar items tightly clustered around the
prototype and one outlier stimulus. The clusters of similar in-
stances, combined with the exception items, balanced overall
within- and between-category similarity at the level of the LS
categories. Even so, the NLS category structure defeats any
categorization strategy that depends on an additive combination of
featural evidence. For one thing, such a strategy produces categori-
zation errors for Stimuli A7 and B7, which have more features in
common with the opposing prototype. For another thing, the NLS
stimulus set contains complementary stimulus pairs within each
category (i.e., Stimuli A5 and A7; Stimuli B5 and B7) that have no
features in common at all. These stimulus pairs rule out successful
categorization using any linear discriminant function. That is, any
weighting of the independent cues that allows the successful
classification of A7 (e.g., a very heavy weighting on the fifth
feature) ensures the misclassification of A5.

These general category structures were predetermined to allow
the generation of well-matched LS and NLS stimulus sets.

Following these assignments, hundreds of stimulus sets were
computer generated and screened for LS and NLS structures that
matched in several ways. The two category structures finally chosen had
identical exemplar-exemplar similarity, both within category (3.88
features) and between categories (2.12 features), and had identical
exemplar-prototype similarity, both within category (4.57 features)
and between categories (1.43 features). Thus, the two category
structures had identical structural ratios (1.83, using the exemplar-
exemplar similarities). These similarity calculations were done
additive I y and assumed equal salience for all features.

In addition, LS and NLS categories were matched in the overall
informativeness of all attributes. For the LS and NLS categories,
Category A and Category B stimuli took the typical value 5, S, 5,6,
6, and 5 times, respectively, for Attributes 1 through 6. There were
no criterial attributes available in either stimulus set, and any
single-letter strategy should have been identically salient and
viable in both of them.

LS and NLS stimulus sets were constructed using each of the
four prototype pairs.

Procedure

Participants were tested individually, having been randomly
assigned to a category structure and to a prototype pair. Words were
presented on a computer terminal in blocks of 14 trials; each block
was a random permutation of all 14 stimuli. Each participant
received his or her own unique stimulus order. Participants
responded using the / and the 2 keys on the keypad. Correct
responses were rewarded by a brief whooping sound generated by
the computer; errors earned a 1-s low buzzing sound. A running
total of participants' correct responses was displayed at the top of
the screen. Trials continued in an unbroken fashion until 392 trials
(28 blocks) had been presented. Participants had unlimited time to
view each stimulus before responding. The stimulus remained
visible after wrong choices during the 1-s error signal.

Entering the experiment, participants were told that they would
see nonsense-word stimuli that could be classified as Group 1
(Category A) words or Group 2 (Category B) words. They were
further told to

look carefully at each word and decide if it belongs to Group 1
or Group 2. Type a " 1" on the keypad if you think it is a Group
1 word and a "2" if you think it is a Group 2 word. If you
choose correctly, you will hear a "whoop" sound. If you
choose incorrectly, you will hear a low buzzing sound. At first,
the task will seem quite difficult, but with time and practice,
you should be able to answer correctly.

Formal Modeling Procedures

The basic exemplar model. In evaluating the exemplar model,
we focus on the context model originated by Medin (1975—see
also Medin et al., 1983; Medin & Schaffer, 1978; Medin & Smith,
1981) and generalized by Nosofsky (1984, 1986; McKinley &
Nosofsky, 1995). Palmeri and Nosofsky (1995) referred to this
model as the standard context model. In the exemplar model, the
to-be-classified item in the present tasks would be compared with
the seven Category A exemplars (including itself if it is a Category
A item) and with the seven Category B exemplars (including itself
if it is a Category B item), yielding the overall similarity of the item
to Category A members and Category B members. Dividing overall
Category A similarity by the sum of overall A and B similarity
would essentially yield the probability of a Category A response.

The similarity between the to-be-categorized item and any
exemplar was calculated in three steps as follows. First, the values
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(1 or 0) of the item and the exemplar were compared along all six
dimensions. (This simplifying step let us proceed without psycho-
logically scaling the entire six-dimensional stimulus space.) Match-
ing features made a contribution of 0.0 to the overall psychological
distance between the stimuli; mismatching features contributed to
overall psychological distance in accordance with the attentional
weight that dimension carried. In the present model, each dimen-
sional weight was between 0.0 and 1.0, and the six weights were
constrained to sum to 1.0.

Second, this raw psychological distance between item and
exemplar was scaled with a sensitivity parameter that could vary
from 0.0 to 20.0. Larger sensitivity values essentially magnify
psychological space, increasing the differentiation among stimuli,
increasing overall performance, and increasing the value the
exemplar model places on exact identity between the item and an
exemplar. Formally, then, the scaled psychological distance (d)
between the to-be-classified item (0 and exemplar (f) is given by

wk\xik xjk

where xik and xJk are the values of the item and exemplar on
dimension k, wk is the attentional weight granted dimension k> and c
is the sensitivity parameter. The use of the exponent 1 in this
equation incorporated the plausible idea that the psychological
space underlying the present stimuli was organized according to a
city-block similarity metric (Nosofsky, 1987, p. 89).

Third, the similarity (T|y) between the item and exemplar was
calculated by taking T -̂ = e — d]j, with dy being the scaled
psychological distance between the stimuli. The use of the expo-
nent 1 in this equation incorporated the plausible idea that
similarity in the present case was an exponential-decay function of
psychological distance (Nosofsky, 1987, p. 89; Shepard, 1987).

These three steps were repeated for calculating the psychological
similarity between a to-be-categorized item and each A and B
exemplar. Then, summing across the Category A exemplars (jeCA)
and Category B exemplars ( /EC B ) , we calculated the total similar-
ity the item had to Category A members and Category B members.
In the standard exemplar model, these quantities would yield
directly the probability (P) of a Category A response (RA) for
stimulus i (S,) by taking

Za ^ y "*" Xw ^ ij

Repeating this process for each of the 14 items, one would derive
the performance profile predicted by the model. However, for
reasons to be described, an additional guessing-rate parameter was
added to the exemplar model as follows. It was assumed that some
proportion of the time (G) participants simply guessed Category A
or B haphazardly. It was assumed that the rest of the time
participants used exemplar-based categorization in the way already
described. With the guessing parameter added, the context model
had eight parameters—six dimensional weights constrained to sum
to 1.0, a sensitivity parameter, and a guessing-rate parameter. We
count parameters conceptually in this article (i.e., eight here).
However, the constraint on the sum of the dimensional weights
means that the number of free parameters in the various models is
one less (i.e., seven here).

To find the best-fitting parameter settings of the exemplar model,
we seeded the space with a single parameter configuration and

calculated predicted categorization probabilities for the 14 stimuli
according to that configuration. The measure of fit was the sum of
the squared deviations between the 14 predicted probabilities and
the 14 observed categorization probabilities of some participant's
performance. This measure was minimized during an analysis by
using a fine-grained hill-climbing algorithm that constantly altered
slightly the provisional best-fitting parameter settings and chose the
new settings if they produced a better fit (i.e., a smaller sum of
squared deviations between predicted and observed performance).
In this way, the algorithm moved toward the best-fitting configura-
tion. To ensure that local minima were not a serious problem in the
present parameter spaces, this analysis was repeated by seeding the
space with four more quite different configurations of the exemplar
model and hill climbing from there. The variance among the five
fits tended to be very small, indicating that the minima found were
close to global ones.

The basic prototype model. To evaluate the prototype model,
we supposed that each to-be-categorized item would be compared
with the category prototype along the six independent dimensions,
using additive similarity calculations. We assumed additive similar-
ity in order to follow most closely the influential research of Medin
and his colleagues (Medin & Schaffer, 1978; Medin & Smith,
1981) and to evaluate a simple and intuitive prototype model.
Mismatching features on a dimension contributed 0.0 similarity;
matching features contributed the amount of their dimension's
weight. The six attentional weights were again constrained to sum
to 1.0. So, for example, if an observer allocated attention homoge-
neously (. 166 to each dimension), and a stimulus shared five or four
features in common with the prototype, the judged similarity would
be .83 or .67, respectively. If a stimulus differed from the prototype
in only one sharply attended feature (e.g., a .300 attentional
weight), its judged similarity would be .70. In the simplest case, the
item's similarity to the prototype could be taken to be the
probability of a correct categorization and its complement to be the
probability of an error.

An additional guessing-rate parameter was also added to the
prototype model. This parameter is especially useful for modeling
participants' halting performance during the early epochs of
category learning. Without it, for example, the prototype (with
perfect self-similarity) would be predicted to be categorized
perfectly. Thus, it was assumed that some proportion of the time
(G) participants simply guessed Category A or B haphazardly,
while using prototype-based similarity as already described the rest
of the time (see also Medin & Smith, 1981). So, for example, if a
stimulus shared five or four features with the prototype, and a
homogeneously attending observer had a guessing proportion
of .20, the performances predicted by the prototype model
were, respectively, [(.20/2) + [(1 - .20) X (5 X .166)]] = .76 and
((.20/2) + [(1 - .20) X (4 X .166)]} = .63. The equivalent guessing-
rate parameter for the exemplar model has already been described.

To analyze the behavior of the prototype model with seven
parameters and find its best-fitting configuration, we seeded the space
with a single parameter configuration and calculated its predicted
categorization probabilities for Hie 14 stimuli. Again we hill climbed
toward the best-fitting configuration by minimizing the sum of the
squared deviations between the predicted probabilities and some
observed performance. Again the space was seeded with four
additional parameter settings. The small variance among the five
best fits indicated that the minima found were close to global ones.

The basic prototype and exemplar models just described have
been extremely influential in the categorization literature. In fact,
the basic exemplar model has dominated the literature (Lamberts,
1994,1995; Medin et al., 1983; Medin & Schaffer, 1978; Medin &
Smith, 1981; Nosofsky, 1984,1985,1986,1987,1988,1989,1992;
Nosofsky, Clark, & Shin, 1989; Nosofsky et al., 1992; Palmeri &
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Nosofsky, 1995; Shin & Nosofsky, 1992; Smith et al., 1997). The
two models typify the large family of models in which exemplars
are categorized more accurately in accordance with their perceptual
similarity to the underlying category representation or representa-
tions. They equivalently incorporate this perceptual similarity into
the Shepard-Luce choice rule that has long served cognitive
psychology. They instantiate with transparency the different com-
mitments of processing using prototypes or stored exemplars,
allowing these commitments to be evaluated fairly against humans'
performances. Their dominance, their typicality, their equivalent
choice rales and their transparent representational assumptions
explain their favored status and their use here. We consider variants
on both models in the section on Additional Modeling Perspectives.

Results

To analyze performance at different stages of learning, we
divided the 392 trials (28 blocks of 14 stimuli) into seven
56-trial segments. This analytic strategy balanced two
competing goals. Aggregating more data creates more stable
estimates of performance. Aggregating less data isolates
purer performance strategies instead of averaging successive
strategies. The 56-trial segment is our compromise between
more and less.

Smith et al. (1997) demonstrated that fitting models to
data aggregated over participants averaged away individual
differences in performance. Accordingly, each participant's
performance for each trial segment was modeled individu-
ally, using both the seven-parameter prototype model and
the eight-parameter exemplar model. The resulting best-
fitting configurations specified guessing and sensitivity
parameters and six attentional weights for the six stimulus
features. They also allowed us to assess the degree of fit
between predicted and observed performance. Where de-
sired, the 16 outcomes from the modeling could be averaged
for the group.

Performance over trial segments. The accuracy data
were analyzed using a two-way analysis of variance
(ANOVA) with NLS-LS as a between-subjects variable and
trial segment as a within-subject variable. This analysis
confirmed that significant learning occurred across trial
segments, F(6,180) = 32.83, p < .05, MSE = 0.005. By the
end of learning, the proportions correct were .81 and .84 for
the NLS and LS category structures, respectively.

Guessing and sensitivity parameters over trial segments.
Modeling suggested that participants' strategies changed in
intuitive ways through time. Guessing, as assessed by the
prototype model, steadily declined. When the prototype
model was fit to performance on the NLS and LS categories,
the correlation of the guessing parameter with trial segment
was, r — — .86, p < .05, and r = — .87, p < .05, respectively.
Guessing-rate parameters were lower for the exemplar
model overall and were often near zero.

The exemplar model's sensitivity parameter steadily in-
creased over trial segments. When the exemplar model was
fit to performance on the NLS and LS categories, the
correlation of sensitivity with trial segment was, r = .97,
p < .05, and r — .93, p < .05, respectively. High values of
the sensitivity parameter for the last trial segment (9.3 and
9.2 for the NLS and LS conditions, respectively) suggest

that the exemplars became distinctive and well-individuated
for participants and that some processes like exemplar
self-retrieval increasingly supported categorization as learn-
ing progressed.

