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Abstract

We present a cognitive model that bridges work in anal-
ogy and category learning. The model, Building Relations
through Instance Driven Gradient Error Shifting (BRIDGES),
extends ALCOVE, an exemplar-based connectionist model
of human category learning (Kruschke, 1992). Unlike AL-
COVE which is limited to featural or spatial representations,
BRIDGES can appreciate analogical relationships between
stimuli and stored predicate representations of exemplars.
Like ALCOVE, BRIDGES learns to shift attention over the
course of learning to reduce error and, in the process, alters
its notion of similarity. A shift toward relational sources of
similarity allows BRIDGES to display what appears to be an
understanding of abstract domains, when in fact performance
is driven by similarity-based structural alignment (i.e., anal-
ogy) to stored exemplars. Supportive simulations of animal,
infant, and adult learning are provided. We end by consid-
ering possible extensions of BRIDGES suitable for computa-
tionally demanding applications.

Introduction
We live in a world of concrete experiences, yet we appre-
ciate seemingly abstract concepts. Category contrasts like
“same” or “different” and “predator” or “prey” are not based
on featural regularities. Instead, these concepts are relational
in nature (e.g., two identical objects of any size, color, or
shape are the same). How do we acquire concepts that are
not based on featural regularities?

The category learning literature has focused on how we
acquire new concepts, but largely in domains in which the
regularities are defined by distributions of features (e.g., red
objects are in one category, whereas blue objects are in the
other category). In contrast, the analogy literature has con-
sidered how people appreciate regularities defined by com-
mon relational structures, but has not leveraged work in cat-
egory learning detailing how people integrate knowledge
across examples and shift attention.

Here, we extend an existing model of category learning to
include a more sophisticated notion of similarity that is sen-
sitive to both featural and relational match. We propose that
in many domains where performance appears to be governed
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by mental rules, it is actually driven by similarity-based ac-
tivation of stored exemplars. This account is supported by
simulations of how young infants learn seemingly abstract
grammars and how animals and people learn the distinction
between same and different.

Category Learning

Proposals for category representation are diverse, rang-
ing from exemplar-based (Medin & Schaffer, 1978) to
prototype-based (Smith & Minda, 1998) and include propos-
als between these two extremes (Love, Medin, & Gureckis,
2004).

In the present work, we focus on exemplar-based propos-
als. Exemplar-models of category learning hold that all ab-
straction or generalization occurs through similarity-based
activations of concrete examples. In exemplar models, each
experienced instance is stored in memory. When a new item
is encountered, the similarity between the item and each ex-
emplar in memory is calculated. The stimulus is predicted
to belong in the category with the greatest sum of pairwise
similarity. Thus, exemplar models clearly link experienced
events to later generalization.

The model of relational learning that we will develop
here, BRIDGES, is an extension of Kruschke’s (1992) AL-
COVE connectionist exemplar model of category learning.
BRIDGES’s exemplar representation will support the no-
tion that analogy to stored experiences is sufficient to appre-
ciate abstract relationships. Furthermore, by incorporating
ALCOVE’s attentional shifting mechanisms into BRIDGES,
we forward an explanation of how perceived similarity can
change over the course of learning as more predictive stim-
ulus properties are accentuated. Such attentional shifts will
prove useful in demonstrating how seemingly abstract un-
derstandings can arise from concrete experiences.

Finally, ALCOVE has been a very successful model
of category learning and provides a strong foundation for
bridging the category learning and analogy literatures. By
virtue of containing ALCOVE as a special case, BRIDGES
accounts for a wide variety of prior human learning stud-
ies examining how people acquire categories determined by
featural regularities.
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Figure 1: Example of attention on mapping

Analogy
Analogical comparison can reveal non-obvious similarities.
For example, people can appreciate that the Rutherford atom
is similar to the solar system because the planets revolve
around the sun much like how the electrons revolve around
the atom’s nucleus (Gentner, 1983). The perceived similar-
ity between the atom and the solar system is not based on
feature overlap, but on common relational structure.

