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This article proposes a unified framework for understanding creative problem solving, namely, the
explicit–implicit interaction theory. This new theory of creative problem solving constitutes an attempt
at providing a more unified explanation of relevant phenomena (in part by reinterpreting/integrating
various fragmentary existing theories of incubation and insight). The explicit–implicit interaction theory
relies mainly on 5 basic principles, namely, (a) the coexistence of and the difference between explicit and
implicit knowledge, (b) the simultaneous involvement of implicit and explicit processes in most tasks, (c)
the redundant representation of explicit and implicit knowledge, (d) the integration of the results of
explicit and implicit processing, and (e) the iterative (and possibly bidirectional) processing. A compu-
tational implementation of the theory is developed based on the CLARION cognitive architecture and
applied to the simulation of relevant human data. This work represents an initial step in the development
of process-based theories of creativity encompassing incubation, insight, and various other related
phenomena.
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Many psychological theories of problem solving and reasoning
have highlighted a role for implicit cognitive processes (e.g.,
Evans, 2006; Reber, 1989; Sun, 1994; Sun & Zhang 2004). For
instance, implicit processes are often thought to generate hypoth-
eses that are later explicitly tested (Evans, 2006). Also, similarity
has been shown to affect reasoning through processes that are
mostly implicit (Sun, 1994; Sun & Zhang, 2006). Yet most theo-
ries of problem solving have focused on explicit processes that
gradually bring the problem solver closer to the solution in a
deliberative way (Dorfman, Shames, & Kihlstrom, 1996). How-
ever, when an ill-defined or complex problem has to be solved
(e.g., when the initial state or the goal state can lead to many
different interpretations or when the solution paths are highly
complex), the solution is often found by sudden insight (Pols,
2002; Reber, 1989; Schooler & Melcher, 1995; Schooler, Ohlsson,
& Brooks, 1993), and regular problem-solving theories are for the
most part unable to account for this apparent absence of deliber-
ative strategy (Bowden, Jung-Beeman, Fleck, & Kounios, 2005).

A complementary line of research on creative problem solving
has tried to tackle complex problem solving for many years.
However, theories of creative problem solving tend to be fragmen-
tary and usually concentrate only on a subset of phenomena, such
as focusing only on incubation (i.e., a period away from deliber-
ative work on the problem; for a review, see S. M. Smith & Dodds,
1999) or insight (i.e., the sudden appearance of a solution; for a
review, see Pols, 2002). The lack of detailed computational models
has resulted in their limited impact on the field of problem solving
(Duch, 2006).

In the present work, a general theory, the explicit–implicit
interaction (EII) theory, is proposed. The EII theory integrates
Wallas’s (1926) high-level stage decomposition of creative prob-
lem solving with more detailed, process-based theories of incuba-
tion and insight (as detailed and implemented computationally
later). Furthermore, the present article shows how EII can be used
to provide a natural, intuitively appealing reinterpretation of sev-
eral existing theories of incubation (e.g., unconscious work theory,
conscious work theory, recovery from fatigue, forgetting of inap-
propriate mental sets, remote association, opportunistic assimila-
tion; as reviewed in S. M. Smith & Dodds, 1999), several existing
theories of insight (e.g., constraint theory, fixation theory, asso-
ciationistic theory, evolutionary theory; as reviewed in Mayer,
1995; Ohlsson, 1992; Pols, 2002; Schilling, 2005; Schooler &
Melcher, 1995; Simonton, 1995; S. M. Smith, 1995), and several
existing theories of creativity (e.g., Geneplore, evolutionary theory
of creativity; as reviewed in Campbell, 1960; Finke, Ward, &
Smith, 1992). While the EII theory cannot account for all instances
of creative problem solving, it is more integrative and more com-
plete than the above-mentioned theories.

Another important characteristic of the EII theory is that the
processes are specified with sufficient precision to allow their
implementations into a quantitative, process-based, computational
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model using the CLARION cognitive architecture (Sun, 2002;
Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005). In
the present work, CLARION is used to simulate, capture, and
explain human data related to incubation and insight in tasks such
as lexical decision (Yaniv & Meyer, 1987), free recall (S. M.
Smith & Vela, 1991), and problem solving (Durso, Rea, & Dayton,
1994; Schooler et al., 1993). CLARION is also applied to concep-
tually capturing and explaining several computational models of
creativity from artificial intelligence (see, e.g., Boden, 2004; Hof-
stadter & Mitchell, 1994; Langley & Jones, 1988; Rowe & Par-
tridge, 1993; Schank & Cleary, 1995).

The remainder of this article is organized as follow. First,
Wallas’s (1926) ubiquitous stage decomposition is introduced.
Second, the existence of the two stages on which this article
focuses, namely, incubation and insight, is justified through re-
viewing relevant experimental psychology literature. This discus-
sion is followed by a review of the existing theories of incubation
and insight, which serves to motivate the EII theory of creative
problem solving. The new theory is then explained and the previ-
ously reviewed theories are reinterpreted in the new framework.
This is followed by the implementation of EII using the CLARION
cognitive architecture. Four tasks previously used to experimen-
tally justify incubation and insight are then simulated with the
proposed computational model. The article concludes by discuss-
ing the implications of the EII theory and the CLARION model for
psychological research on creativity as well as for computational
models of creativity in artificial intelligence.

Creative Problem Solving: Four Stages

The role of creativity in problem solving has been acknowl-
edged since Wallas’s (1926) seminal work. According to Wallas,
humans go through four different stages when trying to solve a
problem: preparation, incubation, illumination (i.e., insight), and
verification. The first stage, preparation, refers to an initial period
of search in many directions using (essentially) logic and reason-
ing. If a solution is found at this stage, the remaining stages are not
needed. However, if the problem is ill defined and/or complex, the
preparation stage is unlikely to generate a satisfactory solution.
When an impasse is reached, the problem solver stops attempting
to solve the problem, which marks the beginning of the incubation
phase. Incubation can last from a few minutes to many years,
during which the attention of the problem solver is not devoted to
the problem. The incubation period has been empirically shown to
increase the probability of eventually finding the correct solution
(e.g., Dodds, Ward, & Smith, in press; S. M. Smith & Dodds,
1999). The following stage, illumination, is the spontaneous man-
ifestation of the problem and its solution in conscious thought.1

The fourth stage, verification, is used to ascertain the correctness
of the insight solution. Verification is similar to preparation be-
cause it also involves the use of deliberative thinking processes
(with logic and reasoning). If the verification stage invalidates the
solution, the problem solver usually goes back to the first or
second stage, and this process is repeated.