The fit of models over trial segments. A key issue in this
experiment was whether the basic prototype and exemplar
models were each selectively advantaged at different points
in learning. Figure 1 shows the fits of the two models
(averaged across participants) for each trial segment. An
early advantage for the prototype model seemed to wane or
reverse as training continued. To assess the significance of
this pattern, the fits were entered into a two-way ANOVA
with type of model (prototype or exemplar) and trial
segment (1 to 7) as within-subject variables. The interaction
between type of model and trial segment was significant,
both for NLS categories, F(6, 90) - 3.85, p < .05, MSE =
0.017, and for LS categories, F(6, 90) - 5.64, p < .05,

^ 0.013.
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Figure 1. A: The average fit of the prototype and exemplar
models at each 56-trial segment to the performance of participants
learning not linearly separable (NLS) categories in Experiment 1.
B: The average fits for participants learning linearly separable (LS)
categories.
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To specify the character of this interaction, the ANOVA
was repeated, including only the data from the first three trial
segments (12 blocks or 168 trials) or the last three trial
segments. The prototype model's early advantage over
the exemplar model was significant, with average best fits
over 48 observations (16 participants at three trial segments)
of 0.49 (SD = .250) and 0.54 (SD = .250), respectively,
F(l , 15) = 10.76, p < .05, MSE = 0.006, for the NLS
categories, and with average best fits of 0.46 (SD = .292)
and0.54(SD = .261),respectively,F(l, 15) = 5.99,p< .05,
MSE = 0.025, for the LS categories.1

Moreover, these fit advantages were as large as many of
those that have favored exemplar models in past research.
For example, Nosofsky (1992) strongly criticized prototype
models by summarizing 13 studies in which the exemplar
model had a 0.059 average fit advantage over the additive
prototype model. Here the prototype model exactly turned
the tables, with a 0.065 fit advantage across the two category
structures.

The fits for the prototype and exemplar models were
statistically equivalent late in training, with average best fits
over 48 observations (16 participants at 3 trial segments) of
0.52 (SD = .283) and 0.41 (SD = .250) for the NLS catego-
ries, F(h 15) = 3.00, ns, MSE = 0.084, and average best fits
of 0.38 (SD = .200) and 0.33 (SD = .243) for the LS
categories, F(l, 15) = 1.51, ns, MSE = 0.046. In Trial
Segments 5,6, and 7, respectively, 17 of 32,16 of 32, and 10
of 32 performance profiles (including both LS and NLS
tasks) were fit better by the prototype model. This balanced
pattern of best fits replicates exactly the results of Smith et
al. (1997), who also modeled performance over Trials 225 to
392 (Trial Segments 5, 6, and 7 here), and who also found
that half the profiles were fit better by the prototype model.
However, this balance contrasts sharply with the results
from many previous studies (Medin & Schaffer, 1978;
Medin & Smith, 1981; Nosofsky, 1987,1992).

Statistically, the equivalence of the models late in the NLS
condition occurred because some participants (but not others)
passed through a transition that produced excellent fits by the
exemplar model but poor fits by the prototype model. These
individual differences severely inflated the value of the relevant
error term by a factor of 14 (i.e., 0.084 and 0.006 for late and
early performance, respectively). Even so, the NLS result
approached significance, raising the possibility that extending
training would bring the basic exemplar model into favor.

Conceptually, the equivalence between the basic proto-
type and exemplar models is probably linked to Experiment
l's category structures (see also Smith et al., 1997). Typi-
cally studies have used three- or four-dimensional stimuli
with about four exemplars per category and with structural
ratios of about 1.3. But here the stimulus dimensionality was
of a higher order (six dimensions), the categories were better
differentiated from one another (structural ratios of about
1.8), and the exemplar pools were larger (seven per cat-
egory). Any of these factors could have slowed the emer-
gence of strongly differentiated exemplar traces in Experi-
ment 1, or could have set aside the perceived need for those
traces, allowing alternative categorization strategies to be
more influential. For example, Homa et al. (1981) supported

the specific claim that larger exemplar pools foster the
emergence of prototype-based categorization strategies.2

One sees that the levels of fit obtained by the prototype
and exemplar models are higher than typically reported
(e.g., Nosofsky, 1992). The reason lies in our modeling of
four-block epochs of performance to gain temporal resolu-
tion. This modeling strategy means that every observed

1 One might wonder whether the letters combine into integral
patterns that would be modeled better by a Euclidean similarity
metric, and whether assuming a Gaussian similarity-decay function
might let the exemplar model accommodate the present data more
comfortably. Accordingly, we modeled each participant's data at
each trial segment using all four alternative versions of the context
model that are featured in the literature (city-block metric with
exponential decay, city-block metric with Gaussian decay, Euclid-
ean metric with exponential decay, Euclidean meirk with Gaussian
decay; Ashby & Perrin, 1988; Maddox & Ashby, 1993; Nosofsky,
1985, 1989). All versions of the exemplar model produced
successions of average fits just like those already shown. All were
disadvantaged early on relative to the simple, additive prototype
model with only seven parameters.

Note that to the extent one evaluates different Minkowski
metrics and decay functions trying to reduce the exemplar model's
disadvantage, one starts to grant the exemplar model more param-
eters, making it complex, unwieldy, and doing it a disservice. It
would be helpful if the situation were clarified regarding these
alternative versions of the model that may have outlived their
usefulness.

2 We also explored the possibility that rule-based processing, not
prototype-based processing, caused the prototype model's advan-
tage. To do so, we first found for each participant at each trial
segment the one-dimensional rule (among six) that fit the data best.
The rule model was a prototype model, shorn of its guessing
parameter (participants using such a simple rule have no need to
guess), with all attention placed on one dimension. This model
configuration predicts the rule-use pattern of 100% or 0% Category
A responses, respectively, as the focal dimension takes on the
typical Category A or Category B value. Complete attention to all
six single dimensions was modeled, and the smallest fit was
assumed to represent the one-dimensional focus closest to partici-
pants' actual attentional allocation. The fits achieved by assuming
the best one-dimensional rule averaged 1.70 and 1.37 for the NLS
and LS category structures, respectively.

We also found for each participant at each trial segment the
best-fitting two-dimensional rule. The two-dimensional rule model
assumes that participants evenly divided their attention between
some combination of two dimensions. This model configuration
predicts either 100% or 0% Category A responses, respectively, as
the two focal dimensions both take on the typical Category A or
Category B values. If the two features disagreed on category
membership, participants were predicted to guess given this
conflict and to make the Category A response 50% of the time. All
15 two-dimensional rules were evaluated in this way, and the
best-fitting combination was assumed to represent the two-
dimensional attentional allocation closest to that of the participants.
The fits achieved by assuming the best two-dimensional rule
averaged 1.14 and 0.88 for the NLS and LS category structures,
respectively.

The fits for both one-dimensional and two-dimensional rules
were massively worse than the average fits of 0.50 and 0.43
achieved by the prototype model for the NLS and LS category
structures. Rule use did not adequately describe performance.
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categorization proportion must be either .00, .25, .50, .75, or
1.00, even if the participant's categorization probabilities in
some longer run would fall between these steps. Both
models must fit more poorly than usual these steplike data,
because committing to explain performance on one .25 step
makes it more difficult to simultaneously explain perfor-
mance that sits on 13 other .25 steps. Another way to put this
is that some of each performance is error (i.e., a .87 ideal
proportion expresses itself as either 1.00 or .75, and neither
is exactly right).

To illustrate the effect on fit of modeling 56-trial seg-
ments, we turned to a simulation that included 500 simulated
exemplar-based categorizers and 500 simulated prototype-
based categorizers. Each simulated categorizer was made
obedient to a randomly selected configuration of its respec-
tive model, with a particular set of attentional weights and
particular levels of guessing and sensitivity as applicable.
Each categorizer then performed 56 trials (four blocks) in
Experiment l*s NLS task, with chance disturbing the
categorization probabilities around the long-run values each
configuration of the model would produce. That is, if the
model predicted 80% Category A responses in the long run,
the simulated categorizer had an 80% chance of making that
Category A response on each trial, but also a 20% chance of
making a B response. The performance for the trial segment
was the average of the four independent events associated
with each stimulus. Having run each categorizer for 56
trials, we then fit the prototype and exemplar models to each
of the 1,000 performances.

Prototype-based categorizers were fit better by the proto-
type model than by the exemplar model (average fits of 0.49
[SD = .217] and 0.56 [SD = .236], respectively). Exemplar-
based categorizers were fit worse by the prototype model
than by the exemplar model (average fits of 0.51 [SD = .263]
and 0.40 [SD = .236], respectively).

Three points follow from this simulation. First, these fits
on known exemplar-based and prototype-based perfor-
mances are exactly at the level we observed, confirming that
our fits are where they should be for modeling with temporal
precision. Second, despite the graininess of performance,
modeling easily resolves whether the simulated perfor-
mances were prototype or exemplar based. Third, and most
important, the advantage for the prototype model we ob-
served in Experiment 1 's early performance (.05 for the NLS
category structure, .08 for the LS category structure, and
.065 on average) is the same as that found for simulated
categorizers that are all perfectly prototype based (0.07).
Thus, our observed fit advantages early in performance are
as large as they could possibly be in principle, and they are
consistent with the possibility that participants' early perfor-
mances were produced purely in accordance with a simple
prototype-based strategy.

The frequent failures of the basic exemplar model, both
early in learning and later in learning, illustrate a limitation
on that model to which we return. They also urge a broader
exploration of different category structures and the different
categorization strategies they encourage. However, these
frequent failures would be expected if participants were
transitioning at different times toward categorization strate-

gies that were more based in the encoding of specific
exemplars and that favored an exemplar-based description
of categorization performance. This raises the possibility,
addressed in Experiment 2, that extending training would
produce an advantage for the exemplar model.

Experiment 2

When Experiment 1 ended at Trial Segment 7, it seemed
that an advantage might be emerging for the exemplar
model. We may have stopped filming our video too soon. By
extending training, one might let this advantage express
itself fully. Accordingly, Experiment 2 replicated Experi-
ment 1 but gave participants 10 trial segments (560 trials)
instead of 7 trial segments (392 trials). Once again we
predicted an early advantage for the prototype model, but
now we predicted that the often-reported advantage for the
exemplar model would assert itself in the end.

Method

Participants. Thirty-two students participated to fulfill a course
requirement.

Stimuli and category structures. The stimuli, prototype pairs,
and category structures were the same as those of Experiment 1.

Procedure. The procedure was like Experiment 1 's except that
participants received 40 blocks of the 14 stimuli.

Results

Performance over trial segments. We divided the 560
trials into ten 56-trial segments. Accuracy data were ana-
lyzed using a two-way ANOVA with NLS-LS as a between-
subjects variable and trial segment as a within-subject
variable. This analysis confirmed that significant learning
occurred, F(9, 270) = 46.72, p < .05, MSE = 0.005. The
task-final proportions correct were .86 and .89 for the NLS
and LS category structures, respectively.

Guessing and sensitivity parameters over trial segments.
Both the prototype and exemplar models were fit to the data
for each 56-trial segment for each participant. Once again
the value of the guessing parameter declined over time.
When the prototype model was fit to performance on the
NLS and LS category structures, the correlations of the
guessing parameter with trial segment were —.78 and —.60,
respectively. Guessing-rate parameters were lower for the
exemplar model overall and soon fell to nearly zero.

The exemplar model's sensitivity parameter steadily in-
creased over trial segments. When the exemplar model was
fit to performance on the NLS and LS category structures,
the correlations of this parameter with trial segment were .86
and .73, respectively. The task-final sensitivities were 13.50
and 10.05 for the NLS and LS category structures, respec-
tively. This magnification of psychological space is again
consistent with participants' coming to hold strongly individu-
ated exemplar traces.

The fit of models over trial segments. Once again we
asked whether the two models were each selectively advan-
taged at different points of learning. Figure 2 shows, for the
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Figure 2. A: The average fit of the prototype and exemplar
models at each 56-trial segment to the performance of participants
learning not linearly separable (NLS) categories in Experiment 2.
B: The average fits for participants learning linearly separable (LS)
categories.

NLS and LS category structures, the average fits of the two
models for each trial segment. Here there seems to have
been an early advantage for the prototype model only for the
NLS category structure, and there seems to have been a late
advantage for the exemplar model for both category structures.