Numerous accounts of how people detect these analogical
similarities exist. Transformational accounts hold that one
analog is transformed over a series of steps until it matches
the other analog (Hahn, Chater & Richardson, 2003). The
fewer the steps and the smaller their cost, the higher the re-
sulting similarity is. The dominant account of detecting non-
obvious similarities is structure mapping theory (Gentner,
1983). Although BRIDGES could utilize other frameworks
to reach its ends, such as transformational approaches, we
adopt the structure mapping account because of the broad
support it enjoys in the analogy literature.

Structure mapping holds that people encode stimuli (e.g.,
objects, scenes, events) in terms of predicate represen-
tations that capture relations among entities (e.g., Re-
volves(planets,sun)). Relations can serve as arguments to
other relations (e.g., Causes(GreaterMass(sun,planets), Re-
volves(planets,sun))). Structure mapping posits that people
align such structured representations to find the most satis-
fying correspondences. In the solar system/atom example,
this alignment would involve placing the sun in correspon-
dence with the nucleus and the planets in correspondence
with the electrons. Sounder mappings lead to increased per-
ceived similarity (Gentner & Markman, 1997).

Factors that influence the soundness of a mapping in-
clude: 1) one-to-one correspondence 2) parallel connectivity
and 3) systematicity. One-to-one correspondence says that
corresponding entities and relations can map to at most one
node in the other structure. Parallel connectivity is a pref-
erence for mapping arguments playing the same role within
corresponding predicates to one another. For example, par-
allel connectivity is preserved for the revolves relation in the
atom/solar system example because the two revolves pred-
icates correspond and the arguments of these two relations
also map to the appropriate argument in the other predicate
(i.e., mapping the sun to the electrons would not preserve
parallel connectivity). As Figure 1 illustrates with a simpler
perceptual analogy, parallel connectivity can be at odds with
featural similarity. Finally, systematicity is a preference for
mappings that are complete and deep (i.e., contain embed-
ded systems of relations). These principles have been suc-

cessfully embodied in the SME model of analogical align-
ment (Falkenheiner, Forbus, & Gentner, 1989).

More recent models within the structure mapping frame-
work have demonstrated that systematicity can fall out of a
system that enforces one-to-one mappings and prefers par-
allel connected mappings (Larkey & Love, 2003). Thus,
BRIDGES’s approach to structural alignment will incorpo-
rate only one-to-one correspondence and parallel connec-
tivity. As will be more fully discussed below, BRIDGES
factors in both relational and featural matches when deter-
mining mappings. When these two forces are at odds (as in
Figure 1), learned attentional weightings determine the pre-
ferred mapping.

Overview of BRIDGES
BRIDGES is an exemplar-based model of category learning
that can utilize structure mapping to appreciate analogical
similarities. For any given comparison between a stimulus
and a stored exemplar, BRIDGES considers all possible one-
to-one mappings. Models of analogical alignment avoid this
exhaustive search by using heuristics to guide the mapping
process. BRIDGES could be extended to incorporate these
shortcuts, but we do not do so here. Instead we focus on the
basic ideas underlying BRIDGES.

Out of all permissible mappings, BRIDGES chooses the
mapping that minimizes a difference measure that incorpo-
rates notions of featural and relational mismatch (see Fig-
ure 1). A relational mismatch of 1 occurs when a relation
does not exhibit parallel connectivity (see the right panel
of Figure 1). A featural mismatch of 1 occurs when non-
identical entities or entities containing mismatching features
are mapped to one another (see the right panel of Figure 1).

Both types of mismatch are weighted by attention weights
and the sum of these attention weighted mismatches yields
an overall differences measure that is inversely proportional
to similarity. The mapping that maximizes similarity (i.e.,
minimizes attention weighted difference) is chosen. These
exemplar similarity values serve as exemplar unit activations
and are passed across association weights to category units
(e.g., predator and prey). The stimulus tends to be classified
into the category whose unit has the greatest activation.

After feedback is provided, attention weights and asso-
ciation weights between exemplars and category units are
adjusted to reduce error. Changes in attentional weights can
lead to different future mappings.

When attention shifts away from features and toward
relations, parallel connectivity (i.e., analogical match) is
stressed over featural similarity and BRIDGES demon-



strates abstract understanding of a domain. Conversely,
when featural matches lead to successful predictions, atten-
tion shifts toward features and BRIDGES is governed by
featural similarity. When relational information is not dis-
criminative or present, BRIDGES reduces to the standard
ALCOVE model.

