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Cortical substrates for exploratory decisions in
humans
Nathaniel D. Daw1*, John P. O’Doherty2*†, Peter Dayan1, Ben Seymour2 & Raymond J. Dolan2

Decision making in an uncertain environment poses a conflict
between the opposing demands of gathering and exploiting infor-
mation. In a classic illustration of this ‘exploration–exploitation’
dilemma1, a gambler choosing between multiple slot machines
balances the desire to select what seems, on the basis of accumu-
lated experience, the richest option, against the desire to choose a
less familiar option that might turn out more advantageous (and
thereby provide information for improving future decisions). Far
from representing idle curiosity, such exploration is often critical
for organisms to discover how best to harvest resources such as
food and water. In appetitive choice, substantial experimental
evidence, underpinned by computational reinforcement learning2

(RL) theory, indicates that a dopaminergic3,4, striatal5–9 andmedial
prefrontal network mediates learning to exploit. In contrast,
although exploration has been well studied from both theoretical1

and ethological10 perspectives, its neural substrates are much less
clear. Here we show, in a gambling task, that human subjects’
choices can be characterized by a computationally well-regarded
strategy for addressing the explore/exploit dilemma. Furthermore,
using this characterization to classify decisions as exploratory
or exploitative, we employ functional magnetic resonance
imaging to show that the frontopolar cortex and intraparietal
sulcus are preferentially active during exploratory decisions. In
contrast, regions of striatum and ventromedial prefrontal cortex
exhibit activity characteristic of an involvement in value-based
exploitative decision making. The results suggest a model of
action selection under uncertainty that involves switching
between exploratory and exploitative behavioural modes, and
provide a computationally precise characterization of the contri-
bution of key decision-related brain systems to each of these
functions.
Exploration is a computationally refined capacity, demanding

careful regulation. Two possibilities for this regulation arise. On
the one hand, we might expect the involvement of cognitive,
prefrontal control systems11 that can supervene12 over simpler
dopaminergic/striatal habitual mechanisms. On the other hand,
theoretical work on optimal exploration1,13 indicates a more unified
architecture, according to which actions can be assessed with the use
of a metric that integrates both primary reward and the informa-
tional value of exploration, even in simple, habitual decision systems.
We studied patterns of behaviour and brain activity in 14 healthy

subjects while they performed a ‘four-armed bandit’ task involving
repeated choices between four slot machines (Fig. 1; see Supplemen-
taryMethods). The slots paid off points (to be exchanged for money)
noisily around four different means. Unlike standard slots, the mean
payoffs changed randomly and independently from trial to trial, with
subjects finding information about the current worth of a slot only

through sampling it actively. This feature of the experimental design,
together with a model-based analysis, allowed us to study explora-
tory and exploitative decisions under uniform conditions, in the
context of a single task.
We asked subjects in post-task interviews to describe their choice

strategies. The majority (11 of 14) reported occasionally trying the
different slots to work out which currently had the highest payoffs
(exploring) while at other times choosing the slot they thought had
the highest payoffs (exploiting). To investigate this behaviour quan-
titatively, we considered RL (ref. 2) strategies for exploration. These
strategies come in three flavours, differing in how exploratory actions
are directed. The simplest method, known as ‘1-greedy’, is undir-
ected: it chooses the ‘greedy’ option (the one believed to be best)
most of the time, but occasionally (with probability 1) substitutes a
random action. A more sophisticated approach is to guide explora-
tion by expected value, as in the ‘softmax’ rule. With softmax, the
decision to explore and the choice of which suboptimal action to take
are determined probabilistically on the basis of the actions’ relative
expected values. Last, exploration can additionally be directed by
awarding bonuses in this latter decision towards actions whose
consequences are uncertain: specifically, to those for which explora-
tion will be most informative. The optimal strategy for a restricted
class of simple bandit tasks has this characteristic1, as do standard
heuristics14 for exploration in more complicated RL tasks such as
ours, for which the optimal solution is computationally intractable.
We compared the fit of three distinct RL models, embodying the

aforementioned strategies, to our subjects’ behavioural choices. All the
models learned the values of actionswith the use of a Kalman filter (see
Supplementary Methods), an error-driven prediction algorithm that
generalizes the temporal-difference learning algorithm (used in most
RL theories of dopamine) by also tracking uncertainty about the
value of each action. The models differed only in their choice rules.
We compared models by using the likelihood of the subjects’ choices
given their experience, optimized over free parameters. This com-
parison (Supplementary Tables 1 and 2) revealed strong evidence for
value-sensitive (softmax) over undirected (1-greedy) exploration.
There was no evidence to justify the introduction of an extra
parameter that allowed exploration to be directed towards uncer-
tainty (softmax with an uncertainty bonus): at optimal fit, the bonus
was negligible, making the model equivalent to the simpler softmax.
We conducted additional model fits (see Supplementary Information)
to verify that these findings were not an artefact of our assumptions
about the yoking of free parameters between subjects.
Having characterized subjects’ behaviour computationally, we

used the best-fitting softmaxmodel to generate regressors containing
value predictions, prediction errors and choice probabilities for each
subject on each trial. We used statistical parametric mapping to
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identify brain regions in which neural activity was significantly
correlated with themodel’s internal signals. Consistent with previous
studies7–9 was our observation that a prediction error was correlated
significantly with activity in both the ventral and dorsal striatum (see