Even though the stage decomposition theory is general and not
easily testable, it has been used to guide much of Gestalt psychol-
ogists’ early research program on problem solving (e.g., Duncker,
1945; Kohler, 1925; Maier, 1931). According to Gestalt psychol-
ogy, ill-defined problems are akin to perceptual illusions: They are

problems that can be understood (perceived) in a number of
different ways, some of which allow for an easier resolution (Pols,
2002). Hence, the preparation stage would be made up of unsuc-
cessful efforts on an inadequate problem representation, incubation
would be the search for a better problem representation, and
insight would mark the discovery of a problem representation
useful for solving the problem. The verification phase would verify
that the new problem representation is equivalent to the initial
problem representation (Duncker, 1945). This Gestalt theory of
problem solving provides a sketchy high-level description of cre-
ative problem solving, but no detailed psychological mechanism
(especially process-based or computational mechanism) has been
proposed.

More recent research has turned to finding evidence supporting
the existence of the individual stages of creative problem solving.
Because the preparation and verification stages are thought to
involve mostly regular reasoning processes (Wallas, 1926), not
much effort has been devoted to these two stages (relevant results
can be borrowed from the existing literature; see, e.g., Johnson-
Laird, 1999; Simon, 1966; Sun, 1994; Zadeh, 1988). In contrast,
incubation and insight have received much attention; some of the
most relevant results on incubation and insight are reviewed be-
low.

Incubation

A recent review of experimental research on incubation showed
that most experiments have found significant effects of incubation
(Dodds et al., in press). Those experiments investigated the effects
of incubation length, preparatory activity, clue, distracting activity,
expertise, and gender on participants’ performance. The review
suggested that performance is positively related to incubation
length and that preparatory activities can increase the effect of
incubation. Presenting a clue during the incubation period also has
a strong effect. If the clue is useful, the performance is improved;
if the clue is misleading, the performance is decreased. Moreover,
the effect of clues is stronger when the participants are explicitly
instructed to look for clues (Dodds, Smith, & Ward, 2002). (The
other three factors, distracting activity, expertise, and gender, have
not been studied enough to yield a stable pattern of results, but see
Hélie, Sun, & Xiong, 2008, for a discussion of the effect of
distracting activity.)

In addition to being correlated to such factors (Dodds et al., in
press), incubation has been linked to well-known cognitive effects
such as reminiscence (i.e., the number of new words recalled in a
second consecutive free-recall test; S. M. Smith & Vela, 1991) and
priming (Yaniv & Meyer, 1987). For example, S. M. Smith and
Vela (1991) showed that reminiscence in a free-recall task was
increased by longer intertest interval (i.e., the length of incuba-
tion). Furthermore, in relation to priming, Yaniv and Meyer (1987)
showed that participants who rated their feeling of knowing (FOK)
as high in a rare-word association task (which is suggestive of
more efficient incubation) were primed for a related solution in a

1 This moment is often referred to as the “Aha!” experience or the
“Eureka!” (of Archimedes). In modern literature, illumination has been
called insight (Bowden et al., 2005; Pols, 2002; Schooler & Melcher,
1995).
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subsequent lexical decision task. In contrast, other participants
who rated their FOK as either medium or low (which is suggestive
of less efficient incubation) were not primed in the subsequent
lexical decision task. Overall, the review by Dodds et al. (in press)
and the results presented above (S. M. Smith & Vela, 1991; Yaniv
& Meyer, 1987) support the existence of incubation in problem
solving (and in other psychological tasks).

Insight (Illumination)

In a recent review of the different definitions used in psychology
to characterize insight, Pols (2002) found three main elements.
First, insight does not constitute just another step forward in
solving a problem: It is a transition that has a major impact on the
problem solver’s conception of the problem. Second, insight is
sudden: It usually constitutes a quick transition from a state of not
knowing to a state of knowing. Third, the new understanding is
more appropriate: Even when insight does not directly point to the
solution, it leads to grasping essential features of the problem that
were not considered previously.

In experimental psychology, insight is often elicited using in-
sight problems (e.g., Bowden et al., 2005; Dorfman et al., 1996;
Isaak & Just, 1996; Mayer, 1995; Pols, 2002). Such problems are
diverse and characterized by the absence of direct, incremental
algorithms allowing their solutions. In many cases, they are se-
lected because they have been shown to produce insight solutions
in previous studies (Bowden et al., 2005). Empirically, insight is
identified by a strong discontinuity in the FOK, the feeling of
warmth, or the progress made in a verbal report (Pols, 2002). Some
research has even shown a sudden increase of heart rate just before
insight is reached (whereas regular problem solving is accompa-
nied by a steady increase in heart rate; see Jausovec & Bakracevic,
1995). Overall, the existing data (e.g., Duncker, 1945; Durso et al.,
1994; Jausovec & Bakracevic, 1995; Maier, 1931; Ohlsson, 1992)
and the observed phenomena (Duncker, 1945; Durso et al., 1994;
Kohler, 1925; Maier, 1931; Schooler et al., 1993; Schooler &
Melcher, 1995) support the existence of insight in creative problem
solving (see, e.g., Mayer, 1995; Ohlsson, in press; Pols, 2002, for
further reviews).