To evaluate these patterns, the fits were entered into a
two-way ANOVA with type of model and trial segment as
within-subject variables. There was a main effect for model
for the LS category structure only. The average fits were
0.39 and 0.28 for the prototype and exemplar models,
respectively, F(U 15) = 5.48, p < .05, MSE = 0.170. The
interaction between type of model and trial segment was
significant for NLS categories, F(9, 135) = 7.83, p < .05,
MSE = 0.041, and for LS categories, F(9, 135) = 6.90,
p < .05, MSE^ 0.017.

To interpret this interaction, we repeated these ANOVAs,
including first the data from the first three trial segments and
then the data from the last three trial segments. The
prototype model's early advantage over the exemplar model
was significant only for the NLS category structure (average

best fits of 0.47 and 0.56, respectively), F(l, 15) = 10.98,
p < .05, MSE = 0.018. The exemplar model's late advan-
tage was significant for both category structures. For the
NLS category structure, the average best fits for the proto-
type and exemplar models were 0.65 and 0.30, respectively,
F(l, 15) = 9.40,p < .05, MSE = 0.323. For the LS category
structure, the average best fits for the prototype and exem-
plar models were 0.43 and 0.20, respectively, F(l, 15) =
10.83, p < .05, MSE = 0.121.

The character of early performance. Figures 3A and 3B
show snapshots that compare observed and predicted perfor-
mance for both models at Trial Segment 3 (Trials 113-168)
of Experiment 2Ts NLS condition. To make these figures, the
16 observed performances were averaged into the observed
composite profile shown. Then each participant's perfor-
mance during Trial Segment 3 was modeled individually,
and the 16 best-fitting predicted profiles were averaged into
the predicted composite profile shown. In this way, if each
participant's predicted profile matched well his or her
observed profile, the observed and predicted composites
would match well. If not, the two composites would diverge
appropriately.

Figures 3A and 3B make plain that only the prototype
model grants the prototype items (Stimuli 1 and 8) their
observed performance advantage while simultaneously allow-
ing poor performance on exception items (Stimuli 7 and 14).
The basic exemplar model fits less well because it persis-
tently underpredicts and overpredicts performance on the
prototypes and exceptions, respectively. It homogenizes
performance too much. The NLS category structure diag-
noses this failure clearly because it offers participants both
prototypes and exceptions. The NLS condition of Experi-
ment 1 produced the same failure by the basic exemplar
model, and Experiment Ts LS condition produced this
failure too.3

3LS categories reveal the exemplar model's difficulties less
clearly than do NLS categories, because they lack the exceptions
that are so diagnostic. This may be why only one of the two LS
conditions strongly differentiated the two models early in perfor-
mance. Even given the exemplar model's failure in the LS
condition of Experiment 1, it is more difficult to show the character
of that failure than in the NLS case. The problem is that even if
some participants regard some LS stimuli as exceptional and
perform poorly on them, other participants will regard other stimuli
as exceptional. The averaged profiles of observed and predicted
performances will wash out these differences and reveal no
localized, interpretable failure of the exemplar model.

To preserve participants' individual senses of prototypes and
exceptions in the LS category structure, one can rank order perfor-
mances within subjects and then examine how each model deals
with participants' own particular worst, medium, and best category
exemplars. This analysis lets one create consensus prototypes and
exceptions for the LS category structure, too, by letting each
participant define his or her own through his or her performance.

Illustrating this technique with Experiment l's LS condition, we
ranked the observed performances from the third trial segment
within subjects and then averaged within ranks across subjects. The
prototype model does reach lower and higher than the basic exemplar
model does to predict participants' worst and best performances. The
significance of this pattern was confirmed with a two-way ANOVA on
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Figure 3. A: The fit of the prototype model to the early performance of participants learning
Experiment 2's not linearly separable (NLS) categories. The solid line represents the average
observed proportion correct, and the dotted line represents the average predictions of the prototype
model. B: The fit of the exemplar model to the same observed performance. C: The fit of the
prototype model to the late performance of participants learning Experiment 2's NLS categories. D:
The fit of the exemplar model to the same performance.

The character of late performance. Figures 3C and 3D
show performance snapshots that compare the models1

performances during Trial Segment 10 of Experiment 2's
NLS condition (Trials 505-560). The exemplar model fits
these performances well. The prototype model cannot.

the prediction errors of the two models—that is, with the quantity
(observed minus predicted performance) as a dependent measure.
Model and stimulus rank were within-subject variables in this
analysis. There was a significant interaction, F(13, 195) = 4.89,
p < .05, MSE = 0.003, showing that the exemplar model makes
larger negative prediction errors for lower performance, but larger
positive prediction errors for higher performance. To ground this
analysis further, we conducted the identical analysis using Experi-
ment 1's NLS condition and found again a significant interaction,
F(13, 195) = 7.77, p < .05, MSE = 0.003. The only difference
between the LS and NLS analyses is that the lower NLS ranks are
consensually occupied by the true exceptions, whereas the lower
LS ranks represent participants1 self-defined exceptions.

Experiment 2's LS condition produced the same failure by
the prototype model. The problem for the prototype model
late in learning is that it still must predict that participants
classify the stimuli in strict obedience to the typicality
gradients in the task. But participants were simply better on
the exceptions in the NLS condition and better on all items
generally than the basic prototype model can predict.

The results from the later trial segments add a new fact to
those established by Smith et al. (1997). Smith et al. (and the
present Experiment 1) found that about equal numbers of
performance profiles were fit better by the basic prototype
and exemplar models for the blocks spanning Trials 225-
392. Clearly, though, the basic exemplar model holds a more
dominant position when one models performance later in
learning (i.e., Trials 505-560). This supports the idea that
processing based in specific exemplars comes on more
strongly as learning progresses and the training exemplars
become highly familiar.



1420 SMITH AND MINDA

The trajectory of category learning. Three other views
of the data make clear the trajectory that participants traced
through the larger performance space as they learned. First,
Figure 4A shows, for Experiment 2's NLS condition, the
performance variance among 14 stimuli for the composite
observed profile for each trial segment. Early in learning
(i.e., Trials 1-224) there is a sharp increase in the heteroge-
neity of observed performance as the task comes into focus
for participants. The figure also shows the performance
variance among stimuli for the composite predicted profiles
of both models at each trial segment. The prototype model
predicts correctly the large variance of participants' early
observed performances, and this helps the model comfort-
ably fit that early data pattern. At this point, the basic
exemplar model fails seriously by predicting only half of the
variance that observed performances show. Then, over the
next six trial segments, the observed performance variance
drops as participants come to perform better on all items. As
this reduction occurs, the two models exchange fit advan-
tages (Figure 2A) and the exemplar model comes into its own.

Second, Figures 4B and 4C show the relation between
prototype-item and exception-item performance over the 10
trial segments in Experiment 2's NLS condition. Early on
there is a profound improvement in performance on the
prototypes without any improvement on the exception items.
Indeed, through the early trial segments, the exception items
essentially are misdassified as efficiently as the normal
category members are classified. This stage of learning lasts
for more than 200 trials—the whole length of many category
experiments. Through this misclassification, participants
turn the NLS categories into good LS ones, ignoring over 16
presentations of each exception item the corrective feedback
and the possibilities for exemplar memorization. It is clear
from this reallocation of the exceptions that participants
initially make a strong linear separability assumption about
the categories they are learning.

The participants' learning trajectory is overlain on the
entire constellation of performances that are producible by
the basic prototype model (Figure 4B) or the exemplar
model (Figure 4C). The early training epochs bring the
average performance of the entire sample into a region of
performance space that no configuration of the basic exem-
plar model can occupy, even granted an additional free
parameter, but where prototype-based descriptions of perfor-
mance capture performance well. This is a stronger result
than that of Smith et al. (1997), who found that half of their
participants occupied this region of performance space. One
sees that the basic exemplar model's failure is qualitative at
this stage of learning; there simply is no configuration of the
model that predicts what the participants average early on.
The exemplar model can predict exception performance as
low as that shown by participants early on, but then it
underpredicts their prototype performance by an average of
19%. The exemplar model can predict prototype perfor-
mance as high as that shown by participants early on, but
then it overpredicts their exception performance by an
average of 44%. The problem is that the exemplar model
cannot accomplish these two goals simultaneously. The
prototype model accommodates this pattern easily. Nonethe-
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Figure 4. A: The performance variance among 14 stimuli for the
composite observed and composite predicted performance profiles
at each trial segment (Experiment 2, not linearly separable [NLS]
category structure). B: Average prototype-item and exception-item
performance by trial segment for participants learning Experiment
2's NLS categories. The 10 trial segments are numbered from 1
to 0. Also shown is the constellation of prototype-exception
performances that the seven-parameter additive prototype model
can produce. The behavior of the model was found by sampling
3,000 randomly selected configurations of parameter settings. C:
The same observed performances together with the prototype-
exception performances of 3,000 randomly selected configurations
of the eight-parameter exemplar model.
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less, by Trial Segment 6, participants enter a region of
performance space that no configuration of the prototype
model can occupy. They transcend their initial linear separa-
bility assumption, using some auxiliary strategies to master
the exception items. It is possible that participants memorize
the offending members or begin to rely on familiar exemplar
traces in some other way. It is possible that participants
begin to code multiple stimulus features more configurally
or correlationally. Exemplar storage and configural represen-
tations are two key features of the exemplar model. The
character of later performance replicates many published
successes of the basic exemplar model.

Third, many aspects of performance show the same
transition from early performances that disfavor the basic
exemplar model toward mature performances that favor it.
Figures 5A and 5B show the two models' general expecta-
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Figure 5. A: The average predictions of the additive prototype
model at different levels of guessing (five dotted lines) for five
aspects of performance (performance on prototypes, normal items,
exception items, the prototype advantage over normal items, and
14 multiplied by the variance among the 14 predicted categoriza-
tion probabilities [this precursor of the variance is scaled better for
inclusion on the graph]). Also shown are the actual performance
characteristics (P, N, E, A, and V) observed in Trial Segment 3 of
Experiment 2's not linearly separable (NLS) condition. B: The
average predictions of the basic exemplar model at different levels
of sensitivity for the same five aspects of performance. Also shown
are the actual performance characteristics (P, N, E, A, and V)
observed in Trial Segment 10 of Experiment 2's NLS condition.

tions regarding prototype performance, normal-item perfor-
mance, exception-item performance, prototype advantage
over normal items, and the sum of the squared deviations of
the 14 categorization probabilities around their mean (this
precursor of the variance is scaled better for inclusion on the
graph). To draw the prototype model's behavioral space, we
chose 500 randomly selected configurations of the basic
prototype model at each value of guessing from 0.00 to 1.00
in .05 steps and found the average performance characteris-
tics at each level of guessing. To draw the exemplar model's
behavioral space, we chose 500 randomly selected configu-
rations of die basic exemplar model at each value of
sensitivity from 1 to 15 and found the average performance
characteristics at each level of sensitivity.

Overlain on Figure 5 A are the actual performance charac-
teristics (indicated by capital letters) that participants showed
during Trial Segment 3 of Experiment 2's NLS condition. A
least-squares procedure allowed us to minimize the five-
dimensional error and place the data in their best-fitting spot
on this graph. The minimum error distance was 0.0023. It is
instructive to imagine sliding these performance characteris-
tics across the behavioral space of the exemplar model
shown in Figure 5B. No place along that Jt-axis offers
remotely the right performance characteristics. The mini-
mum error distance (at a sensitivity level of 4.0) was 0.0348,
which is 15.1 times as large as that found for the additive
prototype model. Thus, participants' early performance
characteristics have precisely a prototype-model configura-
tion. The basic exemplar model cannot produce anything
like these performance characteristics.

Once again, though, turnabout is fair play (Figure 5B).
The performance characteristics at Trial Segment 10 fit
somewhat comfortably (minimum error distance of 0.0195
at a sensitivity of 15) on the exemplar model's behavioral
space. They fit nowhere in the behavioral space of the
prototype model (minimum error distance of 0.1728 at a
guessing value of .40, which is 8.9 times the exemplar
model's error distance). The stamp of exemplar-based
processing may be on these late performances.

These three perspectives all show that the trajectory of
category learning through the larger space of categorization
strategies is so pronounced that both the basic prototype and
exemplar models fail to provide a complete description of all
stages of learning. The prototype model fails later on; the
exemplar model fails early on. This leads us in the Addi-
tional Modeling Perspectives section to consider alternative
models that may better capture the whole progression of
learning and may illuminate the changing strategies partici-
pants choose at different stages. First, though, we demon-
strate that different category structures can deflect the
progression of learning into very different regions of perfor-
mance space.