BRIDGES’s Formalism
BRIDGES is a three-layer feed forward artificial neural net-
work. The input to BRIDGES contains both featural and re-
lational information in predicate argument form. Each pos-
sible feature or relation has an associated attention weight.
The activation (i.e., similarity) of each exemplar j by stimu-
lus s is

hj = maxm∈m(exp[−c(
∑

i

αi ·Mismatch(si))]) (1)

where m∈M is all possible one-to-one mappings between
nodes (i.e., features, entities, and relations) forming stimulus
s and exemplar j, i ranges over nodes in stimulus s, αi is the
attention weight associated with node type si, and c is the
specificity parameter that determines the rate that similarity
falls off with increasing mismatch. Mismatch is defined to
be 1 for features or entities in stimulus s that map to non-
identical nodes in exemplar j, otherwise 0. For relations,
Mismatch is defined to be 1 for relations in stimulus s not
exhibiting parallel connectivity, otherwise 0.

Activation passes from exemplars to category unit ok:

ok =
∑

j

wkj · hj (2)

where wjk is the association weight between exemplar j and
category unit ok. The probability of selecting the category
corresponding to category unit r is

Pr(r) = exp(φor)/
∑

k

exp(φok) (3)

where φ is a decision parameter and k ranges over all cate-
gory units.

Learning is accomplished via gradient descent error mini-
mization. The target value for the category unit correspond-
ing to the correct category is set to 1 and other category
nodes are set to 0. A “humble teacher” scheme is used
so that category unit output values in the correct direction
greater that 1 or less than 0 are not penalized. The error
function E minimized is

E =
1
2

∑
k

(tk − ok)2 (4)

where tk is the target value for ok. The association weight
wkj from exemplar j to output unit k is adjusted by

∆wkj = λk(tk − ok)hj (5)

where λw is the learning rate for association weights. Atten-
tion weights are updated by

∆αi = −λα

∑
j

[
∑

k

(tk − ok)wkj ]hj · c ·Mismatch(si)

(6)

where λα is the learning rate for attention weights. The pa-
rameter values used in the simulations reported here are λα

= .007, λ= .001, c = .03, and φ = 6.1. These values were
chosen to maximize R2 in the second simulation, but both
simulations are actually quite robust with regards to the ac-
tual parameter values.

Modeling Infant Grammar Learning
Marcus, Vijayan, Bandi Rao and Vishton (1999) found
that infants could discriminate between abstract patterns or
grammars of speech sounds. Importantly, this discrimina-
tion could not be accomplished by any weighting of phonetic
features. Because featural regularities could not be leverage
to discriminate between grammars, Marcus et al. proposed
that infants utilized variable binding in conjunction with al-
gebraic rules to master such learning tasks.

In Marcus et al.’s (1999) study, seven-month-old infants
were exposed to sentences that followed either an AAB pat-
tern or an ABB pattern. The sentences were made up of sim-
ple monosyllable sounds (words) such as “GA TI TI”. Each
infant was trained for approximately 2 minutes on one of
the grammars. The 2-minute session contained three repeti-
tions of 16 unique sentences. There was a 250 milliseconds
pause between each word in the sentences and a one second
pause between each sentence. The testing phase consisted of
presentation of 12 sentences containing novel words. Half
of the 12 sentences were from the same grammar used in
training and the other half were from the contrasting gram-
mar. Fifteen of the 16 infants in the study had greater look-
ing times during the presentation of the sentences from the
novel grammar, indicating that the infants had habituated to
the abstract pattern.

BRIDGES’s Simulation BRIDGES was applied to the
Marcus et al. (1999) study. Each sentence (e.g., “GA TI
TI”) was represented as an exemplar. BRIDGES’s exemplar
representation for “GA TI TI” is shown in Table 1. Each syl-
lable is represented as an entity. Each syllable’s position in
the speech stream is encoded by a positional feature. These
syllables have a number of phonetic features that are not rep-
resented in these simulations. Not including such features
follows Marcus et al.’s presumption that no significant reg-
ularities exist across these features. Importantly, including
uncorrelated features would only slow learning, but would
not alter the overall results.

Table 1: BRIDGES’s representation of “GA TI TI.”