Existing Theories

Many process theories have been proposed to explain incubation
and insight (as reviewed below). However, it should be noted that
each of these theories can be used to explain only certain limited
aspects of the data in the literature (S. M. Smith & Dodds, 1999).
Furthermore, most existing theories do not attempt to explain
insight and incubation simultaneously. Below, some of the better
known theories of incubation and insight are reviewed to provide
the necessary background for the EII theory.2

Review of existing theories of incubation.
Unconscious work. The most natural process theory of incu-

bation, stemming directly from Wallas’s (1926) intuition, is known
as the unconscious work theory (Dorfman et al., 1996; S. M. Smith
& Dodds, 1999). According to this theory, the problem solver
continues to work unconsciously on the problem after abandoning
conscious work. A creative solution to a problem is developed
unconsciously and reaches consciousness as a whole. The uncon-
scious work theory has the advantage of being consistent with

most anecdotes in the history of science. However, the presence of
unconscious work is difficult to assess experimentally (S. M.
Smith & Dodds, 1999).

Conscious work. The conscious work theory was proposed in
light of the difficulties with the experimental assessment of un-
conscious processes (S. M. Smith & Dodds, 1999). According to
the conscious work theory, a creative solution is found by working
intermittently on the problem while attending to mundane activi-
ties (e.g., taking a shower, driving, etc.). Because attention switch-
ing from the mundane activity to the incubated problem is very
fast, the short episodes of work on the incubated problem are
forgotten, and only the final step is remembered.

Recovery from fatigue. The preparation phase in real-world
situations can be very long and tiring. The problem solver might be
cognitively drained and therefore unable to solve the problem
(S. M. Smith & Dodds, 1999). According to this theory, the stage
of incubation is a cognitive respite period, which allows rejuve-
nation of the problem-solving skills.

Forgetting of inappropriate mental sets. False assumptions
are sometimes made during the preparation phase. These false
assumptions erroneously constrain the possible solution space and
prevent the solver from producing certain solutions (S. M. Smith &
Dodds, 1999); the false assumptions must be forgotten to allow the
problem solver to be creative (and access productive solutions).
The incubation period serves this purpose.

Remote association. Solutions to already-solved problems are
often stored in long-term memory. When a new problem is en-
countered, the (previously stored) solutions to similar problems are
automatically retrieved. However, these solutions might be inap-
propriate and block the correct solution from being discovered.
Less likely solutions are discovered only when the most likely
solutions have all been investigated. The incubation phase is thus
used to eliminate stereotypical solutions.

Opportunistic assimilation. Unsolved problems are often en-
coded in long-term memory. As long as the problem remains
unsolved, the resulting memory structure is primed, and environ-
mental clues that may be useful in solving the problem can easily
activate the appropriate structure (S. M. Smith & Dodds, 1999).
Incubation is the period in which environmental clues are assim-
ilated. Such incubation makes the problem solver sensitive to
details and hints that would have gone unnoticed without the
priming from the unsolved problem in long-term memory (Lan-
gley & Jones, 1988).

Review of existing theories of insight.
Constraint theory. The first theory assumes that insight prob-

lems involve the satisfaction of a large number of constraints
(Mayer, 1995). Limits related to cognitive resources make it dif-
ficult to simultaneously satisfy a large set of constraints (Simon,
1972), which explains the intense experience associated with in-
sight. This constraint theory of insight has been used mainly to
describe the problem-solving process via schema completion (e.g.,
Schank & Cleary, 1995). In such a case, the problem solver

2 While there have been other theories proposed over the years, they
have had more limited impact compared with the theories reviewed here
(e.g., they were not included in the Encyclopedia of Creativity; see S. M.
Smith & Dodds, 1999). Hence, we have chosen to limit the discussion to
these high-impact theories.
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mentally constructs a structure that includes the initial condition
(problem) and the goal state (solution) and fills in the gap between
the initial condition and the goal state that may exist.

Fixation theory. Although the constraint theory has been use-
ful in explaining historical anecdotes and verbal reports of problem
solving (Mayer, 1995), it is limited to cases where only the path
between the initial state and the solution is missing. Unfortunately,
this is not always the case. For example, the solution state is often
unknown in advance. As such, the fixation theory (Mayer, 1995;
Ohlsson, 1992, in press; Pols, 2002; Schilling, 2005; Schooler &
Melcher, 1995; S. M. Smith, 1995) also assumes that insight
problems involve the satisfaction of constraints, but it does not
assume that all the constraints are stated in the initial problem:
Problem solvers sometimes wrongly assume constraints that are
not part of the problem, which limits the search process to a
portion of the solution space (Isaak & Just, 1996). According to
this theory, insight is experienced when these unwarranted con-
straints are relaxed and a new portion of the solution space be-
comes available for exploration. The rejection of these constraints
is usually achieved by restructuring the problem (S. M. Smith,
1995).

Associationistic theory. In the preceding theories, insight has
been interpreted as successfully satisfying a set of constraints (so
as to break an impasse). However, not all theories assume that an
impasse has to be reached or that constraints must be satisfied. The
associationistic theory assumes that knowledge is encoded using a
knowledge graph (Pols, 2002; Schilling, 2005). Accordingly, prob-
lems are solved by retrieving the correct association (path) using
parallel search processes. Insight is nothing special (Mayer, 1995;
Schooler & Melcher, 1995): The only difference between insight
and noninsight solutions is the strength of the associations. Insight
is experienced when an unlikely association solving the problem is
retrieved.

Evolutionary theory. The evolutionary theory of insight
(Campbell, 1960; Pols, 2002; Schilling, 2005; Simonton, 1995) is
based on the three principles of Darwin’s theory of evolution: (a)
blind variation/generation of solutions, (b) evaluation/selection of
a solution, and (c) retention of the selected solution (Simonton,
1995; see also Hadamard, 1954). According to the evolutionary
theory of insight, knowledge is represented by nodes in a graph,
and associations (links) are formed using an evolutionary selection
principle. Solution generation (i.e., the formation of associations)
and selection are performed unconsciously, and only the selected
solution (association) reaches consciousness. If the solution ade-
quately solves the problem, insight is experienced.