Supplementary Table 3). Other, cortical, structures linked to this
subcortical network15 also showed significant value-related corre-
lations. Specifically, we found activity in medial orbitofrontal cortex
to be correlated with themagnitude of the obtained payoff (Fig. 2a), a

Figure 1 | Task design. a, Illustration of the timeline within a trial. Initially,
four slots are presented. The subject chooses one, which then spins. Three
seconds later the number of points won is revealed. After a further
second the screen is cleared. The next trial is triggered after a fixed trial
length of 6 s and an additional variable inter-trial interval (mean 2 s).

b, Example of mean payoffs that would be received for choosing each slot
machine (four coloured lines) on each trial, demonstrating their
independent random diffusion. The payoff received for a particular choice is
corrupted by gaussian noise around this mean.

Figure 2 | Reward-related activations. Activation maps (yellow, P , 0.001;
red, P , 0.01 to illustrate the full extent of the activations) are
superimposed on a subject-averaged structural scan. a, Region of medial
orbitofrontal cortex (mOFC) correlating significantly with the number of
points received. The coordinates of the activated area are [3,30,221, peak
z ¼ 3.87]. The bar plot shows the average BOLD response to outcome,
binned by amount won (error bars represent s.e.m.). b, Regions of
ventromedial prefrontal cortex (vmPFC; including medial and lateral

orbitofrontal cortex and adjacent medial prefrontal cortex) correlating
significantly with the probability assigned by the computational model to
the subject’s choice of slot. The coordinates of the activated areas are as
follows: medial orbitofrontal, [23,45,218, peak z ¼ 5.62]; lateral
orbitofrontal (not illustrated), [45,36,215, peak z ¼ 4.6]; medial prefrontal,
[23,33,26, peak z ¼ 4.62]. The bar plot shows the average medial
prefrontal BOLD response to decision, binned by choice probability (error
bars represent s.e.m.).
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finding consistent with previous evidence indicating that this region
is involved in coding the relative value of different reward stimuli,
including abstract rewards16,17. Furthermore, activity in medial and
lateral orbitofrontal cortex, extending into ventro-medial prefrontal
cortex, was correlated with the probability assigned by the model to
the action actually chosen on a given trial (Fig. 2b). In the softmax
model, this probability is a relative measure of the expected reward
value of the chosen action, and the observed profile of activity is thus
consistent with a role for orbital and adjacent medial prefrontal
cortex in encoding predictions of future reward18,19. The same
quantity was negatively correlated with activity in a small area of
dorsolateral prefrontal cortex (left: 239,36,42, peak z ¼ 3.38; right:
36,33,33, peak z ¼ 3.27); that is, higher activity was seen there for
lower-probability choices.
We next sought to identify brain activity that selectively reflected

whether actions were chosen for their exploratory or exploitative
potential. To test for such a signature, we classified trials according to
whether the actual choice was the one predicted by the model to be
the dominant slot machine with the highest expected value (exploi-
tative) or a dominated machine with a lower expected value
(exploratory). We then directly compared the pattern of brain
activity associated with these exploratory and exploitative trials.
We found no area that exhibited significantly higher activity for
exploitative than exploratory decisions (employing whole-brain
correction for multiple comparisons). However, the opposite con-
trast revealed several activations. First, right anterior frontopolar
cortex (Fig. 3a) was significantly more active during decisions
classified as exploratory (P , 0.05, corrected whole-brain for mul-
tiple comparisons with false discovery rate; activation was noted
bilaterally at P , 0.001 uncorrected but did not survive whole-brain
correction on the left). Average blood-oxygenation-level-dependent