Experiment 3

Experiments 1 and 2 demonstrated that a prototype-based
description made a strong showing over the first 200
learning trials for larger, better differentiated categories. In
three out of four cases, it fit participants' early performance
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profiles better than the basic exemplar model did. In one
case, it fit participants' performance profiles as well as the
basic exemplar model did. Later in learning, especially in
the later trial segments of Experiment 2, the exemplar model
assumed the dominant position. To provide a contrast to
Experiments 1 and 2, Experiment 3 considered smaller, less
differentiated categories. One idea behind the present re-
search is that these categories will encourage exemplar-
based strategies to emerge sooner and take hold more
strongly. Thus, we hypothesized that humans learning these
categories might not perform early on in accordance with a
prototype-based description. In fact, we hypothesized that
these categories would produce no prototype-model advan-
tage anywhere.

Method

Participants. Thirty-two students participated to fulfill a course
requirement.

Stimuli and category structures. The NLS and LS category
structures were those used by Medin and Schwanenflugel (1981,
Experiment 2). The NLS Category A members were 0 0 0 1 , 0 1 0 0 ,
1 0 1 1, and 0 0 0 0; the Category B exemplars were 1 0 0 0,1 01 0,
1 1 1 l.andOl 1 l.TheLS Category A members were 101 0,01 10,
0 0 0 1, and 1 1 0 0; the Category B exemplars were 1 1 10,1 01 1,
1 1 0 1, and 0 1 1 1 . These exemplars share on average only about
2.6 features with their prototypes 0 0 0 0 (Category A) and 1 1 1 1
(Category B), and individual features are poorly predictive (65%)
of category membership. Both characteristics reflect the reduced
category differentiation in these category structures (structural
ratios of about 1.2) compared with those in Experiments 1 and 2
(structural ratios of about 1.8).

The stimuli were derived from the four prototype pairs (buno-
kypa, daki—sego, mufa-vosy, leta-giru). The first member of each
pair was the stimulus 0 0 0 0; the second was the stimulus 1 1 1 1 .
These prototypes were created subject to the constraints described
in Experiment 1.

Procedure. The procedure was like Experiment 2's except that
here the 560 trials comprised 70 blocks of the eight stimuli.

The fit of models over trial segments. The fits of the two
models for each category structure and each trial segment
are shown in Figures 6A and 6B. Once again the fits by
participant and trial segment were entered into a two-way
ANOVA with type of model and trial segment as within-
subject variables. Here we observed a main effect for type of
model for the NLS category structure, F(lf 15) = 21.79,p <
.05, MSE = 0.472, and for the LS category structure, F{1,
15) = 29.32, p < .05, MSE = 0.261. The interaction
between type of model and trial segment was also significant
both for NLS categories, F(9, 135) = 10.56, p < .05,
MSE = 0.045, and forLS categories, F(9,135) = 18.03,p <
.05, MSE = 0.021.

Early in training (Trial Segments 1-3), the prototype
model had no advantage for either category structure. Late in
training (Trial Segments 8-10), the exemplar model had the
clear advantage. For the NLS category structure, the average
best fits for the prototype and exemplar models were 0.73
and 0.13, respectively, F(l , 15) = 32.84, p < ,05, MSE =
0.265. For the LS category structure, the average best fits for
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Results

Performance over trial segments. We again divided the
560 trials into ten 56-trial segments, each now containing
seven blocks of the eight stimuli. Accuracy data were
analyzed using a two-way ANOVA with NLS-LS as a
between-subjects variable and trial segment as a within-
subject variable. Significant learning occurred across trial
blocks, F(9, 270) = 38.26, p < .05, MSE = 0.012. The
task-final proportions correct were .82 and .93 for the NLS
and LS category structures, respectively.

Guessing and sensitivity parameters over trial segments.
Both the prototype and exemplar models were fit to the data
just as in Experiments 1 and 2. Once again the guessing
parameter always declined strongly over trial segments. The
estimated guessing rates were substantially higher in Experi-
ment 3 than in Experiments 1 or 2, consistent with these
categories' poor differentiation and difficulty.

The exemplar model's sensitivity parameter once again
increased strongly over trial segments, up to 10.85 and 20.00
for the NLS and LS category structures, respectively.

B. Experiment 3: LS
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Figure 6. A: The average fit of the prototype and exemplar
models at each 56-trial segment to the performance of participants
learning not linearly separable (NLS) categories in Experiment 3.
B: The average fits for participants learning linearly separable (LS)
categories.
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the prototype and exemplar models were 0.69 and 0.12,
respectively, F(l, 15) = 57.34,p < .05, MSE = 0.130.

Moreover, it is clear that participants in Experiment 3
moved very differently through performance space than did
those in Experiment 2. For example, Figures 7 A and 7B
show for each trial segment the average prototype-item
performance and exception-item performance by partici-
pants in Experiment 3's NLS condition. This trajectory is
once again overlain on the entire constellation of perfor-
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Figure 7. A: Average prototype-item and exception-item perfor-
mance by trial segment for participants given not linearly separable
categories in Experiment 3, together with the prototype-exception
performances of 3,000 randomly selected configurations of the
five-parameter additive prototype model. B: The same observed
performances, together with the prototype-exception perfor-
mances, of 3,000 randomly selected configurations of the six-
parameter exemplar model.

mances that are producible by the basic prototype model
(Figure 7A) or exemplar model (Figure 7B). Early prototype
performance was never so high as in Experiment 2; early
exception performance was never so low. Participants
always stayed within a region of performance space that the
exemplar model can accommodate. They quickly entered a
region of performance space that the prototype model cannot
accommodate. Their movement up the majoT diagonal of
performance space is consistent with the gradual strengthen-
ing of all exemplar traces through time and training epochs.
There is none of the backward-L trajectory (Figure 4B) that
suggests an early commitment to something like a prototype
strategy. Something about Experiment 3's category structure
caused participants never to enter this corner of performance
space. The result of all these differences is that the prototype
model not only never had any advantage in Experiment
3—it never had a chance.

All in all, the results show clearly that the small, poorly
differentiated categories of Experiment 3 gave the exemplar-
based description of categorization a strong advantage over
the prototype-based description, far more so than did the
category structures used in Experiments 1 and 2. Of course,
many successes of the basic exemplar model have featured
small and poorly differentiated categories like those in
Experiment 3 (Medin, Altom, & Murphy, 1984; Medin et al.,
1983; Medin & Schaffer, 1978; Medin & SchwanenfAugel,
1981; Medin & Smith, 1981; Nosofsky, Gluck, et al., 1994;
Nosofsky et al., 1992; Nosofsky, Palmeri, & McKinley,
1994; Palmeri & Nosofsky, 1995). Thus, Experiment 3's
results confirm all that work.

What is the information-processing basis for these suc-
cesses? The four-dimensional categories of Experiment 3
featured smaller exemplar pools, more stimulus repetitions,
weaker prototypes, and more easily assimilable exceptions.
Any of these factors could have discouraged the use of
prototypes while encouraging exemplar strategies and re-
minding participants of them (see also Homa et al., 1981).
The six-dimensional category structures of Experiments 1
and 2 featured larger exemplar pools, fewer stimulus repeti-
tions, stronger (more useful) prototypes, and stranger (more
disconcerting) exceptions. Any of these factors could have
camouflaged and undermined exemplar strategies while
encouraging and reinforcing prototype-based strategies.
These differences lead us to stress the importance of
research programs mat explore both general kinds of catego-
ries. The reliance on three or four stimulus dimensions has
hampered this exploration by constraining the available
exemplar pools and levels of category differentiation. It is
evident (compare Figures 4B and 7A) that these constraints
profoundly alter the course of category learning.

Experiment 4

The importance of these issues led us to replicate and
extend our results with different stimulus materials. There-
fore, in Experiment 4 participants learned NLS categories
with the category structures from Experiments 2 and 3, but
with line drawings of bug-like creatures, not nonsense-word
stimuli. Once again we predicted that the simple prototype
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model would have the fit advantage early in learning over
the basic exemplar model when participants learned the
large, well-differentiated categories. In contrast, we predicted
that the prototype model would be profoundly disadvantaged
over the whole course of learning when participants learned
the small, poorly differentiated categories.

Method

Participants. Thirty-two students participated in this experi-
ment to fulfill a course requirement.

Stimuli The stimuli were line-drawn bug-like creatures, shown
in profile facing left (Appendix B). These bugs were analogous to
the Brunswick faces that have been used extensively in categoriza-
tion research (Medin & Smith, 1981; Nosofsky, 1991; Reed, 1972;
Smith et al., 1993). Different creatures could be created by different
combinations of the binary-valued attributes that defined the
stimulus space. Other studies have featured similar stimuli such as
drawings of starfish (Ann & Medin, 1994), rocket ships (Palmeri &
Nosofsky, 1995), or imaginary creatures (Brooks, 1978; Malt, 1989).

The four binary features used to construct the four-dimensional
bugs were as follows: short or long body (a 1.5-cm X 1.0-cm oval
or a 2.4-cm X 1.0-cm oval), round or oval head (a 0.8-cm diameter
circle or a 0.7-cm x 1.4-cm oval), red open eye or green half-
closed eye (a 0.4-cm circle with a 0.2-cm central red dot or a
0.4-cm circle with a green-colored top half), and short or long legs
(0.6 cm or 1.0 cm). The six-dimensional bugs also were distin-
guished by having a curved forward antenna or a straight back
antenna (a 1.0-cm forward curve with a purple 0.2-cm terminal dot
or a back-angled 0.7-cm straight line with an orange 0.2-cm
terminal dot), and by having gray-triangle feet (0.4 cm across the
bottom and 0.2 cm high) or blue-semicircle feet (0.4 cm across the
bottom and 0.3 cm high).

Pilot experiments. Similarity-scaling experiments were con-
ducted to ensure that the features of the bugs had approximately equal
salience. Participants rated pairs of bugs for how alike or different they
were. If the average difference between bugs was about the same for all
single-feature differences, it would suggest that perceptual salience
was approximately balanced across the stimulus dimensions.

Ten participants rated pairs of four-dimensional bugs on a scale
of 1 to 5 for how alike (1) or different (5) they were. Trials were
presented in 20 blocks of random permutations of eight trials.
There were three possible trial types: bugs that were the same (two
trials in each block), bugs that were different on one feature (four
trials in each block—one for each feature contrast), bugs that were
different on two features (two trials in each block). For the trials
containing two-feature differences, the choice of the contrasting
features was made randomly. The zero-difference and two-
difference trials served only to anchor participants' single-
difference judgments, and they were not analyzed further.

The average difference rating was then calculated for each
single-feature difference for each participant. Average ratings for
the four dimensions ranged from 3.37 to 2.78. These ratings were
entered into an ANOVA with feature as the single variable. There
was no significant difference in salience over the four dimensions,
F(3, 36) = 1.98, ns, MSE = 0.396, suggesting that all of the
features had about the same perceptual impact.

Thirteen participants rated pairs of six-dimensional bugs on the
same 1-5 scale of increasing difference. Trials were presented in 20
blocks of random permutations of 10 trials. There were three
possible trial types: bugs that were the same (2 trials in each block),
bugs that were different on one feature (6 trials in each block—1 for
each feature contrast), bugs that were different on two features (2
trials in each block).

The average difference rating was then calculated for each
single-feature difference for each participant. Average ratings for
the six-dimensional bugs ranged from 2.96 to 2.13. These ratings
were entered into an ANOVA with features as the single variable.
There was no significant difference in salience over the six
dimensions, F(5, 72) = 2.25, ns, MSE = 0.504, suggesting again
that all of the features had about the same perceptual impact.

Four-dimensional category structure. The four-dimensional
NLS categories had the logical structure used in Experiment 3. The
logical Category A prototype 0 0 0 0 was made to correspond to a
randomly chosen polarity configuration of the binary stimulus
features (i.e., 0 referred to a short or a long body for different
participants, to short or long legs for different participants, etc.).
The Category A stimuli were then generated from that prototype.
The logical Category B prototype 1 1 1 1 was always made to
correspond to the featural combination that was the opposite of the
Category A prototype, and the Category B stimuli were then
generated from this Category B prototype. Four random polarity
configurations were built for the experiment, and a random quarter
of the sample received each configuration.

Six-dimensional category structure. The six-dimensional NLS
categories had the logical structure used in Experiment 2. The
logical Category A prototype 00 0 0 0 0 was made to correspond to
a randomly chosen polarity configuration of the binary stimulus
features (i.e., 0 referred to a round or oval head for different
participants, to a straight-back or curved-forward antenna for
different participants, etc.). The Category A stimuli were then
generated from that prototype. The logical Category B prototype
1 1 1 1 1 1 always corresponded to the featural combination that
was the opposite of the Category A prototype, and the Category B
stimuli were then generated from this Category B prototype. Four
random polarity configurations were built for the experiment, and a
random quarter of the sample received each.