EII: An Integrative Theory of Creative Problem
Solving

The EII theory, in part, attempts to integrate and thus unify (to
some extent) existing theories of creative problem solving in two
senses. First, most theories of creative problem solving focus on
either a high-level stage decomposition (e.g., Wallas, 1926) or on
a process explanation of only one of the stages (see the previous
subsections). None of the above-mentioned theories provides a
stage decomposition along with a process explanation of more than
one stage (Lubart, 2001). Second, the process theories of incuba-
tion (e.g., S. M. Smith & Dodds, 1999) and insight (e.g., Mayer,
1995; Ohlsson, 1992, in press; Pols, 2002) are usually incomplete

and often mutually incompatible. EII attempts to integrate the
existing theories to make them more complete so as to provide a
detailed description of the processes involved in key stages of
creative problem solving. EII starts from Wallas’s (1926) stage
decomposition of creative problem solving and provides a detailed
process-based explanation sufficient for a coherent computational
implementation. (This last point is important because most of the
aforementioned process theories are not detailed enough to be
implemented as computational models.)

The basic principles underlying the EII theory are summarized
in Table 1. As can be seen, EII is not just an integration/
implementation of previously existing vague theories; it is a new
theory, which focuses on the importance of implicit processing and
knowledge integration in problem solving (see Sun et al., 2005). In
the following subsection, the principles summarized in Table 1 are
presented in more detail. This description is followed by theoret-
ical and empirical justifications of the principles. This section ends
with a discussion of EII’s implications for psychological research
on creative problem solving (i.e., explanation and integration of
existing theories).

Basic Principles of the EII Theory

Principle 1: The coexistence of and the difference between
explicit and implicit knowledge. The EII theory assumes the
existence of two different types of knowledge, namely, explicit
and implicit (Dienes & Berry, 1997; Dienes & Perner, 1999),
residing in two separate modules (Sun, 2002). Explicit knowledge
is easier to access and verbalize, and said to be often symbolic,
crisper, and more flexible (Sun et al., 2001, 2005). However, using
explicit knowledge requires more extensive attentional resources
(Curran & Keele, 1993; Sun et al., 2005). In contrast, implicit
knowledge is relatively inaccessible, harder to verbalize, often
subsymbolic, and often more specific, more vague, and noisier
(Sun, 1994, 2002). However, using implicit knowledge does not
tap much attentional resource. As such, explicit knowledge and
implicit knowledge are processed differently. According to the EII
theory, explicit processes perform some form of rule-based rea-
soning (in a very generalized sense; E. E. Smith, Langston, &
Nisbett, 1992; Sun, 1994) and represent relatively crisp and exact
processing (often involving hard constraints; Sun et al., 2001),

Table 1
Principles of the Explicit–Implicit Interaction Theory

Basic principles
1. The coexistence of and the difference between explicit and implicit

knowledge.
2. The simultaneous involvement of implicit and explicit processes in

most tasks.
3. The redundant representation of explicit and implicit knowledge.
4. The integration of the results of explicit and implicit processing.
5. The iterative (and possibly bidirectional) processing.

Auxiliary principles
1. The existence of a (rudimentary) metacognitive monitoring process.
2. The existence of subjective thresholds.
3. The existence of a negative relation between confidence and

response time.
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while implicit processing is associative and often represents soft-
constraint satisfaction (Evans, 2008; Sloman, 1996; Sun, 1994).

Principle 2: The simultaneous involvement of implicit and
explicit processes in most tasks. Explicit and implicit processes
are involved simultaneously in most tasks under most circum-
stances (E. R. Smith & DeCoster, 2000; Sun, 2002). This can be
justified by the different representations and processing used to
describe the two types of knowledge. As such, each type of process
can end up with similar or conflictual conclusions that contribute
to the overall output (Evans, 2007; see also Principle 4 below).

Principle 3: The redundant representation of explicit and
implicit knowledge. According to the EII theory, explicit
knowledge and implicit knowledge are often redundant, that is,
they frequently amount to redescriptions of one another in differ-
ent representational forms. For example, knowledge that is initially
implicit is often later recoded to form explicit knowledge (through
bottom-up learning; Sun et al., 2001, 2005). Likewise, knowledge
that is initially learned explicitly (e.g., through verbal instructions)
is often later assimilated and recoded into an implicit form, usually
after extensive practice (top-down assimilation: Sun & Zhang,
2004).3 There may also be other ways redundancy is created, for
example, through simultaneous learning of implicit and explicit
knowledge. Redundancy often leads to interaction (as described in
Principle 4).

Principle 4: The integration of the results of explicit and
implicit processing. Although explicit knowledge and implicit
knowledge are often redescriptions of one another, they involve
different forms of representation and processing, which may pro-
duce similar or different conclusions (Sun & Peterson, 1998); the
integration of these conclusions may be necessary, which may lead
to synergy, that is, overall better performance.

Principle 5: The iterative (and possibly bidirectional) pro-
cessing. Processing is often iterative and potentially bidirectional
according to the EII theory. If the integrated outcome of explicit
and implicit processes does not yield a definitive result (i.e., a
result in which one is highly confident) and if there is no time
constraint, another round of processing may occur, which may
often use the integrated outcome as a new input. Reversing the
direction of reasoning may sometimes carry out this process (e.g.,
abductive reasoning; Johnson & Krems, 2001; Pearl, 2000). Al-
ternating between forward and backward processing has been
argued to happen also in everyday human reasoning (Rips, 1994).

Auxiliary principles. In addition to the five principles pre-
sented so far, three auxiliary principles should be mentioned.
These principles are less important because they are needed to
account for the data, but alternative principles may be equally
viable. Therefore they are not central to the fundamental theoret-
ical framework of the EII theory. First, Principle 5 implies that a
definitive result needs to be achieved to terminate the iterative
process. This stopping criterion assumes a primitive form of meta-
cognitive monitoring that can more or less accurately measure the
probability of finding a solution (Bowers, Regehr, Balthazard, &
Parker, 1990). In EII, this metacognitive measure is termed the
internal confidence level (ICL). Second, there must be a threshold
that defines what is meant by definitive result. This threshold can
vary as a function of task demands, and there might even be
several thresholds for different levels of confidence (Bowers et al.,
1990; Ohlsson, in press). Lastly, a negative relationship between

the ICL and the response time is assumed (as in, e.g., J. R.
Anderson, 1991; Costermans, Lories, & Ansay, 1992).