(BOLD) signal time courses from the region (Fig. 3b) demonstrated
phasic increases and decreases in activity that were time-locked to
subjects’ exploratory and exploitative decisions, respectively.
Because the prefrontal cortex is the principal cortical region

implicated in behavioural control20, the signal we observed in anterior
frontopolar cortex could reflect a control mechanism facilitating the
switching of behavioural strategies between exploratory and exploita-
tive modes. This most rostral of prefrontal regions is known to be
associated with high-level control21. This region sits atop a proposed
hierarchy of nested prefrontal controllers22 and is implicated in
mediating between different goals, subgoals23 or cognitive processes21.
Differential activation during exploratory trials was also observed

bilaterally in anterior intraparietal sulcus (whole-brain corrected at
P , 0.05; Fig. 4), bordering on the postcentral gyrus. The sulcus has
repeatedly been implicated in decisionmaking in both humans15,19 and
primates24–26, with different subregions being associated with different
output modalities. In lateral intraparietal area LIP, associated with
saccades, neurons also carry information about decision variables such
as the reward expected for a saccade24–26; the area perhaps serves as an
interface between frontal areas (where such information may be
calculated) and motor output. The anterior border of the sulcus,
close to our exploration-related activation, is associated with grasping
and manual manipulation27, raising the possibility that such infor-
mation (here, that associated with exploration) might also reach
parietal regions involved in the button-press actions in our task.
Last, we used a multiple regression analysis to verify that differ-

ential activity in frontopolar and intraparietal regions during
exploratory trials was not better explained by any of several poten-
tially confounding factors such as switching between options or
reaction times (see Supplementary Information and Supplementary
Tables 4 and 5).

Figure 3 | Exploration-related activity in frontopolar cortex. a, Regions of
left and right frontopolar cortex (lFP, rFP) showing significantly increased
activation on exploratory comparedwith exploitative trials. Activationmaps
(yellow, P , 0.001; red, P , 0.01) are superimposed on a subject-averaged
structural scan. The coordinates of activated areas are [227,48,4, peak

z ¼ 3.49] for lFP and [27,57,6, peak z ¼ 4.13] for rFP. b, rFP BOLD time
courses averaged over 1,515 exploratory (red line) and 2,646 exploitative
(blue line) decisions. Black dots indicate the sampling frequency (although,
because sample alignment varied from trial to trial, time courses were
upsampled). Coloured fringes show error bars (representing s.e.m.).

Figure 4 | Exploration-related activity in intraparietal sulcus. a, Regions of
left and right intraparietal sulcus (lIPS and rIPS) showing significantly
increased activation on exploratory compared with exploitative trials.
Activation maps (yellow, P , 0.001; red, P , 0.01) are superimposed on a
subject-averaged structural scan. The coordinates of the activated areas are
[229,233,45, peak z ¼ 4.39] for lIPS and [39,236,42, peak z ¼ 4.16] for

rIPS. b, lIPS BOLD time courses averaged over 1,515 exploratory (red line)
and 2,646 exploitative (blue line) decisions. Black dots indicate the sampling
frequency (although, because sample alignment varied from trial to trial,
time courses were upsampled). Coloured fringes show error bars
(representing s.e.m.).
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These results have important implications for both computational
and neural accounts of action selection. The finding of brain regions
discretely implicated in exploration (and particularly that one of
them is a prefrontal, high-level control structure21) is consistent with
a theory in which exploration is accomplished by overriding an
exploitative tendency, but troubling for accounts such as uncertainty
bonus schemes1,14, which more tightly entangle exploration and
exploitation. Such anatomical separation would be unlikely under
these latter schemes, because they work by choosing actions with
respect to a unified value metric that simultaneously prizes both
information gathering and primary reward. Just such an exploration-
encouraging value metric has previously been suggested to explain
why dopamine neurons respond to novel, neutral stimuli13; such
anomalous responses in an otherwise typically appetitive signal
remain puzzling in view of our failure here to find either behavioural
or neural evidence for such an account.
Exploration has a central role in the acquisition of adaptive

behaviour in environments that change. Characteristic expressions
of frontal pathology28 include impairments in task switching as well
as behavioural perseveration, which might relate, at least in part, to a
core deficit in exploration. As one might expect for such a critical
function, subcortical systems are also implicated in the control of
exploration, with noradrenaline being suggested as regulating a
global propensity to explore29,30, a factor captured in our model in
terms of the parameter regulating competition in the softmax rule.
Last, self-directed exploration of the form studied here is an example
of a refined cognitive function that is ubiquitous but hard to pin
down in regular designs (because exploratory and exploitative
responses are apparently seamlessly mixed). We were able to capture
it only through a tight coupling of computational modelling,
behavioural analysis and functional neuroimaging.