Procedure. Participants were first assigned randomly to one of
the two category structures (four dimensional or six dimensional)
and to one of the four feature-polarity configurations. Sixteen
participants were assigned to learn each category structure. The
bug stimuli were presented in blocks of 8 trials (four dimensional)
or 14 trials (six dimensional), with each block containing a random
permutation of all the stimuli in the experiment. As in Experiments
2 and 3, participants received a total of 560 trials (70 blocks for the
four-dimensional categories, 40 blocks for the six-dimensional
categories). Trials continued in an unbroken fashion until the 560
trials had been presented.

Participants were tested individually. Each participant was
seated at the computer and read the following instructions on the
screen:

In this experiment, you will see a series of line drawings of
bugs which can be classified either as "Group 1" bugs or as
"Group 2" bugs. Your job is to look carefully at each bug and
decide if it belongs to Group 1 or Group 2. Type a " 1 " on the
keyboard if you think it is a Group 1 bug and a "2" if you
think it is a Group 2 bug. If you choose correctly, you will hear
a "whoop" sound. If you choose incorrectly, you will hear a
low buzzing sound. At first, the task will seem quite difficult,
but with time and practice, you should be able to answer
correctly.

The stimuli were presented on a 11.5-in. (29.5 cm) diagonal
computer screen on a white background. Each trial consisted of a
drawing of the bug, which appeared slightly to the left of center.
Slightly to the right of center, the large numerals / and 2 appeared
on the screen to remind participants how to respond. Participants
had unlimited time to view each stimulus before responding. A
correct response was followed by a brief, computer-generated
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whooping sound; an error was followed by a 1-s low buzzing
sound. The stimulus remained visible after wrong choices during
the 1-s error signal.

Results

Performance over trial segments. We again divided the
560 trials into ten 56-trial segments containing four or seven
blocks of the 14 or 8 stimuli for the six- and four-
dimensional categories, respectively. In both cases, the
accuracy data were analyzed with a one-way ANOVA with
trial segment as a within-subject variable. In both cases,
significant learning occurred across trial blocks: F(9,135) =
4.88, p < .05, MSE = 0.003, for the six-dimensional
categories; F(9, 135) = 38.14, p < .05, MSE = 0.006, for
the four-dimensional categories. The task-final proportions
correct were .84 and .91 for the six-dimensional and
four-dimensional categories, respectively.

Guessing and sensitivity parameters over trial segments.
Both the prototype and exemplar models were fit to the data
just as in Experiments 1-3. Once again the guessing
parameter declined strongly over trial segments. Once again
the estimated guessing rates were substantially higher in the
four-dimensional condition than in the six-dimensional
condition, replicating the contrast between Experiments 3 and 2.

The exemplar model's sensitivity parameter once again
increased strongly over trial segments. The task-final sensi-
tivities were 7.65 and 12.30 for the six- and four-
dimensional categories, respectively.

The fit of models over trial segments. The fits of the two
models through time for the six-dimensional categories are
shown in Figure 8A. The fits were entered into a two-way
ANOVA with type of model and trial segment as within-
subject variables. As in Experiments 1 and 2, there was a
significant interaction between type of model and trial
segment, F(9,135) = 3.83,/? < .05, MSE = 0.015.

To specify the character of this interaction, the ANOVA
was repeated, including only the data from the first three trial
segments (12 blocks or 168 trials) or the last three trial
segments. The prototype model's early advantage over the
exemplar model was significant, with average best fits over
48 observations (16 participants at three trial segments)
of 0.32 (SD = .240) and 037 (SD = .220), respectively,
F(l , 15) = 10.92, p < .05, MSE = 0.005. The exemplar
model's late advantage approached significance, with aver-
age best fits for the prototype and exemplar models of 0.43
and 0.30, respectively, F(l , 15) = 3.93, p - .07, MSE =
0.100. The exemplar model failed to show a significant
advantage late in Experiment 4 for the same reason it failed
to show one late in Experiment 1. Participants were transi-
tioning at different rates toward strategies that favored the
exemplar model, and these strategy differences multiplied
the relevant error term here by a factor of 20. These strategy
transitions are the focus of the present research.

In all respects, the results from the six-dimensional
categories replicated those of Experiments I and 2 (compare
Figures 1A and 2A). Indeed, it appears that the transition to
performance strategies that favor exemplar-based descrip-
tions occurred even more gradually with the pictorial stimuli
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Figure 8. A: The average fit of the prototype and exemplar
models at each 56-trial segment to the performance of participants
learning six-dimensional categories in Experiment 4. B: The
average fits for participants learning four-dimensional categories.

than with the nonsense-word stimuli. Here the standard
exemplar model could not even gain a significant fit
advantage after 560 trials.

The fits of the two models through time for the four-
dimensional categories are shown in Figure 8B. The fits
were entered into a two-way ANOVA with type of model
and trial segment as within-subject variables. As in Experi-
ment 3, we observed a main effect of model, with the
exemplar model fitting far better overall than did the
prototype model (average fits of .14 and .60, respectively),
F(9, 135) = 10.56, p < .05, MSE - 0.045. The interaction
between type of model and trial segment was also signifi-
cant, F(9, 135) = 20.29, p < .05, MSE = 0.031, indicating
that the fit advantage for the exemplar model grew stronger
over the course of the experiment. In all respects, the results
from the four-dimensional categories replicated Experiment
3 (compare Figure 6A).

Thus, Experiment 4 generalized all the results of Experi-
ments 1-3 from the domain of nonsense-word stimuli to a
more pictorial stimulus domain. The very different trajecto-
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ries by which participants learn different category structures
(including trajectories that favor prototype-based descrip-
tions for large, well-differentiated categories) may be a
general phenomenon deserving more research attention.

Summary of Experiments 1-4

In Experiment 3, participants learned small, less differen-
tiated categories. The prototype model was never at an
advantage and quickly became seriously disadvantaged.
Experiment 4 confirmed this result with different stimulus
materials. Both experiments suggest that exemplar processes
dominate for the category structures typically used and for
the mature performances typically modeled.

In Experiments 1 and 2, participants learned larger, more
differentiated categories. The prototype model fit early
performance better for both the NLS and LS category
structures in Experiment 1 and for the NLS category
structure in Experiment 2. Experiment 4 confirmed this
result with different stimulus materials. This result illumi-
nates the early stages of category learning and shows the
effect of larger, better differentiated categories on learners.
Yet there also seemed to be a transition in performance as
learning progressed. The basic exemplar model finally
gained ascendance in Experiment 2, for both NLS and LS
category structures, though more slowly than when partici-
pants learned the small, poorly differentiated categories of
Experiments 3 and 4. The exemplar model nearly gained
ascendance for Experiment 4's large, well-differentiated
categories. A measure responsive to this point of ascendance
could help assay the relative prominence of exemplar
strategies in different categorizing populations facing differ-
ent category structures.

The prototype model's early advantage is related to the
heterogeneity of performance across stimuli. The prototype
model performs well when prototype-item performance and
exception-item performance diverge strongly in an NLS
category structure. This divergence correctly reflects the
prototypes' perfect self-similarity and the exceptions' dissimi-
larity to the prototype of their category. In contrast, the basic
exemplar model fits poorly heterogeneous performance
profiles.

The exemplar model's late advantage in Experiments 2, 3,
and 4 is related to participants' homogeneously good perfor-
mance across stimuli of differing levels of typicality. Of course
this pattern is consistent with performance based in the
retrieval of highly familiar patterns. Accordingly, the exem-
plar model predicts this performance pattern; the prototype
model cannot.

Additional Modeling Perspectives

The failure of both models clearly emphasizes the trajec-
tory that participants trace through the larger space of
categorization strategies as they learn. Neither model bends
flexibly enough to retrace this trajectory. Therefore, we now
consider additional models that may better capture the whole
progression of learning and that may illuminate further the
changing strategies of participants during learning.

Prototypes Combined With Exemplar Memorization:
A Mixture Model

First, we examine a simple mixture of prototypes and
exemplar memorization. The mixture model adopted here
received some early attention (Medin et al , 1983; Medin &
Smith, 1981), though it was not used to describe the course
of category learning or to trace an increasing reliance on
exemplar processes. The mixture model assumes that partici-
pants base their classification decisions either on the simple,
additive similarity of a given stimulus to the prototype (in
which case they obey typicality gradients very strictly), or
on random guesses (in which case they place stimuli into
Categories A or B haphazardly), or on the recognition of
memorized specific exemplars (in which case they definitely
classify the item correctly). The key aspect of fitting data
with the mixture model is to estimate the balance among
these three processes that best accounts for any participant's
performance profile.

Note that the exemplar process assumed by the mixture
model is simple memorization—that is, individual exem-
plars are stored, self-retrieved, and self-boosted toward
correct categorization. This process is quite different from
the context model's exemplar process in which many
training exemplars enter the computations that produce a
classification decision. In fact, the context model's exemplar-
to-exemplar comparison processes have seemed implausible
to some (see discussions in Palmeri & Nosofsky, 1995, p.
548; Nosofsky & Palmeri, 1997, p. 292), making it valuable
to see whether a simpler exemplar process suffices also.

The mixture model evaluated here contained a guessing
parameter that functioned as it did for the other models. It
contained an exemplar-memorization parameter that could
give all exemplars a performance boost to reflect the
successful categorizations that would result from relying on
specific, memorized exemplar traces. It contained a prototype-
processing parameter that incorporated additive similarity to
the prototype into the categorization decision (exactly like
the prototype model already described). These three param-
eters were constrained to sum to 1.0, and the fitting process
found the best-fitting mixture of these three alternative
processing strategies. The mixture model also contained
four or six dimensional weight parameters (for the four- and
six-dimensional tasks, respectively) that were constrained to
sum to 1.0, just as in the other models. Accordingly, the
mixture model, just like the context model, had five or seven
free parameters, with two free parameters for the alternative
processing strategies, and three or five free parameters for
the attentional weights.

The mixture model was fit to the data from Experiment 2's
NLS condition for each participant for each trial segment,
using the seeding and hill-climbing procedures already
described. It re-creates the early advantage of the prototype
model over the basic exemplar model (because the specific
exemplar parameter can be estimated near zero), and it
re-creates the late advantage of the exemplar model over the
prototype model (because it can also emulate a strong
reliance on memorized exemplars; see Figure 9A). Thus, the
mixture model captures performance well throughout learn-
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Figure 9. A: The average fit of the prototype, exemplar, and
mixture models at each 56-trial segment to the performance of
participants learning not linearly separable (NLS) categories in
Experiment 2. B: Median parameter estimates across 16 partici-
pants of the mixture model fitting these performances. C: Median
parameter estimates across 16 participants of the mixture model
fitting the performances at each trial segment of participants
learning NLS categories in Experiment 3.

ing. It bends more flexibly through strategy space by
supposing that two different processes are prominent during
different stages of learning.

Figure 9B shows the median estimates of guessing,
prototype use, and exemplar memorization across 16 partici-
pants when the model tracks these parameter values across

the 10 trial segments of Experiment 2's NLS condition. The
mixture model's description has guessing tail off early on,
yielding to prototype use as the dominant process through
400 trials of the experiment. Gradually, though, estimates of
exemplar memorization increase, consistent with an in-
creased reliance on highly familiar traces. This increase
begins just where the prototype model falters (Figure 9A)
and continues until exemplar memorization finally becomes
the dominant categorization process as estimated by the
mixture model.

Figure 9C shows the same parameter estimates through
time for Experiment 3's NLS condition with small, poorly
differentiated categories. This trajectory through parameter
space is profoundly different. Higher rates of guessing
reflect the slowness with which these categories come into
focus for participants. Higher terminal reliances on exem-
plar memorization eventuate. Most strikingly, the use of
prototypes is never the dominant categorization process
under the description of the mixture model.

We believe this mixture perspective has many interpreta-
tive strengths. First, it makes plain that the trajectory
through performance space during category learning is as
profound as a transition from strong reliance on prototypes
to strong reliance on exemplar memorization. Second, the
mixture model points to a face-valid time of guessing during
which the task crystallizes for participants. Third, the model
isolates a time in learning when a simple prototype model
fits the data well, with no guessing and no exemplar process
at all (Figure 9B). To our knowledge, this extended stage of
learning has not been pointed out before, and we believe it
may be an important stage in the learning of many catego-
ries. Fourth, the mixture model allows one to consider the
possibility that the balance between category representations
shifts during learning. Neither prototype nor exemplar
models allow this possibility—they are too single-minded.
Fifth, the mixture model demonstrates the sufficiency here
of a very simple exemplar process (memorization). One may
not always need the context model's exemplar-to-exemplar
comparisons that have garnered criticism (see discussions in
Nosofsky & Palmeri, 1997, p. 292; Palmeri & Nosofsky,
1995, p. 548). Sixth, the mixture model makes plain the
different learning trajectories produced by different category
structures (Figures 9B and 9C) and lets one consider why
different category structures so strongly deflect participants
into different regions of performance space. Seventh, the
mixture perspective can even help one understand and
interpret the parameters of the context model itself. For
example, over the last six trial segments of Experiment 2's
NLS condition, the correlation between the increasing value
of the sensitivity parameter (in the basic exemplar model)
and the increasing value of the exemplar memorization
parameter (in the mixture model) was r{94) = .84, p < .05.
This close relationship between sensitivity and memoriza-
tion recommends the consideration of simpler exemplar
principles in category research.