Justification of the Principles

Principle 1: The coexistence of and the difference between
explicit and implicit knowledge. There have been disagree-
ments concerning what experimentally constitutes conscious ac-
cessibility (Dienes & Berry, 1997). It is also difficult to distinguish
between explicit knowledge that is used when a task is being
performed and explicit knowledge that is retroactively attributed to
task performance (i.e., when verbal reports are given). Despite
such difficulties, it is generally agreed that at least some part of
performance is not consciously accessible under normal circum-
stances. Reber (1989) pointed out that “although it is misleading to
argue that implicitly acquired knowledge is completely uncon-
scious, it is not misleading to argue that implicitly acquired epis-
temic contents of mind are always richer and more sophisticated
than what can be explicated” (p. 229). Voluminous experimental
data testifying to this distinction can be found in Berry and
Broadbent (1988); Cleeremans, Destrebecqz, and Boyer (1998);
Dienes and Berry (1997); Karmiloff-Smith (1992); Mathews et al.
(1989); Reber (1989); Seger (1994); Stanley, Mathews, Buss, and
Kotler-Cope (1989); and Sun et al. (2001, 2005).

In general, explicit processing can be qualified as rule based in
some way, whereas implicit processing is mostly associative (as
argued by, e.g., Sloman, 1996; Sun, 1994). Explicit processing can
involve the manipulation of symbols through the application of
various explicit reasoning processes, for example, logical reason-
ing (Rips, 1994) and explicit hypothesis testing (Evans, 2002,
2006). The abstract nature of symbol manipulation allows for the
application of knowledge in different but categorically similar
situations (i.e., systematicity; Fodor & Pylyshyn, 1988). In con-
trast, implicit processing involves mostly instantiated knowledge
that is holistically associated (Sun, 1994; Sun et al., 2001, 2005).
Hence, implicit processing is often more situation specific and
provides approximate matches in new situations (Sun, 1994),
which limits the validity of its results. (Empirical evidence in
support of these points can be found in the reviews cited above and
thus is not detailed here.)

The above differences between explicit and implicit processing
have important implications for the types of constraints that can be
handled with each type of processing. Because explicit knowledge
is often thought of as rule based, explicit processing can be viewed
as an algorithm that satisfies hard constraints (as argued by, e.g.,
Sloman, 1996; Sun, 1994). For example, the proof of a theorem is
done by using the rules and the axioms of mathematics (i.e., hard
constraints), which must be completely satisfied. Such a task
necessarily requires the use of explicit processes (along with
implicit processes possibly). In contrast, inferring that robins and
blue jays are similar can be done by using soft constraints (e.g., a
similarity metric, as argued by, e.g., Sun, 1994). This is also in line
with Dijksterhuis, Bos, Nordgren, and van Baaren (2006), who
showed that an important reason for why unconscious thinkers

3 This phenomenon is also referred to as automaticity (Hélie & Ashby,
2009; Hélie, Waldschmidt, & Ashby, 2010; Logan, 1988, 1992) or proce-
duralization (J. R. Anderson & Lebiere, 1998; Sun et al., 2001).
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often made superior decisions had to do with the way decision
makers weighed the relative importance of various soft constraints.

The last distinction between explicit and implicit processing,
attentional difference, can be demonstrated, in particular, through
a serial reaction time task involving a dual-task phase that cancels
the beneficial effect of explicit knowledge while leaving implicit
processing (mostly) untouched (Curran & Keele, 1993). Similar
effects have been found in artificial grammar learning tasks, dy-
namic control tasks (for reviews, see Cleeremans et al., 1998; Sun
et al., 2005), and perceptual categorization (Waldron & Ashby,
2001).

Principle 2: The simultaneous involvement of implicit and
explicit processes in most tasks. One of the ways to show the
simultaneous nature of explicit and implicit processing is to create
a conflict situation (Evans, 2007). Processing hard (explicit) and
soft (implicit) constraints simultaneously can result in different
inferences, which can lead to a conflict (Evans, 2007; E. R. Smith
& DeCoster, 2000). For instance, the similarity between the stimuli
(implicit processing) has been shown to have a strong effect on
rule-based categorization (explicit processing), which can lead to a
conflict that suggests simultaneous implicit and explicit processing
(Allen & Brooks, 1991; but see Lacroix, Giguère, & Larochelle,
2005). Similar results have been found in a syllogistic reasoning
task (Evans, 2007).

Yet another line of evidence comes from research on skill
acquisition. For instance, it was argued in Sun et al. (2005) that it
is not necessary to select upfront explicit or implicit processes to
tackle a particular problem. Most tasks are processed simulta-
neously explicitly and implicitly, and the task demands (e.g.,
complexity, structure, prior instructions, etc.) can make explicit or
implicit processes more efficient. Hence, although performance
might seem to be the result of (mostly) explicit or implicit pro-
cessing by an external observer, both types of process are likely
involved, and the observable (i.e., measurable) behavior results
mostly from the more efficient process in a particular task setting.
(For a detailed argument and review, see Sun et al., 2005.)

Principle 3: The redundant representation of explicit and
implicit knowledge. Redundancy is very important in providing
fault tolerance in cognitive systems (Russell & Norvig, 1995; von
Newmann, 1956). For example, the brain is composed of millions
of neurons that are known to be individually very noisy (Ma, Beck,
Latham, & Pouget, 2006). Yet psychological processes are often
robust (e.g., see Sun, 1994). Robustness can be achieved through
redundancy.

A natural way of creating redundancy is to redescribe one kind
of knowledge into the other. Early memory experiments in the
context of the depth-of-processing hypothesis showed this strategy
to be efficient for later recall (Craik & Tulving, 1975). Redescrip-
tion of implicit knowledge into explicit knowledge is termed
bottom-up learning (see, e.g., Sun et al., 2001), while the rede-
scription of explicit knowledge into implicit knowledge is termed
top-down assimilation (Sun & Zhang, 2004). Many psychological
data have suggested the presence of bottom-up learning and top-
down assimilation (as argued in Sun et al., 2005). Some of them
are reviewed below.