METHODS
Fourteen right-handed healthy human subjects participated in an fMRI scan
(using a 1.5 T Siemens Sonata scanner) while repeatedly choosing between
animated slot machines. One of three candidate reinforcement learning models
for their behaviour was selected, and its parameters estimated, by maximizing
the cumulative likelihood of the subjects’ choices given the model and param-
eters. Trials were classified according to the model as exploratory or exploitative,
and trial-by-trial estimates of subjects’ predictions about slot machine payoffs
(and the error ormismatch between those predictions and received payoffs) were
generated by running themodel progressively on the subjects’ actual choices and
winnings. A general linear model implemented in SPM2 (Wellcome Department
of Imaging Neuroscience, Institute of Neurology, UCL) was used to locate brain
voxels where the measured BOLD signal was significantly correlated with these
model-generated signals. Regions identified as significantly correlated with
exploration were subjected to a subsequent multiple regression analysis to
investigate whether other, confounding factors might better account for the
observed activity. For a detailed description of the experimental and analytical
techniques, see Supplementary Methods.
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Supplementary Methods 

Subjects and behavioral task  

14 right-handed human subjects participated in the task. The subjects were pre-assessed to exclude 

those with a prior history of neurological or psychiatric illness. All gave informed consent, and the 

study was approved by the local ethics committee.  

The task consisted of two sessions of 150 trials each, separated by a short break. On each trial, 

subjects were presented with pictures of four different colored slot machines (visible on a screen 

reflected in a head coil mirror), and selected one using a button box with their right hand (see Fig. 

1a). Subjects had a maximum of 1.5 seconds in which to make their choice; if no choice was 

entered during that interval, a large red X was displayed for 4.2 seconds to signal an invalid missed 

trial (after which a new trial was triggered). Subjects usually responded well before the timeout, 

with a mean response time of ~430msecs Overall there were very few missed trials (typically 1 or 2 

per subject). On valid trials, the chosen slot machine was animated and, three seconds later, the 

number of points earned was displayed. These points were displayed for 1 second and then the 

screen was cleared. The trial sequence ended 6 seconds after trial onset, followed by a jittered 

intertrial interval using a discrete approximation of a Poisson distribution with a mean of 2 seconds, 

before the next trial was triggered. 

The payoff for choosing the ith slot machine on trial t was between 1 and 100 points, drawn from a 

Gaussian distribution (standard deviation σo = 4) around a mean µi,t and rounded to the nearest 

integer. At each timestep, the means diffused in a decaying Gaussian random walk, with µi,t+1 = λµi,t 

+ (1 - λ)θ + ν for each i. The decay parameter λ was 0.9836, the decay center θ was 50, and the 

diffusion noise ν was zero-mean Gaussian (standard deviation σd = 2.8). Each subject was exposed 

to one of three instantiations of this process; one is illustrated in Figure 1B. 



Subjects were instructed that they would be paid ‘according to how many points you have won in 

total over the experiment,’ and to expect average earnings of about 20 UK pounds. However, they 

were not advised of the actual exchange rate for points, nor of their cumulative point totals. At the 

completion of the task (due to behavioral protocol restrictions on differential treatment of subjects) 

each was paid 19 UK pounds. 

Kalman filter model 

The Kalman filter1 is the Bayesian mean-tracking rule for the diffusion process described above. 

Assume the subject believes the process is governed by parameters ˆoσ , ˆdσ , , and  

(corresponding to 

λ̂ θ̂

oσ , dσ , , and  above). Given, on trial t, a prior distribution over the true 

mean payoffs 

λ θ

µi,t as independent Gaussians, 2 ˆ ˆ( pre pre
i,t i,tN µ ,σ ) , then if option ct is chosen and payoff rt 

received, the posterior mean for that option is:  

ˆ ˆ
t tc ,t c ,t t tµ = µ +κ δpost pre  

with prediction error ˆ
t

pre
t t cδ = r µ− ,t  and learning rate (“gain”) 2 2 2ˆ ˆ ˆ/( )

t t

pre pre
t c ,t c ,t oκ = σ σ +σ . The posterior 

variance for the chosen option is  

2 2 post preˆ ˆ(1 )
t tc ,t t c ,tσ = κ σ−  

The posterior mean and variance for the unchosen options are unchanged by the observation. 

Taking into account the diffusion process, the prior distributions on the subsequent trial are given 

by 1
ˆ ˆ ˆˆ ˆ (1 )−pre post

i,t+ i,tµ = λµ + λ θ  and 2 2 2 2
1

ˆˆ ˆ ˆpre post
i,t+ i,t d= λ σ +σσ  for all i. The recursive process is initialized with 

prior distribution 2 
0 0ˆ ˆ( )pre pre

i, i,N µ ,σ . 

Note that the heart of this procedure is an error-driven learning rule of the same form as TD or other 

delta-rule methods — the difference is the additional tracking of uncertainties 2
,ˆ i tσ , which determine 



the trial-specific learning rates κt. In general, uncertainties decrease for sampled options and 

increase for unsampled ones. 