Entities Features Relations
GA1 Position(GA1) = 1 TypeOf(GA1, GA)
TI1 Position(TI1) = 2 TypeOf(TI1, T I)
TI2 Position(TI2) = 3 TypeOf(TI2, T I)

Critically, relational information was included in
BRIDGES’s representations. BRIDGES makes a distinction
between tokens and types. In effect, we assume that infants
in Marcus’s et al.’s study have developed categories of
speech sounds (Eimas, Siqueland, Jusczyk, & Vigorito,



1971). These type relations allow for abstract patterns to be
uncovered through analogy to stored exemplars as one type
of sound can mapped to another.

The training and test regimen followed the original Mar-
cus et al. (1999) study as closely as possible. Following
Love et al. (2004), unsupervised learning was modeled by
a network consisting of a single category output unit with a
target value of 1 for all stimuli. In effect, this category unit
is a familiarity detector. Association and attention weights
in the model were adjusted to uncover the underlying regu-
larities across the sentences to yield consistently high famil-
iarity (i.e., high output values for the category unit).

During habituation, the 16 unique sentences were pre-
sented three times each to BRIDGES and stored as ex-
emplars. On each presentation, association and attention
weights were updated. Though not critical, we assumed that
the saliency of positional features is sufficiently great to con-
strain the mapping process (i.e., words in sentences align
temporally). Besides position (which does not discriminate
between grammars), no regularities across features or enti-
ties existed. However, parallel connectivity was perfect for
members of the same grammar. For instance, “GA TI TI”
is isomorphic to “LI NA NA” in that all token and types in
the type relation (see Table 1) can be mapped to one an-
other and preserve parallel connectivity. This degree of per-
fect match caused BRIDGES to shift attention to the type
relation. This shift makes BRIDGES sensitive to the un-
derlying grammar, rendering novel sentences following the
original grammar somewhat familiar. Sentences not follow-
ing the learned grammar do analogically match stored exem-
plars (parallel connectivity is violated), making these items
less familiar and resulting in greater looking time as infants
dishabituate.
Discussion BRIDGES is able to discriminate between ab-
stract patterns on the basis of analogical similarity. Stor-
ing concrete exemplars, shifting attention, and analogi-
cal match are sufficient to show generalization to novel
items. BRIDGES’s success calls into question Marcus et
al.’s (1999) claim that algebraic rules underly infant perfor-
mance. However, BRIDGES’s success is attributable to its
ability to bind arguments to relations, which supports Mar-
cus et al.’s claim that infants bind variables.

Marcus (1999) has criticized other accounts (e.g. Sei-
denberg, & Elman 1999) of these results for including a
same/different detector within a learning mechanism. The
BRIDGES simulations do not explicitly label speech sounds
as identical, rather the model assumes that infants can cate-
gorize speech sounds, as embodied by the type/token dis-
tinction. BRIDGES’s solution does not hinge on a same
detector. In fact, the patterns that can be discriminated by
analogical mapping (even in simple domains in which only
the type relation is present) are more encompassing than
same/different. The analogical mapping process in these
simulations aligned the current stimulus to stored exemplars
— BRIDGES did not label words within sentences as same
or different nor did it shift attention to a same feature. Ab-
stract responding arose through analogy to stored exemplars
and attention shifting from concrete features to relations.

Modeling Same-Different Learning
BRIDGES holds that the basis for understanding abstract re-
lations is similarity-based and therefore inherently graded.
The design of the Marcus et al. study did not touch on
this possibility because stimuli were either grammatical or
ungrammatical. According to BRIDGES, learners can both
respond abstractly (i.e., generalize to featurally novel stim-
uli) and show evidence for the influence of past examples.
If BRIDGES is correct, category membership in relation-
ally defined categories is graded as it is in natural categories
(Rosch, & Mervis 1975).

To evaluate BRIDGES’s predictions, we will consider re-
sults from a series of studies exploring how pigeons and hu-
mans learn notions of same and different. To illustrate how
BRIDGES learns the concepts same and different, we will
apply BRIDGES to Young and Wasserman’s (1997) study of
same/different discriminaton learning in pigeons. To fore-
shadow, Young and Wasserman’s results indicate that pi-
geons can master a notion of same and different that cannot
be explained by featural similarity. At the same time, the
pigeons are sensitive to the particular examples they experi-
enced during training and display a graded notion of same
and different. Although fascinating, it would be easy to dis-
miss these results as relevant to pigeon cognition, but not
human cognition. However, work by Young and Wasserman
(2001) found the same pattern of performance with human
subjects. Humans as a group are slightly more deterministic
than pigeons, but this group difference is within the range of
individual differences. The bottom and top 20% of humans
clearly bracket the mean performance of pigeons.