Sun et al. (2001) proposed the idea of bottom-up learning and
gathered much empirical evidence for it. In many experiments, the
participants’ ability to verbalize was independent of their perfor-
mance (Berry & Broadbent, 1988). Furthermore, performance

typically improved earlier than explicit knowledge that could be
verbalized by participants (Stanley et al., 1989). For instance, in
dynamic control tasks, although the performance of participants
quickly rose to a high level, their verbal knowledge improved far
slower: Participants could not provide usable verbal knowledge
until near the end of their training (e.g., as shown by Stanley et al.,
1989; Sun et al., 2005). This phenomenon has also been demon-
strated by Reber and Lewis (1977) in artificial grammar learning.
A more recent study of this phenomenon (Sun et al., 2001) used a
more complex minefield navigation task. In all of these tasks, it
appeared easier to acquire implicit skills than explicit knowledge
(hence the delay in the development of explicit knowledge). In
addition, the delay indicates that implicit learning may trigger
explicit learning, and the process may be described as delayed
explication of implicit knowledge (Karmiloff-Smith, 1992). Ex-
plicit knowledge is in a way extracted from implicit skills. To-
gether, these data suggest the existence of bottom-up learning.

Top-down assimilation may be demonstrated through data on
automaticity (Hélie et al., 2010; Logan, 1988, 1992). For instance,
explicit processing (letter counting) is abandoned in favor of an
implicit strategy (memory retrieval) in alphabetic arithmetic tasks
(Logan, 1988). This form of automaticity is possible only once the
explicit knowledge has been assimilated into implicit knowledge.
Similar results can also be found in a dot-counting task (Logan,
1992), several lexical decision tasks (Logan, 1988), categorization
(Hélie et al., 2010), and proceduralization experiments (e.g., J. R.
Anderson & Lebiere, 1998; Sun et al., 2001).

Redundancy may also be created when simultaneous implicit
learning and explicit learning are taking place. There is evidence
that implicit and explicit knowledge may develop independently
under some circumstances. Willingham, Nissen, and Bullemer
(1989) reported data that were consistent with the parallel devel-
opment of implicit and explicit knowledge. By using two different
measures for assessing the two types of knowledge, they compared
the time course of implicit and explicit learning. It was shown that
implicit knowledge might be acquired in the absence of explicit
knowledge and vice versa. The data ruled out the possibility that
one type of knowledge was always preceded by the other. Rabi-
nowitz and Goldberg (1995) similarly demonstrated parallel de-
velopment of procedural and declarative knowledge in some con-
ditions of an alphabetic arithmetic task.

Principle 4: The integration of the results of explicit and
implicit processing. Simultaneous processing of explicit and
implicit knowledge often leads to an output that is a combination
of the results of explicit and implicit processing (Sun et al., 2001,
2005; Sun & Peterson, 1998). Such knowledge integration some-
times produces synergy (Sun & Peterson, 1998), which can lead to
speeding up learning, improving performance, and facilitating
transfer (Sun et al., 2005).

Knowledge integration is supported by recent neurological find-
ings in insight problem solving (Bowden et al., 2005). According
to Bowden and his colleagues (2005), problem solving is per-
formed differently in the left and right brain hemispheres. The
former is more closely related to language processing and strongly
activates a limited set of concepts, while the latter is more related
to imagery and provides diffused activation to a wider range of
concepts. Hence, each hemisphere holds a different problem rep-
resentation. Shortly before insight problems are solved, a neuronal
burst sending a signal from the right hemisphere to the left hemi-
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sphere can be observed, thus yielding an integrated problem rep-
resentation leading to the solution (Bowden et al., 2005). Similar
phenomena have been found (behaviorally) in many other psycho-
logical tasks, such as the serial reaction time task (Curran & Keele,
1993), the finite-state grammar task (Mathews et al., 1989), the
dynamic control task (Stanley et al., 1989), and the minefield
navigation task (Sun et al., 2001). Many other similar indications
exist to support the integration of explicit and implicit knowledge
(see Sun et al., 2005, for a detailed review).

Principle 5: The iterative (and possibly bidirectional) pro-
cessing. The often iterative/bidirectional processing assumed by
the EII theory corresponds well with data, especially human rea-
soning data. For instance, forward and backward schemas were
used to describe human performance in reasoning tasks (Rips,
1994). One important form of backward processing in human
reasoning is abductive reasoning (Pearl, 2000). In abductive rea-
soning, one tries to infer the possible cause(s) following a set of
observations. For instance, the floor can be observed to be wet, and
one can infer that it might have rained earlier (i.e., the current
hypothesis). Testing other effects that should be observed if this
possible cause is correct can be used to refine the current hypoth-
esis (e.g., if it rained earlier, other objects should also be wet).
Johnson and Krems (2001) showed that human participants use
this strategy and often use the current hypothesis to interpret new
data. According to these authors, the main purpose of abductive
reasoning is to control the growth of the complexity of the hy-
pothesis space, which can quickly become unmanageable (e.g., by
restraining the size of the search space by refining the current
hypothesis). For this reason, abductive reasoning can be very
useful in creative problem solving because insight problems are
often overly complex and ill defined (Bowden et al., 2005). Hence,
this form of backward processing, which is also consistent with the
Bayesian interpretation of the rational analysis of cognition (J. R.
Anderson & Lebiere, 1998), is used to initiate subsequent rounds
of processing in EII.

In addition to the iterative nature of hypothesis refinement in
abductive reasoning, iterative processing in EII is also supported
by the heuristic-analytic theory (Evans, 2006). According to Evans
(2006), participants repeatedly use heuristics (implicit processing)
to generate models that are verified by analytic (explicit) processes
in logical inference tasks. This generate-and-test algorithm is re-
peated until a satisfactory solution is found, which is consistent
with EII’s assumption about iterative processing. The creative
problem-solving literature also provides countless examples of
participants iteratively formulating and revising their hypotheses
(through forward and backward processes; e.g., Bowden et al.,
2005; Durso et al., 1994; Schooler et al., 1993).