Together with this tracking rule, we examined three choice rules, each of which determined the 

probability Pi,t of choosing option i on trial t as a function of the estimated payoffs. The ε-greedy 

rule is:  

,
,

ˆ1 3 arg max( )
otherwise

pre
i t

i t
i

P
ε µ

ε
⎧ − =

= ⎨
⎩

 

with exploration parameter ε. (If there is a tie for the winning action, they are made equally 

probable.) The softmax rule is:  

ˆexp( )
ˆexp( )

i,t
i,t pre

j,t
j

βµ
P =

βµ∑
pre

 

with exploration parameter β. Finally, we tested a rule in which an exploration bonus2 of standard 

deviations was added to the expected mean payoff, and choices were softmax in this adjusted value:  

φ 

ˆ ˆexp( [ ])
ˆ ˆexp( [ ])

i,t i,t
i,t pre pre

j,t j,t
j

β µ +φσ
P =

β µ +φσ∑
pre pre

0

 

Note that this model nests uncertainty bonuses within a softmax scheme: it reduces to the simple 

softmax model for ϕ =  (as was nearly the case in our behavioral fits) and to classic deterministic 

uncertainty-bonus exploration as β approaches infinity with ϕ positive. Between these regimes, the 

model spans hybrids combining contributions of both approaches differentially according to the 

parameters. 

Behavioral analysis 



We evaluated the three models using Bayesian model comparison techniques3. We took the 

parameters ˆdσ , , , λ̂ θ̂ 0ˆ pre
i,µ , 0ˆ pre

i,σ ,  ε or β, and φ to be free (holding σo constant due to model 

degeneracy). For each model, we fit these to the subjects’ choice data by maximizing the likelihood 

of the observed choices  

,s tc ,t
s t

P∏∏  

compounded over subjects s and trials t. Here, cs,t denotes the choice made by subject s on trial t, 

and the underlying value estimates ˆ pre
i,tµ  and uncertainties ˆ pre

i,tσ  were computed using the actual 

sequence of choices and outcomes through trial t - 1. (Fewer than 1% of trials, in which a response 

was not entered, were omitted.)

A combination of nonlinear optimization algorithms (Matlab optimization toolbox) was used to 

optimize the parameter fits, together with a search of different starting locations. We report negative 

log likelihoods (smaller values indicate better fit), both pure and penalized for model complexity 

(Bayesian information criterion; BIC4). We also report a pseudo-r r - l ⁄r 

l r 

2 statistic5, defined as ( )

where and are, respectively, the log likelihoods of the data under the model and under purely 

random choices (
, , .25

s tc tP =  for all ).  t

The ε-greedy choice rule resists optimization since its likelihood is undifferentiable. We therefore 

optimized parameters in two steps, first using a differentiable approximation in which the “max” 

operation was replaced with a very sharp softmax, ˆ ˆ(1 4 ) exp( ) / exp( )pre pre
i,t t i,t t j,tj

P = β µ β µε ε+ − ⋅ ∑  

(with the softmax sharpness βt taken to be 100 divided by the L2 norm of the vector of mean-

adjusted value estimates, ˆ ˆpre pre
i,t j,t

j
µ µ−∑ , to keep the softmax sharp at the scale of the values). 

Locally optimal parameters for the approximate rule were then tuned for the exact rule using a non-



gradient search. The approximation was found to be tight (typically within 10 log likelihood 

points), suggesting that this is an effective way to optimize the original function. 

As is standard in similar behavioral analyses5-7 with a limited number of trials per subject, for each 

model, we fit the behavior of all subjects using a single instance of most of the model parameters 

( ˆdσ , , , λ̂ θ̂ 0ˆ pre
i,µ , 0ˆ pre

i,σ  and φ). However, to capture some effects of inter-subject variability, we fit 

the parameter controlling the “noisiness” of choices (β or ε) individually for each subject and 

model.  

To investigate whether our conclusions might be influenced by sharing of parameters between 

subjects, we also conducted an alternative analysis fitting all parameters individually for each 

subject. 

Imaging procedure 

The functional imaging was conducted using a 1.5 Tesla Siemens Sonata MRI scanner to acquire 

gradient echo T2* weighted echo-planar images (EPI) images with BOLD (blood oxygenation level 

dependent) contrast. We employed a special sequence designed to optimize functional sensitivity in 

OFC and medial temporal lobes8. This consisted of tilted acquistion in an oblique orientation at 30* 

to the AC-PC line,  as well as application of a  preparation pulse with a duration of 1 msec.  and 

amplitude of –2 mT/m in the slice selection direction. The sequence enabled 36 axial slices of 3 mm 

thickness and 3 mm in-plane resolution to be acquired with a repetition time (TR) of 3.24 seconds. 

Coverage was obtained from the base of the orbitofrontal cortex and medial temporal lobes to the 

superior border of the dorsal anterior cingulate cortex.  Subjects were placed in a light head restraint 

within the scanner to limit head movement during acquisition. Functional imaging data were 

acquired in two separate 385-volume runs.  A T1-weighted structural image was also acquired for 

each subject.  