In Young and Wasserman (1997), pigeons learned to re-
spond differentially to displays containing 16 identical and
16 different icons. On each trial, the 16 icons were randomly
placed within a 5 X 5 grid. The pigeons were reinforced for
pushing a green button when presented with a same stimu-
lus and a red button when presented with a different stim-
ulus. Training consisted of blocks of 16 same stimuli and
16 different stimuli in a random order. An identical set of
icons was used to form stimuli for both the same and differ-
ent items, making it impossible to correctly associate an icon
or icon feature with a response. Training continued until the
pigeons reached 85% accuracy.

7-5-3-114-1-1

Figure 2: Two examples of intermediate stimuli are stimuli
are shown. The numerical code below each stimulus indi-
cates its experimental condition and is explained in the main
text.

The test phase consisted of intermediate stimuli that were
somewhat similar to both the same and different stim-



uli experienced in the training phase. Examples of in-
termediate stimuli are shown in Figure 2. These stimuli
can be viewed as forming a continuum between the pure
same stimuli (all 16 icons identical) and the pure differ-
ent stimuli (all 16 icons different) used during the train-
ing phase. Eleven distinct conditions of intermediate stim-
uli were used. The 11 conditions can be characterized
by their groupings of identical icons. For example, in
Figure 2, the right most stimulus contains seven question
marks, five dominoes, three arrows, and one magnifying
glass and thus is an example of condition [7,5,3,1]. Adopt-
ing this nomenclature, the eleven intermediate conditions
were [14,1,1], [8,8], [13,1,1,1], [12,1,1,1,1,1,1], [10,3,2,1],
[7,5,3,1], [4,4,4,4], [8,1,1,1,1,1,1,1,1], [2,2,2,2,2,2,2,2],
[4,1,1,1,1,1,1,1,1,1,1,1], [2,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. The
pigeon’s performance in these intermediate conditions, as
well BRIDGES’s predictions, are shown in Figure 3 (with
the data points ordered left to right in the order the condi-
tions are introduced in the previous sentence).
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Figure 3: The results from Young and Wasserman’s (1997)
studies and BRIDGES’s predictions are shown. The 11 in-
termediate conditions, forming a continuum between pure
same and pure different stimuli, are described in the main
text.

BRIDGE’s Simulation Like the Marcus et al. (1999) sim-
ulations, we adopted a minimal approach to stimulus repre-
sentation. Each stimulus’s icon was represented as an entity.
Each of the 16 entities participated in a type relation as in
the Marcus et al. simulations (see Table 1).

The training regimen mimicked the procedure used in the
original study as closely as possible. BRIDGES, like the pi-
geons, was trained to an 85% accuracy threshold before ini-
tiating the test phase. BRIDGES reached this level of perfor-
mance by discovering analogical mappings among presented
stimuli and exemplars stored in memory. For instance, a
same stimulus aligns perfectly with same exemplars stored
in memory. For example, consider aligning a stimulus con-
taining 16 squares to another stimulus containing 16 trian-
gles. Each triangle entity is put into correspondence with a
square entity. This results in a perfect feature mismatch, but
parallel connectivity is preserved. Within each type relation,
the type triangle maps to the type square. This alignment
leads to attention shifting toward the type relation and away
from the entities. In contrast, only 1 out of 16 type relations

will exhibit parallel connectivity when aligning a different
stimulus with a same stimulus. Thus, it is straightforward
for BRIDGES to discriminate between same and different
stimuli in the absence of featural support. In this regard,
BRIDGES’s solution for these simulations is the supervised
learning analog to BRIDGE’s discrimination of grammati-
cal and ungrammatical sentences in the Marcus et al. (1999)
simulations.