Auxiliary principles. First, iterative processing ends when
the ICL reaches a certain level according to EII. Empirically, the
ICL can correspond to the FOK (or feeling of warmth) that has
been measured in the metacognition literature (Bowers et al., 1990;
Yaniv & Meyer, 1987) and is assumed by many theories of
problem solving (e.g., Dorfman et al., 1996; Sun, Zhang, &
Mathews, 2006) and many theories of memory search (e.g., Met-
calfe, 1986; Metcalfe & Wiebe, 1987). These existing data and
theories support the use of an ICL in EII. Second, Bowers et al.
(1990) directly tested the presence of a hunch threshold and a
solution threshold on FOKs. In addition, Dienes and Berry (1997)
argued in favor of the presence of absolute and subjective thresh-

olds to differentiate knowledge that is included in verbal reports
from knowledge that is not included in verbal reports. This is
consistent with the assumption of multiple thresholds on ICLs in
EII (see also Ohlsson, in press). Also, when a response is output by
a problem solver, the ICL may be used to estimate the confidence
level that one reports (Costermans et al., 1992; Miner & Reder,
1994). Third, Costermans et al. (1992) showed that confidence
levels are negatively related to response times, and their results
suggest that this relation might be linear. Hence, EII assumes that
response times are a negative (and possibly linear) function of the
ICL when a response is output (see also J. R. Anderson, 1991). In
addition to being consistent with empirical data, the linear relation
is the simplest possible relation between the ICLs and the response
times.

Accounting for Creative Problem Solving Using EII

The preceding assumptions allow for a conceptual model that
captures the four stages of Wallas’s (1926) analysis of creative
problem solving (see Figure 1). First, Wallas described the prep-
aration stage as involving “the whole traditional art of logic”
(Wallas, 1926, p. 84). Hence, the preparation stage is mainly

Figure 1. Information flow in the explicit–implicit interaction theory.
The top level (explicit processing) is more heavily relied upon in the
preparation and verification stages. The bottom level (implicit processing)
is more heavily relied upon during incubation. Insight corresponds to the
transfer of a solution from the bottom level to the top level.
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captured by explicit processing in the EII theory. This is justified
because explicit knowledge is usually rule based in some sense
(Principle 1 of EII), which includes logic-based reasoning as a
special case. Also, the preparation stage has to be explicit in EII
because people are responding to (explicit) verbal instructions,
forming representations of the problem, and setting goals (al-
though implicit processes may also be involved to some lesser
extent).4

In contrast, incubation relies more heavily on implicit processes
in EII. According to Wallas (1926), incubation is the stage during
which “we do not voluntarily or consciously think on a particular
problem” (p. 86). This is consistent with our hypothesis regarding
the difference of conscious accessibility between explicit and
implicit knowledge (Principle 1 of EII). Moreover, incubation can
persist implicitly for an extended period of time in Wallas’s theory
(see also Hadamard, 1954). This characteristic of incubation cor-
responds well with the above-mentioned hypothesis concerning
the relative lack of attentional resource requirement in implicit
processing. However, sometimes, explicit processing can occur in
relation to the problem to be solved during incubation (see the
conscious work theory of incubation, as reviewed in S. M. Smith
& Dodds, 1999), and the EII theory is also consistent with this
possibility (Principle 2 of EII).

The third stage, insight, is “the appearance of the ‘happy idea’
together with the psychological events which immediately pre-
ceded and accompanied that appearance” (Wallas, 1926, p. 80). In
EII, insight is obtained by the crossing of a confidence threshold
by the ICL, which makes the output available for verbal report (an
auxiliary principle of EII). It is worth noting that the intensity of
insight is often continuous (Bowden et al, 2005; Bowers et al.,
1990; Hadamard, 1954; see also the associationistic theory of
insight as reviewed in, e.g., Pols, 2002). Correspondingly, in the
EII theory, the ICL is continuous. In particular, when the ICL of an
output barely crosses the confidence threshold, the output is pro-
duced but does not lead to an intense “Aha!” experience. In
contrast, when the ICL of an output suddenly becomes very high
and crosses the confidence threshold, a very intense experience can
result (which, for example, can lead to running naked in the street,
as Archimedes did). According to the EII theory, intense insight
experiences most likely follow the integration of implicit and
explicit knowledge, as it can lead to a sudden large increase of the
ICL (Principle 4 of EII).

Finally, the verification phase “closely resembles the first stage
of preparation” (Wallas, 1926, pp. 85–86): It should thus involve
mainly explicit processing according to the EII theory. In addition,
environmental feedback can be used in place of rule-based verifi-
cation (when available). Regardless of how verification is accom-
plished, if verification suggests that the insight solution might be
incorrect, the whole process may be repeated by going back to the
preparation stage (Finke et al., 1992; Hadamard, 1954; Wallas,
1926). In that case, EII predicts that the preparation stage can
produce new information because the knowledge state has been
modified by the previous iteration of processing (e.g., some hy-
potheses may have been discarded as inadequate or abductive
reasoning might bring a new interpretation of the data).

A few example predictions (phenomena accounted for) by the
EII theory are summarized in Table 2. Most of these predictions
are explained in detail in the Simulations section of this article
(while others may be found in, e.g., Hélie et al., 2008).

Reinterpretation of Existing Theories of Incubation
Using EII

Unconscious work. Pure incubation is often essentially im-
plicit (or unconscious; see Figure 1). In EII, information is simul-
taneously spread in explicit and implicit memories, with the latter
being mostly responsible for incubation. As a result, the proposed
theory provides a natural embodiment of the unconscious work
theory of incubation (Dorfman et al., 1996; S. M. Smith & Dodds,
1999).

Conscious work. The assumed implicitness of incubation
does not prevent EII from providing an interpretation of the
conscious work theory of incubation (S. M. Smith & Dodds,
1999). As stated by Principle 2, most tasks are processed both
explicitly and implicitly. Hence, incubation is in some sense partly
a result of explicit processing. In addition, the result of the explicit
processing can be below threshold (an auxiliary principle of EII),
which would result in the problem solver being somewhat blind to
this form of explicit processing (Karmiloff-Smith, 1992; S. M.
Smith & Dodds, 1999).