Imaging analysis 



Image analysis was performed using SPM2 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, U.K.). To correct for subject motion, the images were realigned to 

the first volume, spatially normalized to a standard T2* template with a resampled voxel size of 

3mm3, and spatial smoothing was applied using a Gaussian kernel with a full width at half 

maximum (FWHM) of 8mm. Intensity normalization and high pass temporal filtering (using a filter 

width of 128 secs) were also applied to the data.  

For the statistical analysis, each trial was modeled as having 2 time points: the time of the decision 

(arbitrarily set to be midway between the time of presentation of the bandits and the time of the 

recorded key press indicating choice of a specific bandit - on average 210 msecs after trial onset), 

and the time of the presentation of the outcome (3 seconds after recorded key press). We 

constructed regressors containing trial-by-trial outputs from the softmax model: classification of 

choices as greedy or non, prediction errors δt  and choice probabilities 
, ,s tc tP .  For the prediction 

error regressor, we simulated a TD signal using an impulse for the prediction error δ at the time of 

outcome, and an additional impulse at the time of decision (of size 
,

ˆ ˆ
s t

pre pre
c ,t avg,tµ µ−  for an average-

obtained value ˆ pre
avg,tµ  tracked the same as the other means but regardless of subject choice).  An 

alternative analysis, in which the prediction error impulses at decision and outcome were modeled 

using separate regressors and then studied in conjunction, produced nearly identical results. The 

other regressors (greedy vs non greedy and choice probability) were modeled at the time of the 

decision alone. We also entered the number of points won on each trial as an additional parametric 

modulator set at the time of outcome. These regressors were then convolved with the canonical 

hemodynamic response function and entered into a regression analysis against each subject’s fMRI 

data using SPM. The 6 scan-to-scan motion parameters produced during realignment were included 

as additional regressors in the SPM analysis to account for residual effects of scan to scan motion.  

To enable inference at the group level, the regression fits of each computational signal from each 

individual subject were taken to allow second level, random effects group statistics to be computed.  



Results are reported in areas of interest at p<0.001 uncorrected. To show the full spatial extent of 

activations we also show effects significant at p<0.01 uncorrected. 

The structural T1 images were co-registered to the mean functional EPI images for each subject and 

normalized using the parameters derived from the EPI images. Anatomical localization was carried 

out by overlaying the t-maps on a normalized structural image averaged across subjects, and with 

reference to an anatomical atlas9. 

For the analysis and visualization of timecourse data from regions identified in the SPM analysis, 

raw signal timecourses were extracted from each region using the peak voxel from each individual 

subject from within a 10mm sphere centered on the group peak co-ordinate, after adjusting the data 

for the effects of motion (and mean correcting the signal). For alignment, these timecourses were 

upsampled to 10 Hz using a Fourier transform, averaged over trials and plotted. The upsampled 

OFC and medial PFC timecourses were modeled using a hemodynamic impulse at each outcome or 

decision time (respectively); least-squares response coefficients were grouped in evenly spaced bins 

and averaged over trials to produce the bar plots in Figure 2.



 

For each region showing differential activity between exploratory and exploitative trials, a multiple 

regression analysis was conducted to investigate whether the differential BOLD responses could be 

explained by any potentially confounding factors. The dependent variable was a per-trial estimate of 

the BOLD response (extracted by modeling the peak timecourses using impulses for each decision 

convolved with the canonical hemodynamic response, sampled at image acquisition times, and 

minimizing squared error); independent variables were the explore/exploit labeling and 10 other 

factors. These were the value, choice probability, and uncertainty (prior variance) accorded by the 

model to the chosen option (“val chosen”, “prob chosen”, “unc chosen” in Supplementary Table 

4); the modeled value and probability of the highest-valued option (“val max” and “prob max”); the 

reaction time; the obtained reward; a binary variable signaling whether the choice was the same as 

the previous one (“switch”); the length in trials of any preceding uninterrupted run on the chosen 

option (“runlength chosen”); and the fraction of time the chosen option had also been chosen in the 

recent past (using an exponentially windowed running average with decay constant 0.9 per trial; 

“propensity chosen”).  

 

Supplementary Discussion 

Behavioral analysis: Subject heterogeneity 

Our conclusions are based on analyses in which all subjects’ behavior was modeled as being 

produced by a single, shared, instance of most of the free parameters, with any heterogeneity 

captured through subject-specific fits of the parameters controlling choice noisiness (β or ε). We 

also investigated fully individualized fits with separate parameters for each subject. There were a 

number of indications that these fits were less reliable than the ones on which we focus: many 

parameters attained extreme values; the examination of estimated Hessians of the likelihood at the 



optima suggested parameters were more poorly identified; and some of the modeled signals 

correlated less strongly with fMRI measurements, suggesting the many additional parameters had 

been overfit to behavior. Nonetheless, the results support the same general conclusions. Notably, 

there was little evidence that uncertainty bonuses could account for the exploration that the subjects 

exhibited. 