Strong support for BRIDGES’s similarity-based discov-
ery of the same/different relation is found in its fit of the test
phase. BRIDGES correctly orders the intermediate condi-
tions (see Figure 3). BRIDGES correctly predicts the prob-
ability that pigeons respond “different” in the intermediate
conditions. Similarity-based activations are not all or none
and these intermediate cases activate stored examplars to
varying degrees, leading to the successful fit. For example,
an intermediate stimulus containing 12 triangles and four
squares is somewhat analogous to a stimulus containing 16
circles — mapping the triangle type to the circle type pre-
serves parallel connectivity in 12 out of 16 relations. Along
similar lines, an item with two matching icons and 14 icons
that are all different from one another better matches a pure
different exemplar than a pure same exemplar.

Discussion
BRIDGES learned the same/different relation and achieved
an excellent fit (R2 = .95) of the test results involving inter-
mediate stimuli. The simulations demonstrate how abstract
concepts can be acquired through storage and analogy to
concrete examples. BRIDGES’s excellent fit of the interme-
diate conditions is a natural consequence of similarity-based
processing. Like natural categories, BRIDGES predicts re-
lational categories have a graded structure.

Young and Wasserman (1997) offered an entropy explana-
tion of their results. Pure different displays will have maxi-
mum entropy (4 bits) whereas pure same displays have min-
imal entropy (0 bits). Like BRIDGES, the entropy expla-
nation provides an excellent fit of the test results (R2 =
.94). Advantages of BRIDGES’s account lie within its
generality and ability to model learning data. BRIDGES
can also predict additional phenomena that naturally follow
from exemplar representations of categories: 1) When pi-
geons are transferred to new icons, performance remains
above chance, but significantly declines, and 2) Increasing
the discriminability of stimuli improves overall performance
(Young & Wasserman, 1997).

General Discussion
By combining insights from the category learning and anal-
ogy literatures, BRIDGES provides an account of how peo-
ple and animals can gain abstract understandings of do-
mains based solely on experience with concrete instances.
BRIDGES’s power arises from using a notion of similarity
informed by work in both analogy and category learning.
Structural alignment processes allow BRIDGES to appreci-
ate analogical similarities, while attention shifting modifies
BRIDGES notion of similarity over the course of learning.
Integrating these mechanisms allows BRIDGES to grasp ab-



stract patterns by shifting attention to relations which drive
the alignment process.

In the supportive simulations, BRIDGES offered an ex-
planation of how infants become sensitive to abstract gram-
mers and how people and pigeons develop the concepts of
same and different irrespective of a stimulus’s features. Con-
sistent with BRIDGES’s stance that abstract concepts are
similarity-based, the relational concepts same and different
displayed graded membership like natural categories.

BRIDGES is not the first model to use analogical align-
ment to support category learning. SEQL can acquire cate-
gory structures through a process of repeated abstraction of
a structured category representation and has been success-
fully applied to the infant grammar learning studies con-
sidered here (Kuehne, Gentner & Forbus, 2003). While
SEQL stresses building abstract representations, abstraction
in BRIDGES arises from shifting attention. Some rela-
tive strengths of BRIDGES are that it extends an existing
model of category learning (ALCOVE is a special case of
BRIDGES) and incorporates attentional mechanisms.

Related work in machine learning extends support vector
machines (SVMs) for application to structured representa-
tions like those processed by BRIDGES (Joachims, 1993).
Applying principles from SVMs to BRIDGES would offer
a rigorous notion of optimality, whereas BRIDGES demon-
strates the promise of adapting SVMs’ kernels during learn-
ing through attentional shifts.

One challenge for BRIDGES is incorporating new rela-
tional information into its exemplar representations. Al-
though BRIDGES can learn relational concepts, BRIDGES
is not yet able to incorporate acquired relations directly
into its exemplar representations (see Doumas and Hummel,
2005, for an example of a predicate discovery system).

Another challenge facing BRIDGES is the computational
complexity of an exemplar-based structural alignment sys-
tem. The MAC/FAC model (Forbus, Gentner & Law, 1994)
uses an interesting approach to reduce the complexity of the
problem. MAC/FAC involves a two stage process: first, it
compares content vectors, simplified representations of the
exemplars, selecting only the most similar candidates; then,
it calculates the full structural alignment only on those ex-
emplars. Further savings in processing can be achieved by
using a general search procedure to discover the optimal (or
near optimal) mappings in the alignment stage.
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