By the mixture model's description, something like
prototype use precedes something like exemplar memoriza-
tion in the learning of the six-dimensional categories,
whereas exemplar memorization dominates for the four-
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dimensional categories. This difference is consonant with
the suggestion of Homa et al. (1981) that prototype- and
exemplar-based generalization processes, respectively, figure
more strongly in the learning of larger and smaller categories.

Even so, it is useful to consider why this sequence
(prototypes to exemplars) is the one the mixture model finds
(aside from the obvious fact that participants' early and late
performance profiles dictate this sequence). Our view is that
participants can quickly start to grasp the task's regularities.
After only a few trials, they can start to see which features
inform well and which should be discounted. In contrast,
before specific exemplars can guide categorization, partici-
pants must store those exemplars as separate, individuated
traces—traces of the sort that might serve the related
processes of identification, recognition, and so forth. Then,
they must develop categorization cues that are grounded in
that separateness and individuation. In our view, these
capacities will develop slowly, especially when the catego-
ries are large, when the exemplars use the same six binary
traits repetitively, when the exemplars are highly confuse-
able with each other, when the participants are told to
categorize the stimuli (not identify or memorize them), and
when participants do not even know that the same stimuli
will repeat. Remember also that every exemplar can rein-
force prototype-level information, whereas in effect partici-
pants receive only 1/8 or 1/14 as much specific-exemplar
training. For all these reasons, it may be common and natural
for regularities (i.e., prototype-level information) to impress
themselves on participants earlier than uniquenesses (i.e.,
exemplar-level information).

Reed (1978) reinforced this idea. He found that category
learning proceeded far faster than did item learning. He
argued that early in learning (up to about Trial 200), there is
not enough "within-categories discrimination of patterns to
use a classification rule that requires comparing the distance
of a test pattern to the individual exemplars" (p. 617). He
argued that participants may not even bother to store the
individuated exemplars required by an exemplar model
because they have no incentive to under categorization
instructions. He concluded that performance during the early
and middle stages of category learning was inconsistent with
exemplar processes but consistent with prototype abstraction.

For the small, poorly differentiated categories used here,
our view is that exemplar-based categorization processes
can emerge early and strongly, possibly even turning the
categorization task into an identification or item-learning
task. Medin and Schwanenflugel (1981, p. 365) expressed
this fear. Homa's work (e.g., Homa et al., 1981) also clearly
raises this possibility. McKinley and Nosofsky (1995, p.
129) also worried about this possibility. In fact, it is
surprising, given this clear concern, that so much research
has focused on category structures that favor a priori the
exemplar principle.

Recommending research on a range of category struc-
tures, Reed (1978, p. 619) said

As the number of patterns within a category increases,
prototype abstraction should improve (Homa et al., 1973), but
exemplar learning should decrease. As the variability of
patterns within a category is reduced, prototype abstraction

should improve (Peterson, Meagher, Chait, & Gillie, 1973),
but exemplar learning should decrease.

These factors of category size and within-category coher-
ence are two key factors distinguishing the six- and four-
dimensional categories used in all four experiments here.
Therefore, the finding that the two category structures
produce very different trajectories of learning is just what
Reed might have anticipated.

In the next two sections of this article, we consider a
complementary modeling approach that may also accommo-
date successfully the progression of performance profiles
produced during learning. To introduce this approach, we
first explain why the exemplar model's processing assump-
tions are the original source of its failure to accommodate
early performance. Then, we consider a recent profound
modification of the exemplar model that fares better but
remains problematic.

Why the Standard Exemplar Model Fails
to Describe Early Performance

The source of the standard exemplar model's failure and
of the prototype model's success lies in the heterogeneity of
early performance—whether indexed by the large prototype
advantages, the dismal exception-item performance, or any
other assay of performance. Two aspects of the exemplar
process assumed by the exemplar model ensure that it will
fail to accommodate these kinds of performance profiles.

First, the exemplar model allows exemplar self-retrieval.
All the items experienced repeatedly in training—prototypes
and exceptions included—can rely on these self-retrieval
processes, boosting their performance levels, bringing their
performance levels closer together, and homogenizing the
overall performance profile. In contrast, the prototype model
fits well the strongly heterogenized performances partici-
pants produced early in learning, because exceptions are
more similar to the prototype of the opposing category (and
no exemplar self-retrieval counters this effect), and because
the prototype's perfect self-similarity does boost its pre-
dicted performance. In fact, the prototype model assumes
that the better the prototype is performed, the worse the
exceptions will be performed (e.g., across 5,000 random
configurations of the prototype model, the correlation be-
tween those two performance levels was —.75). In contrast,
the behavior of the standard exemplar model does not
express this relationship (across 5,000 random configura-
tions of that model, the correlation between these perfor-
mances was .27).

Second, the exemplar model relies on exemplar-to-
exemplar comparisons in making category decisions. It is
seldom recognized that specific, stored exemplar traces are
noisy signals for guiding categorization decisions, because
category members are often surprisingly unlike each other.
To see this, consider Stimulus A2 in the LS task shown in
Appendix A (0 1 0 0 0 0). That stimulus shares 5,6,4, 3,3, 3,
and 5 features in common with the Category A stimuli
(including itself) and shares 1, 2, 2, 1,3, 1, and 3 features in
common with the Category B stimuli. By a rough calculation
(that the exemplar model carries out finely), the evidence
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favoring a Category A response for A2 is 29 Category A
features shared divided by (29 Category A features shared
plus 13 Category B features shared), or about 69%. It is this
low because, by storing the specific exemplars, one stores
the chaff (the atypical features that individuate the exem-
plars) along with the wheat (the typical features that define
the prototype). As a result, in the comparisons to the
exemplars, the evidence base favoring a Category A decision
is systematically undercut because, when the exemplars are
retrieved, all those featural disagreements are retrieved also
and they reduce the surety of a Category A response. Any
plausible processing account will realize this reduction,
whether participants attend to some dimensions and not
others, retrieve some exemplars and not others, or even if
they process all dimensions of all exemplars. The opposite
effect will occur for exception items with many atypical
features. The atypicaiity signal will be muted on comparison
to the exemplars. If strong evidence weakens and weak
evidence strengthens, the result will tend to be the homog-
enized performance profiles that the exemplar model shows
in our studies and in others, too.

In contrast, if participants simply compare the stimulus
0 1 0 0 0 0 with the Category A and Category B prototypes,
they will find that the evidence favoring a Category A
response is roughly 5 Category A features shared divided by
(5 Category A features shared plus 1 Category B feature
shared), or about 83%. The evidence base favoring the
Category A response is stronger than in the case of exemplar
storage. This occurs because the prototypes contain only the
wheat, not the chaff. As a result, in the comparisons to the
prototype, the evidence base favoring a Category A decision
is not undercut by any featural disagreements that the other
exemplars had with the prototype. Any plausible processing
account will realize this strengthening of the evidence base.
Once again, exception items will receive the opposite effect
(moderate dissimilarity to the exemplars will imply strong
dissimilarity to the prototype). If positive evidence and
negative evidence both grow more extreme, the result will
tend to be the heterogeneous performance profiles that the
prototype model shows, and that participants showed early
in performance.

Figures 10A and 10B illustrate these contrasting tenden-
cies of the two models by showing the composite behavior
of 20,000 random configurations of the prototype and exemplar
models, respectively, given the NLS stimulus set of Experiments
1,2, and 4. Prototype-based processing produces terrible excep-
tion-item performance (Stimuli 7 and 14), large prototype
advantages (Stimuli 1 and 8), and sprawling performance
profiles overall. Its performance profiles look like those that
participants produced early in Experiment 2 (Figure 3A).
Exemplar-based processing produces much higher exception-
item performance, minimal prototype advantages, and
cramped performance profiles overall. This statement is not
judgmental—in many cases these operating characteristics
will be just the ones needed to fit performance. For example,
the exemplar model's profiles look exactly like those that
participants produced late in Experiment 2 (Figure 3D).

In fact, notice that these cramped kinds of performance
profiles will emerge just when one models the aggregate
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Figure 10. A: The composite performance profile of 20,000
randomly selected configurations of the prototype model on the
six-dimensional not linearly separable (NLS) categories. B: The
composite performance profile of 20,000 randomly selected configu-
rations of the standard exemplar model on the six-dimensional
NLS categories.

performance for a group (and people's idiosyncracies cancel
out), when one models task-final performance (with high
performance on all stimuli), or when one models perfor-
mance on small, poorly differentiated categories (and perfor-
mance on all exemplars improves homogeneously in paral-
lel). That is, the standard exemplar model has had its biggest
successes at just the times when methodology guaranteed
performance profiles that the model was inherently most
comfortable with. This happy confluence of method and
model is a possible reason why exemplar models were so
successful early on and became so dominant. It is a possible
reason to remain cautious about them now.
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On the other hand, it is a possibility, not previously
considered, that heterogeneous performance profiles like
those shown in Figures 10A and 3A may indicate that
participants are referring to unitary representations (i.e.,
prototypes) in the service of categorization, not to the noisy
signals sent by specific, stored exemplars.

Gamma

Other research has suggested that exemplar processing, as
originally conceived by exemplar theorists and instantiated
in 20 years of exemplar models, may be insufficient to
explain what individual participants are doing (Ashby &
Gott, 1988; Maddox & Ashby, 1993). Therefore, researchers
have occasionally modified the context model profoundly by
adding on the gamma parameter (Maddox & Ashby, 1993;
McKinley & Nosofsky, 1995, 1996). Gamma intervenes by
allowing every quantity in the choice rule to be raised to
whatever power best recovers participants' actual perfor-
mance profiles. That is, whereas the choice rule that long
served category models was

Gamma=3.0

0.2 0.4 0.6 0.8 1

Exemplar Model Prediction

Figure 11. The relationship between the prototype and gamma
models. The points represent the median Category A response
prediction of the prototype model at each level of Category A
response prediction of the exemplar model for the six-dimensional
not linearly separable (NLS) category structure (see text for
details). The line shows the Category A response prediction of the
gamma model (7 = 3) at each level of Category A response
prediction of the exemplar model for the six-dimensional NLS
category structure.

the augmented version is

JtCA

I A

•y

The need for gamma to supplement exemplar processing
has strong resonances with the utility of prototype models
demonstrated here and in Smith et al. (1997). For example,
Smith et al. showed that good prototype-model fits remain
hidden while one models group performance. The require-
ment for gamma also remained hidden while researchers
modeled group performance (Maddox & Ashby, 1993). In
contrast, the present results show the usefulness of prototype
models for modeling individual profiles. This is when
gamma is necessary and why gamma was invented.

Moreover, we have shown that prototype descriptions are
useful because they naturally produce more heterogeneous
performance profiles (Figure 10A) than those of the standard
exemplar model (Figure 10B). Gamma produces heterogene-
ity too. It systematically undoes the homogenizing effect of
exemplar-exemplar comparisons and restores the heteroge-
neity that participants actually show, by raising the choice
rule to the 1.8th power, the 4.6th power, or the 9.7th power.

In fact, one can show that gamma has representational
entanglements with prototypy that remain to be explored.
We discussed earlier how prototypes provide clearer signals
than exemplars for guiding categorization. The scatter plot
in Figure 11 gives precise mathematical shape to this idea.
To make this scatter plot, we chose randomly 1,000 atten-

tional configurations. For each, we found the Category A
response proportions predicted by the additive prototype
model and the standard exemplar model for the 14 stimuli of
the six-dimensional NLS category structure. The scatter plot
shows the median Category A response prediction of the
prototype model at each level of Category A response
prediction of the exemplar model. That is, if a stimulus
would prompt the exemplar model to predict that there
would be about 40% or 60% Category A responses, the
stronger, clearer classificatory signal from the prototype
would predict about 20% or 80% Category A responses,
respectively.