To probe the effects of the uncertainty bonus over individuals and the population, we investigated 

these individual fits in a number of ways. First, an asymptotic approximation of the variance of a 

parameter estimate can be obtained from the inverse Hessian of the likelihood function at the 

optimum; according to this measure, the bonus coefficient φ was insignificantly different from zero 

(i.e., by less than two standard deviations) in thirteen of the fourteen subjects. Alternatively, the 

likelihood of choice data for models with and without the bonus, penalized for model complexity, 

may be compared for each subject individually; here, the bonus was modestly but significantly 

helpful for about half the subjects (7/14 according to BIC, and 8/14 according to the Aikake 

information criterion and the likelihood ratio test at P<.05). But, in fact, the best-fitting bonus 

coefficient was as often negative – i.e., discouraging exploration – as positive. (A negative 

coefficient was found in 8/14 subjects including 4 of the 8 for whom the bonus significantly 

improved the data likelihood.) This suggests that this model feature was generically capturing 

autocorrelation among the choices, but not specifically an exploratory tendency. Finally, since in 

the model, the uncertainty bonus is nested within a softmax choice rule, we compared the 

contribution of each strategy to producing exploration. We found that the majority of decisions 

classed as exploratory when the model was fit without the bonus (i.e., actions chosen despite not 

having the highest predicted value) were not explained by the inclusion of bonuses (i.e., the sum of 

the predicted value plus the bonus was still smaller for the chosen option than for some alternative, 

so softmax was still required to produce the decision). This was true for 89.9% of exploratory trials 

over all subjects (individuals ranged between 78.2% and 100%). Thus, the predominant mode of 

exploration even with bonuses included appeared to be softmax. In short, although including this 



model feature improved fit for some subjects, it does not appear to have captured the exploratory 

strategy that they were adopting. 

Behavioral analysis: Fit parameters 

Supplementary Table 2 lists the best fitting parameters for each of the three behavioral models. 

These appear plausibly identified and broadly similar between models (except for the large initial 

uncertainty, 2
0ˆ pre

i,σ , in the ε-greedy model, a feature that impacts only the first few trials). Parameters 

are similar to those actually used to generate the payoffs, except that subjects’ behavior is best 

explained by assuming that they overestimate the speed of diffusion in the payoffs, ˆdσ , an effect 

particularly apparent in the softmax fits. Since large values of this parameter induce high learning 

rates, this is an indication that subjects are more sensitive to the most recent experience with a 

bandit than they optimally should be. 

Imaging analysis: Multiple regression 

Compared with exploitation, exploratory choices tend to favor less valuable, lower probability, and 

more uncertain targets. We therefore subjected all of the regions showing differential activity during 

exploration and exploitation to a further, post-hoc multiple linear regression analysis 

(Supplementary Table 4), to investigate whether such potential confounds could account for the 

differences in activity. Additional explanatory factors in the regression included reaction time, 

actual reward received, stay versus switch (intended to control for processes such as attentional 

disengagement10, thought to involve parietal cortex), and two measures of the degree of recent 

preference for the chosen option (intended to control for the strength of habitual responding). None 

of these variables could explain the differential responding during exploratory trials in right 

frontopolar or bilateral IPS areas (which each still correlated with exploration at P<.001 

uncorrected). However, the original SPM analysis identified a number of additional areas as 

differentially active during exploration (Supplementary Table 5). As can be seen in 



Supplementary Table 4, with confounds taken into account, activity each of these areas was less 

strongly and significantly correlated with exploration than was activity in the frontopolar and IPS 

regions. None of these regions was significantly correlated with exploration at P<.001, and in some 

cases activity was better explained by several confounding factors. These correlations (notably right 

supplementary motor area with a measure of uncertainty) merit future investigation, since the 

present study concentrated its statistical power on the balance between exploration and exploitation. 

Another noteworthy trend from this analysis (though not reaching significance at the high threshold 

discussed here) was that frontopolar decision activity was additionally correlated (positively, 

P=.002) with the probability of the apparently optimal action – that is, the probability of 

exploitation. The highest net responses would therefore be seen when exploration is chosen most 

against the odds. This observation (and also the finding, discussed in the main article, of inverse 

correlation between activation in a dorsolateral PFC region and modeled choice probability) is in 

keeping with the idea that additional cognitive control is needed to enforce exploration when 

exploitation seems most favorable. 
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 ε-greedy softmax uncertainty 
-LL  4190.6 3972.1  3972.1  
pseudo-r2 0.27353 0.31141 0.31141  
# parameters  19  19  20  
BIC  4269.8 4051.3  4055.4  

 

Supplementary Table 1: Quality of behavioral fits to 4,161 choices from 14 subjects, for three 

models. -LL: Negative log likelihood. BIC: Bayesian information criterion.  