Overlain on these points is the Category A response
prediction of the gamma model (7 = 3) at each level of
Category A response prediction of the exemplar model. This
line shows how gamma-based categorization intrinsically
relates to exemplar-based categorization. The gamma line
explains 97.9% of the variance in the relationship between
prototype-based and exemplar-based similarity. Thus, gamma
can arrange a precise mathematical conversion from a
pattern of responding consistent with exemplar processing
to one consistent with prototype processing.

Given this fact, a variety of criteria, like simplicity and the
intuitive framing of psychological questions, encourage a
significant role for prototype-based descriptions of data like
those from the early trial segments that show clearly every
expected feature of prototype processing (Figure 5A). On
the other side, advocates of the gamma parameter as an
adjunct to exemplar processing must note carefully that in
many cases gamma has exactly the effect on categorization
profiles that is created by processes that have been the
historical and theoretical antithesis of exemplar processing.
Gamma must be used and interpreted with caution, for
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gamma can be a prototype in exemplar clothing (for a related
discussion, see Ashby & Maddox, 1993).

The relation of gamma to prototypy was especially clear
for participants' early performances that the exemplar model
failed to accommodate (Figure 12A). In such cases, a large
value of gamma let the gamma model use more parameters
to emulate the behavior of an additive prototype model and
better fit the performances during the early trial epochs
(Figure 12B).

In doing so, the gamma model chose just the parameters
that allowed it to imitate best the simple prototype model.
Figure 13 shows the results of the careful fitting procedure
that confirmed this. To make the curve for varying levels of
gamma, we took 1,000 random attentional configurations,
and for each calculated the gamma model's Category A
predictions (at 91 levels of gamma from 1 to 10 in steps of
.10, with sensitivity always given a random value between 1
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Figure 12. The fit of the exemplar model to the early performance
of participants learning Experiment 2's not linearly separable
(NLS) categories. B: The composite predicted performance profiles
of the gamma and prototype models when they fit the early perfor-
mances of participants learning Experiment 2's NLS categories.
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Figure 13. The fit (sum of the squared deviations [SSD]) of the
gamma model to the simple prototype model for different levels of
gamma and sensitivity (see text for details).

and 10) and the prototype model's Category A predictions,
for each of the 14 stimuli in our six-dimensional NLS
category structure. We then calculated the sum of the
squared deviations (SSDs) between the 14,000 prototype-
based predictions and the 14,000 gamma-based predictions
at each level of gamma. The line in the figure plots these
SSDs by levels of gamma and shows that the fit function was
minimized for gammas near 3. For our real participants, the
average median gamma estimated over the first three trial
segments of Experiment 2's NLS condition was 3.4, nearly the
gamma that lets the context model act most prototype based.

By a parallel analysis, we found the levels of sensitivity
that let the context model imitate best the prototype model.
To make the curve for varying levels of sensitivity, we took
1,000 random attentional configurations, and for each calcu-
lated the gamma model's Category A predictions (at 101
levels of sensitivity from 0.0 to 10.0 in steps of .10, with
gamma always given a random value between 1 and 10) and
the prototype model's Category A predictions, for each of
the 14 stimuli in our six-dimensional NLS category struc-
ture. We then calculated the SSDs between the 14,000
prototype-based predictions and the 14,000 predictions of
the gamma model at each sensitivity. The line plots these
SSDs by levels of sensitivity and shows that the fit function
was minimized for sensitivities near 2. The average median
sensitivity for our real participants over the early trial
segments was 2.0, just the sensitivity that lets the context
model act most prototype based. Therefore, of the hundreds
of trillions of configurations that the gamma model can take
on, it takes on, to fit the early performances, just the terribly
narrow range of configurations that allows it to imitate
exactly a simple prototype model.

Now, this is no coincidence because participants at this
stage of learning do occupy a spot in the larger space of
categorization strategies that is describable by a simple
prototype model. In a sense, the empirical story here is mat
participants do remain for an extended period in this singular
place in the huge space of possibilities. One can then
describe this place as one where performance is consistent
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with the pure use of additive prototypes. Or one can describe
it as the place where gamma equals 3 and sensitivity equals 2
(while wondering what gamma equals 3 and sensitivity
equals 2 means, and while being helped by knowing that
gamma equals 3 and sensitivity equals 2 means that perfor-
mance is consistent with the pure use of additive proto-
types). We believe the prototype description is simply more
illuminating than the gamma description. For example, only
the prototype description makes plain the singularity of this
place in the larger space of categorization strategies and
encourages appropriately sharp research attention to it. Only
the prototype description encourages one to ask what kinds
of (exemplar?) processes participants add to the mix to move
out of this place as learning matures. Only the prototype
description emphasizes appropriately the dramatic trajectory
that participants trace through the larger space of categoriza-
tion strategies. The trajectory they trace is as profound as
that from performance based in simple prototypes (early in
learning) to performance based in memorized exemplars
(late in learning). Our view is that learning trajectories of
this kind deserve sharper research attention too, because
they may reveal participants' early default strategies as they
enter category tasks, the singular positions in the larger
performance space they sometimes occupy, the succession of
strategies that they adopt through learning, and the different
successions of strategies fostered by different category structures.
Our view is that gamma does not highlight any of these issues as
well as do the prototype or mixture perspectives.

General Discussion

Humans' Ultimate Capacities and Natural
Predispositions Regarding Categorization

Whatever parameterization of the formal modeling space
one chooses, our results are about the trajectory through the
large space of categorization strategies that participants trace
during the learning of many categories. Early on, partici-
pants' performance profiles are consistent with processing
based in prototypes. They show large prototype effects,
strictly obey intuitive typicality gradients, show dismal
exception-item performance, and heterogeneous perfor-
mance profiles overall. Moreover, their strong reassignment
of the exception items shows that they initially make a
strong linear separability assumption about category struc-
ture—they naturally assume, despite extensive evidence and
feedback to the contrary over 200 trials, that the exemplars
cluster in similarity space near or around the prototypes.

Later on, all aspects of performance are consistent with a
gradual transition to strategies that feature some kind of
exemplar processing given highly familiar training exem-
plars. Many parameterizations of the formal space of categoriza-
tion strategies would describe later performance in this way,
though it remains an open question whether those exemplar
processes are to be understood as pure exemplar memorization
(as in the mixture model) or as exemplar-to-exemplar compari-
son processes (as in the context model).

In any case, the demonstration of this trajectory of
learning joins results from others (Nosofsky, Gluck, et al..

1994; Nosofsky, Palmeri, & McKinley, 1994; Smith et al.,
1997) to assert the importance of organizing principles in
early category learning that may not be exemplar based and
that are very different from those at the end of extensive
category training. Therefore, we believe that it is useful to
distinguish two research questions regarding human catego-
rization that the literature has not distinguished sufficiently.

First, there is the question of humans' ultimate categoriza-
tion capacities, at the end of extended training, when they
have developed an asymptotic strategy for coping with
difficult category structures. Illustrating research on this
question, McKinley and Nosofsky (1995) gave participants
4,000 trials (the amount of training our participants would
have had if we had trained them every day for a week) on
category tasks that were so difficult that asymptotic perfor-
mances were still only 81% and 68% in two experiments.
Then they modeled the last 300 trials to assess ultimate
performance. This research tradition raises important issues.
Can humans master exceptions? Can they learn NLS catego-
ries completely? Can they defend nonlinear decision bound-
aries? These issues have been prominent for 20 years
(McKinley & Nosofsky, 1995; Medin & Schaffer, 1978;
Medin & Schwanenflugel, 1981; Nosofsky, 1987). Experi-
ments like those by McKinley and Nosofsky have shown
that humans can do all these things and have shown that
exemplar models describe these performances best. How-
ever, these experiments cannot reveal humans' natural
default assumptions about category tasks or their natural
default strategies when entering category tasks. Instead,
these experiments bear on humans* ultimate capacities in
categorization and on the kinds of category structures they
can eventually transcend and learn.

Consequently, there remains the second question about
humans' natural, initial default strategies and their assumptions
on entering a category task. Do humans naturally assume LS
categories and linear decision boundaries? Do they sometimes
begin with strategies that are captured especially well by
prototype-based algorithms? Do they systematically redefine
exceptions into the opposing category in an expression of these
assumptions and strategies? The present data suggest that hu-
mans do these things too early in category learning, and this may,
too, be why prototype models describe these performances best
This question is about humans' defaults and predispositions.
We hope that more research will examine them.

Converging Perspectives on Categorization

This examination is beginning. For example, Nosofsky,
Palmeri, and McKinley (1994) suggested that participants
learn categories by first using a rule to make a straight-edged
cut through the stimulus space (see also Ann & Medin, 1992;
Medin et al., 1987; Regehr & Brooks, 1995). They suggested
that participants then invoke special learning algorithms
(exemplar memorization or configurally coding featural
complexes) to master the problematic exceptions.

Nosofsky and his colleagues (Nosofsky, Gluck, et al.,
1994; Nosofsky, Palmeri, & McKinley, 1994) have devel-
oped these ideas by using the rule-plus-exception (RULEX)
model. RULEX supposes that participants initially seek
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rules that handle many items in a task. Then, they encode
more holistically or configurally the rule's exceptions and
remember their appropriate category labels. RULEX success-
fully predicts various aspects of participants' performance
given three- and four-dimensional category structures like
those adopted in Experiments 3 and 4. RULEX is even able
to track through the epochs of learning the performance
levels on prototype and exception items, providing a formal
video of performance as we have done here. Nosofsky's
participants, like ours in Experiments 3 and 4, show strong
improvement on both central and exceptional category
members. Both his and our participants move up the major
diagonal of the performance spaces shown in Figure 7 (see
Figures 6-8 in Nosofsky, Palmeri, & McKinley, 1994).

In contrast, the data from our six-dimensional category
task provide a good target for Nosofsky, Palmeri, &
McKinley's (1994) model to shoot at and could represent an
exception to RULEX. For example, in Experiment 2 partici-
pants improved dramatically on prototypes over 224 trials
while showing no improvement on exceptions. It would be
interesting to know whether the RULEX model can separate
so cleanly in time the early improvement on prototypes and
the later cognitive work that masters exceptions. Here too,
larger, well-differentiated categories could shed a new light
on category learning.

It also may be important that our participants' early
performances seem to be based in something closer to
prototypes than to rules. However, we note that rule-based
and prototype-based performance descriptions have some
commonalities. For example, both descriptions predict the
strong reassignment of exception items; both embody a strong
linear separability assumption about category structure and
predict performance patterns that reflect that assumption.

Generally speaking, then, the ideas formalized in RULEX
converge with our own. RULEX endorses that different
epochs of learning involve different categorization strategies
and varieties of stimulus coding. It endorses that early
learning epochs reveal a strong linear separability assump-
tion. It places exemplar-based processing in later epochs and
predicts the exemplar model's advantage there, because it
also links exemplar processes to the eventual-transcendence
strategies that conquer exceptions. Thus, our research shares
with RULEX a perspective that blends what human adults
naturally assume and ultimately can do. This kind of
perspective could eventually provide a fuller description of
human categorization than has been prevalent.

Continuities and Discontinuities With
Other Categorizers

Moreover, a focus on epochs of learning, and the different
processing strategies that attend them, could also inform the
literatures on developmental change in categorization and
species differences in categorization. For example, young
children may lack the deliberate cognitive set that adults
bring to category tasks or the abstraction/rule-use ethic that
formal education fosters (Kemler Nelson, 1984; Smith,
1989; Smith & Kemler Nelson, 1984; Smith et al., 1993;
Smith & Shapiro, 1989). Young children may also lack the

sophisticated metacognitive capacities that let adults moni-
tor error signals sensitively, target problematic exemplars,
and enact secondary exemplar-based strategies to master
them (Baker, 1985; Brown, Bransford, Ferrara, & Campi-
one, 1983; Nelson, 1992, 1996). One could explore these
age differences in category learning by considering the plot
line of the 4-year-old's categorization video. This could
show the initial commitments children make to either prototypes
or exemplars and their ultimate capacities to transcend obstacles
and exceptions in category tasks. This research would make
constructive contact with existing developmental research,
in which young children's task-final categorization pro-
cesses have been variously described as holistically based in
exemplar processes (Kemler Nelson, 1984), holistically based in
prototypes (Kemler Nelson, 1984, 1988, 1989; Smith, 1989;
Smith & Kemler Nelson, 1984; Smith & Shapiro, 1989), or
based in narrow and rule-like attention to single dimensions
(Ward, 1988; Ward & Scott, 1987). This research would also
link current formal approaches and current debates about
exemplars and prototypes to earlier, elegant research explor-
ing young children's progression of hypothesis-testing activi-
ties during discrimination learning (e.g., Kemler, 1978).

One could also use the category structures of Experiments
1 and 2 to compare the performances of human and
nonhuman animals, to see when humans' unique cognitive
capacities come most into play. The human edge might be
sharpest at the start of the categorization video (for the early
epochs of learning), in which case animals would produce a
weaker initial advantage for prototype-based descriptions
than humans do. Or the human edge might be sharpest at the
end of the video (for the final epochs of learning), in which
case animals might stay welded to a primitive linear separability
constraint and assumption for longer than humans. Either
pattern of results would be interesting, for either pattern
would establish both continuities and discontinuities be-
tween human and animal species, either in their initial
approaches to categorization tasks or in their flexibility at
shoring up those approaches given special circumstances.

The crucial point for us is that both patterns of results
emphasize the value of granting a time depth to analyses of
categorization and to our formal models of those processes,
and emphasize the value of understanding the trajectory of
the learning processes and the strategy transitions mat occur.
The moving picture, and not the frozen still, may well provide the
richer description of categorizers great and small.

References

Ahn, W., & Medin, D. L. (1992). A two-stage model of category
construction. Cognitive Science, 16, 81-121.

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and
categorization of multidimensional stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 33-53.

Ashby, F. G., & Maddox, W. T. (1993). Relations between
prototype, exemplar, and decision bound models of categoriza-
tion. Journal of Mathematical Psychology, 37, 372-400.

Ashby, F. G., & Perrin, N. A. (1988). Toward a unified theory of
similarity and recognition. Psychological Review, 95, 124-150.

Baker, L. (1985). How do we know when we don't understand?
Standards for evaluating text comprehension. In D. L. Forrest-



1434 SMITH AND MINDA

Pressley, G. E. MacKinnon, & T. G. Waller (Eds.), Metacognition,
cognition, and human performance (pp. 155-205). New York:
Academic Press.

Brooks, L. R. (1978). Non-analytic concept formation and memory
for instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and
categorization (pp. 169-211). Hills dale. NJ: Erlbaum.

Brown, A. L., Bransford, J. D., Ferrara, R. A., & Campione, J. C.
(1983). Learning, remembering, and understanding. In J, H.
Flavell & E. M. Markman (Eds.), Handbook of child psychology
(Vol. 3, pp. 77-164). New York: Wiley.

Estes, W. K. (1986a). Array models for category learning. Cogni-
tive Psychology, 18, 500-549.

Estes, W. K. (1986b). Memory storage and retrieval processes in
category learning. Journal of Experimental Psychology: Gen-
eral, 112, 155-174.

Estes, W. K., Campbell, J. A., Hatsopoulos, N., & Hurwitz, J. B.
(1989). Base-rate effects in category learning: A comparison of
parallel network and memory storage-retrieval models. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
75,556-571.

Homa, D., & Chambliss, D. (1975). The relative contributions of
common and distinctive information on the abstraction from
ill-defined categories. Journal of Experimental Psychology:
Human Learning and Memory, 10, 351-359.

Homa, DM Cross, J., Cornell, D., Goldman, D., & Shwartz, S.
(1973). Prototype abstraction and classification of new instances
as a function of number of instances defining the prototype.
Journal of Experimental Psychology, 101, 116-122.

Homa, D., Dunbar, S., & Nohre, L. (1991). Instance frequency,
categorization, and the modulating effect of experience. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
17,444^58.

Homa, D., Rhoads, D., & Chambliss, D. (1979). Evolution of
conceptual structure. Journal of Experimental Psychology: Hu-
man Learning and Memory, 5, 11-23.

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of
exemplar-based generalization and the abstraction of categorical
information. Journal of Experimental Psychology: Human Learn-
ing and Memory, 7, 418-439.

Jacoby, L. L., & Brooks, L. R. (1984). Nonanalytic cognition:
Memory, perception, and concept formation. Psychology of
Learning and Motivation, 18, 1—47.

Kemler, D. G. (1978). Patterns of hypothesis testing in children's
discriminative learning: A study of the development of problem
solving strategies. Developmental Psychology, 14, 653-673.

Kemler Nelson, D. G. (1984). The effect of intention on what
concepts are acquired. Journal of Verbal Learning and Verbal
Behavior, 23, 734-759.

Kemler Nelson, D. G. (1988), When category learning is holistic: A
reply to Ward and Scott. Memory & Cognition, 16, 79-84.

Kemler Nelson, D. G. (1989). The nature and occurrence of holistic
processing. In B. E. Shepp & S. Ballesteros (Eds.), Object perception:
Structure and processes (pp. 357-386). Hillsdale, NJ: Erlbaum.

Lamberts, K. (1994). Flexible tuning of similarity in exemplar-
based categorization. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20, 1003-1021.

Lamberts, K. (1995). Categorization under time pressure. Journal
of Experimental Psychology: General, 124, 161-180,

Maddox, W. T., & Ashby, G. (1993). Comparing decision bound
and exemplar models of categorization. Perception and Psycho-
physics, 53, 49-70.

Malt, B. C. (1989). An on-line investigation of prototype and
exemplar strategies of classification. Journal of Experimental
Psychology: Human Learning and Memory, 15, 539-555.

McKinley, S. C, & Nosofsky, R. M. (1995). Investigations of

exemplar and decision bound models in large, ill-defined cat-
egory structures. Journal of Experimental Psychology: Human
Perception and Performance, 21, 128-148.

McKinley, S. C, & Nosofsky, R. M. (1996). Selective attention and the
formation of linear decision boundaries. Journal of Experimental
Psychology: Human Perception and Performance, 22,294-317.

Medin, D. L. (1975). Atheory of context in discrimination learning.
In G. H. Bower (Ed.), The Psychology of Learning and
Motivation (Vol. 9, pp. 269-315). New York: Academic Press.

Medin, D. L., Altom, M. W., & Murphy, T. D. (1984). Given versus
induced category representations: Use of prototype and exem-
plar information in classification. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 10, 333-352.

Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships
between item and category learning: Evidence that abstraction is
not automatic. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 9, 607-625.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of
classification learning. Psychological Review, 85, 207-238.

Medin, D. L., & Schwanenfhigel, P. J. (1981). Linear separability in
classification learning. Journal of Experimental Psychology:
Human Learning and Memory, 7, 355-368.

Medin, D. L., & Smith, E. E. (1981). Strategies and classification
learning. Journal of Experimental Psychology: Human Learning
andMemory, 7, 241-253.

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987).
Family resemblance, conceptual cohesiveness, and category
construction. Cognitive Psychology, 19, 242-279.

Mervis, C. B., & Rosch, E. (1981). Categorization of natural
objects. In M. R. Rosenzweig & L. W. Porter (Eds.), Annual
Review of Psychology, 32, 89-115.

Murphy, G. L., & Medin, D. L. (1985). Role of theories in
conceptual coherence. Psychological Review, 92, 289-316.

Nelson, T. O. (Ed.). (1992). Metacognition: Core readings. Needham
Heights, MA: Allyn & Bacon.

Nelson, T. O. (1996). Metacognition and consciousness. American
Psychologist, 51, 102-116.

Nosofsky, R. M. (1984). Choice, similarity, and the context theory
of classification. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10, 104-114.

Nosofsky, R. M. (1985). Overall similarity and the identification of
separable-dimension stimuli: A choice model analysis. Percep-
tion and Psychophysics, 38, 415-432.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychol-
ogy: General, 115, 39-57.

Nosofsky, R. M. (1987). Attention and learning processes in the
identification and categorization of integral stimuli. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
13, 87-108.

Nosofsky, R. M. (1988). Similarity, frequency and category
representations. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 14, 54-65.

Nosofsky, R. M. (1989). Further tests of an exemplar-similarity
approach to relating identification and categorization. Percep-
tion and Psychophysics, 45, 279-290.

Nosofsky, R. M. (1991). Tests of an exemplar model for relating
perceptual classification and recognition memory. Journal of Experi-
mental Psychology: Human Perception and Performance, 17, 3-27.

Nosofsky, R. M. (1992). Exemplars, prototypes, and similarity
rules. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.),
From learning theory to connectionist theory: Essays in honor of
William K. Estes (pp. 149-167). Hillsdale, NJ: Erlbaum.



CATEGORY LEARNING 1435

Nosofsky, R. M., Clark, S. R, & Shin, H. J. (1989). Rules and exemplars
in categorization, identification and recognition. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 15, 282-304.

Nosofsky, R. M, Gluck, M. A., Palmeri, T. J., McKinley, S. C , &
Glauthier, P. (1994). Comparing models of rule-based classifica-
tion learning: A replication and extension of Shepard. Hovland
and Jenkins (1961). Memory & Cognition, 22, 352-369.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992).
Combining exemplar-based category representations and connec-
tionist learning rules. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18, 211-233.

Nosofsky, R. M, & Palmeri, T. J. (1997). An exemplar-based
random walk model of speeded classification. Psychological
Review, 104, 266-300.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994).
Rule-plus-exception model of classification learning. Psychologi-
cal Review, 101,53-79.

Palmeri, T. J., & Nosofsky, R. M. (1995). Recognition memory for
exceptions to the category rule. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 548-568.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract
ideas. Journal of Experimental Psychology, 77, 353-363.

Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas.
Journal of Experimental Psychology, 83, 304—308.

Reed, S. K. (1972). Pattern recognition and categorization. Cogni-
tive Psychology, 3, 382-407.

Reed, S. K. (1978). Category vs. item learning: Implications for
categorization models. Memory & Cognition, 6, 612-621.

Regehr, G., & Brooks, L. (1995). Category organization in free
classification: The organizing effect of an array of stimuli.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 21, 347-363.

Rosch, E. (1973). On the internal structure of perceptual and
semantic categories. In T. E. Moore (Ed.), Cognitive develop-
ment and the acquisition of language (pp. 111-144). New York:
Academic Press.

Rosch, E. (1975). Cognitive reference points. Cognitive Psychol-
ogy, 7, 192-238.

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies
in the internal structure of categories. Cognitive Psychology, 7,
573-605.

Shepard, R. N. (1987). Toward a universal law of generalization for
psychological science. Science, 237, 1317-1323.

Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of
dot-pattern classification and recognition. Journal of Experimen-
tal Psychology: General, 121, 278-304.

Smith, J. D. (1989). Analytic and holistic processes in categoriza-
tion. In B. E. Shepp & S. Ballesteros (Eds.), Object perception:
Structure and processes (pp. 297-323). Hillsdale, NJ: Erlbaum.

Smith, J. D., & Kemler Nelson, D. G. (1984). Overall similarity in
adults' classification: The child in all of us. Journal of Experimen-
tal Psychology: General, 113, 137-159.

Smith, J. D., Murray, M. J., & Minda, J. P. (1997). Straight talk
about linear separability. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 23, 659-680.

Smith, J. D., & Shapiro, J. H. (1989). The occurrence of holistic
categorization. Journal of Memory and Language, 28, 386-399.

Smith, J. D., Tracy, J., & Murray, M. J. (1993). Depression and
category learning. Journal of Experimental Psychology: Gen-
eral, 122, 331-346.

Ward, T. B. (1988). When is category learning holistic? A reply to
Kemler Nelson. Memory & Cognition, 16, 85-89.

Ward, T B., & Scott, J. (1987). Analytic and holistic modes of learning
family resemblance concepts. Memory & Cognition, 15,42-52.

Whittlesea, B. W. A. (1987). Preservation of specific experiences in
the representation of general knowledge. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 13, 3-17.

Whittlesea, B. W. A., Brooks, L., & Westcott, C. (1994). After
the learning is oven Factors controlling the selective application of
general and particular knowledge. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 20, 259-274.

Appendix A

Category Structures Used in Experiments 1 and 2
Category A

Structure

0 0 0 0 0 0
0 1 0 0 0 0
100000
0 0 0 1 0 1
100001
0 0 1 0 1 0
01 1000

0 0 0 0 0 0
100000
0 1 0 0 0 0
0 0 1 0 0 0
00001 0
0 0 0 0 0 1
111101

Stimuli

Category B

Structure

Categories linearly separable

b anu ly
b e n u l y
k a n u l y
b a n i l o
k a n u l o
b a p u r y
b e p u l y

111111
111101
110111
101110
0 1 1 1 1 0
101011
010111

Categories not linearly separable

g afu z i
wafuzi
gyfuzi
gas u zi
gafuri
gafuzo
wysezo

111111
011111
101111
110111
111011
111110
oooi oo

Stimuli

k e p i r o
kep i lo
ken iro
kap i ry
bep i ry
kapuro
ben i ro

wysero
g y s e r o
w asero
w y fero
wysuro
wy ser i
g afe zi

(Appendix B follows on next page)
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Appendix B

Stimulus Materials Used in Experiment 4

Six-Dimensional Bugs

Category A

Category B

Four-Dimensional Bugs

Category A

Category B
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