 

 ε-greedy softmax uncertainty  generative 
ε or β  0.121 ± 0.0499 0.112 ± 0.0547 0.112 ± 0.0547   
ϕ - - 7.61e-6   
λ̂  0.974 0.924 0.924 λ  0.9836 
θ̂  49.2 50.5 50.4 θ  50.0 
ˆ dσ  9.53 51.3 50.9 dσ  2.80 
ˆ oσ  (fixed) (4.00)  (4.00)  (4.00) oσ  4.00 
ˆ pre

i,0µ  87.1 85.7 85.7   
ˆ 2pre

i,0σ  3.36e+5 4.61 4.61   
 

Supplementary Table 2: Parameter fits to 4,161 choices from 14 subjects, for three models (ε-

greedy, softmax, and uncertainty bonus). Parameters ε and β shown as mean ± 1 SD, over 

individual fits to each subject; other parameters were yoked between subjects. For comparison, the 

parameters used to generate the payoffs are also shown. 



 

Prediction error   MNI co-ordinates   
  Side X Y Z Z-score 
Ventral striatum (nucleus accumbens) R 9 12 -9 3.35 
Dorsal striatum (caudate nucleus) R 9 0 18 3.19 

 

Supplementary Table 3: Co-ordinates of ventral and dorsal striatum activity showing significant 

correlation with the prediction error signal from the computational model. 



 

  left fpole left ips right ips left pm right sma cereb1 cereb2 
explore 0.49 0.37 0.39 0.33 0.31 0.30 0.29 

  (8.6E-5) (1.4E-4) (2.1E-4) (0.003) (0.015) (0.005) (0.013) 
val chosen 1.49 0.81 1.19 1.30 3.02 1.43 2.80 

x 0.01 (0.088) (0.231) (0.104) (0.088) (0.001) (0.052) (0.001) 
prob chosen -1.07 -0.47 -0.60 -0.78 -1.22 -0.49 -1.23 

  (0.007) (0.120) (0.071) (0.023) (0.002) (0.135) (0.001) 
unc chosen -0.13 0.09 0.10 0.15 0.45 0.08 0.24 

  (0.231) (0.259) (0.247) (0.103) (4.5E-5) (0.365) (0.015) 
val max -1.79 -1.43 -1.81 -1.83 -1.80 -1.04 -2.44 

x 0.01 (0.020) (0.016) (0.005) (0.007) (0.022) (0.110) (0.001) 
prob max 1.08 0.51 0.58 0.66 0.49 0.23 1.12 

  (0.002) (0.059) (0.048) (0.030) (0.173) (0.431) (0.001) 
reward 0.05 0.07 0.37 0.42 0.10 0.10 0.28 

x 0.1 (0.890) (0.803) (0.238) (0.196) (0.793) (0.739) (0.417) 
runlength chosen 0.08 0.02 0.06 0.04 -0.01 0.09 -0.02 

x 0.1 (0.178) (0.668) (0.250) (0.420) (0.912) (0.072) (0.752) 
propensity chosen -0.16 0.12 0.22 0.26 0.87 -0.03 0.10 

  (0.508) (0.496) (0.270) (0.197) (3.1E-4) (0.884) (0.650) 
switch 0.09 -0.03 0.09 0.07 0.16 0.22 0.01 

  (0.433) (0.759) (0.322) (0.471) (0.138) (0.016) (0.923) 
rt -0.09 0.25 -0.05 0.30 0.58 0.13 0.04 

  (0.604) (0.064) (0.748) (0.052) (0.001) (0.371) (0.791) 
 

Supplementary Table 4: Coefficients from multiple linear regression for 11 explanatory variables 

with significance (against the null hypothesis that the coefficient equals zero) in parentheses. The 

dependent variable is the per-trial BOLD signal change estimate at the time of decision. 

Coefficients significant at P < .001 are highlighted. 



 

Explore > Exploit    MNI co-ordinates   
  Side X Y Z Z-score 
Lateral premotor cortex L -57 3 36 4.92 
Supplementary Motor Area R 3 9 51 4.36 
Cerebellum R 21 -54 -30 5.42 
  R 18 -57 -51 4.28 

 

Supplementary Table 5: Additional regions showing significantly greater activity on exploratory 

compared to exploitative trials. We report only those areas surviving whole brain correction with 

false discovery rate (FDR) at p<0.05. None of these activations survived the additional multiple 

regression test against confounds described in Supplementary Methods. 

 