Recovery from fatigue. EII assumes that explicit processes
require more extensive attentional resources, whereas implicit
processes are often effortless (Principle 1 of EII). Hence, accord-
ing to EII, the preparation stage, which extensively involves ex-
plicit processing, can cause mental fatigue. In contrast, implicit
processes do not wear out the problem solver as easily; incubation
may proceed even when one is relaxing. Following a respite period
(while incubating), the problem solver can again explicitly search
for a solution to the problem. However, the state of its knowledge
has been altered by the implicit processing that took place during
incubation (Principle 5 of EII). The integration of implicit and
explicit processing from this point on may lead to insight. This
process reinterprets the recovery-from-fatigue hypothesis (S. M.
Smith & Dodds, 1999).

Forgetting of inappropriate mental sets. According to the
forgetting-of-inappropriate-mental-sets hypothesis, false assump-
tions are made during the preparation period; these assumptions
must be forgotten to solve the problem. In the EII theory, the
assumptions made during the preparation stage are used to con-
textualize subsequent processing (e.g., in the incubation phase).
This contextualization can be altered by involvement in other
problems, which can provide interference that speeds up the for-
getting of past assumptions (Ashcraft, 1989). Thus, EII can ac-
count for the forgetting-of-inappropriate-mental-sets theory by re-
contextualizing its knowledge using explicit and/or implicit
processing (depending on the interference task demands; see Hélie
et al., 2008).

Remote association. In EII, problem solving is performed
simultaneously by explicit and implicit processes (Principle 2 of
EII), and implicit associations are continuously being retrieved
during the incubation phase (mostly without awareness, according
to Principle 1 of EII). Hence, if the problem solver is doing an
intelligent search (i.e., she or he does not blindly retrieve the same
association over and over again), a longer incubation period will
cover more fully the space of associations and make the retrieval
of remote associations more likely. This provides a natural corre-

4 We would like to thank an anonymous reviewer for pointing this out.
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spondence to the remote association theory of incubation (S. M.
Smith & Dodds, 1999).

Opportunistic assimilation. When an iteration of processing
does not generate a solution for the problem, the provisional result
is used to initiate another iteration of processing (Principle 5 of
EII; Evans, 2006). New environmental information can be consid-
ered (if available) and contribute to the next iteration of process-
ing. The provisional result can be interpreted as a memory trace
encoding the unsolved problem (from the previous iteration of
processing) and can affect the processing of newly available en-
vironmental information. Together, they may lead to the solution
of the problem. This form of priming provides an explanation for
the opportunistic assimilation theory of incubation (S. M. Smith &
Dodds, 1999).

Reinterpretation of Existing Theories of Insight Using
EII

Constraint theory. In some sense, EII views explicit and
implicit processing as hard- and soft-constraint satisfaction algo-
rithms (Principle 1 of EII). Explicit processing is responsible
mainly for the satisfaction of hard constraints (following hard
rules), whereas implicit processing is responsible mainly for the
satisfaction of soft constraints (Sun, 1994). When a large number
of constraints are simultaneously satisfied, a higher ICL is pro-
duced (because it represents a better interpretation of the problem;
Bowers et al., 1990). As argued earlier, insight is produced by the
sudden crossing of a confidence threshold by the ICL (an auxiliary
principle of EII), and furthermore, this is more likely to happen
after (and as a result of) implicit–explicit knowledge integration
(Principle 4 of EII). The afore-described process captures the
constraint theory of insight (e.g., Mayer, 1995; Schooler &
Melcher, 1995).

Fixation theory. According to EII, when the associations that
have been initially retrieved do not lead to congruency of explicit
and implicit processing, an impasse is likely to be reached (be-
cause the ICL is likely to be below the threshold). As postulated by
the fixation theory (S. M. Smith, 1995), this impasse must be
broken by knowledge restructuring (Ohlsson, 1992; Schilling,
2005). In EII, knowledge restructuring amounts to recontextual-

ization of subsequent processing. Restructuring can be achieved by
either or both explicit and implicit processing (in an iterative way).
When the conclusions from the previous iteration of processing are
used to initiate a subsequent round of processing, the knowledge
used in the subsequent iteration of processing is in some sense
recontextualized and restructured, which may remove unwarranted
constraints.

Associationistic theory. In EII, implicit and explicit memo-
ries are searched in parallel, which can lead to the retrieval of
many (including unlikely) associations. This process is akin to
what is described by the associationistic theory (Pols, 2002; see
also the spreading activation theory of insight: Yaniv & Meyer,
1987).

Evolutionary theory. The evolutionary theory of insight in-
volves the formation of previously nonexistent associations
(Campbell, 1960; Simonton, 1995). In EII, this can be accom-
plished by randomly probing implicit knowledge structures (with-
out considering the existing associations, e.g., by randomly select-
ing representations and assuming that they are related). This
procedure is in line with the principles underlying the EII theory
and captures the blind variation process essential to evolution
(Darwin’s first principle). Once formed, these assumed implicit
associations are evaluated, and one of them is selected by the
explicit processes (according to their ICL; an auxiliary principle of
EII and Darwin’s second principle). The selected association is
either output to effector modules (e.g., such as motor module, if a
threshold is crossed) or used as the input for the subsequent
iteration of processing (if the threshold is not crossed; an auxiliary
principle of EII). This use of the selected association captures the
retention process (which is Darwin’s last principle).

Summary

Having reinterpreted some existing theories of incubation (six
theories in total) and some existing theories of insight (four theo-
ries in total), we now proceed to a computational model that
captures existing human data. Developing a computational model
ensures the consistency of the theory, allows the possibility of
testing alternate versions of the theory (e.g., by varying the pa-

Table 2
Predictions of the Explicit–Implicit Interaction Theory

Phenomena Gist of mechanistic predictions/explanations

1. Incubation primes lexical decision (Yaniv & Meyer, 1987). Incubation leads to implicit processing (contextualized by preparation),
which activates certain words used in subsequent lexical decision
tasks.

2. Incubation increases reminiscence in free recall (S. M. Smith & Vela,
1991).

Incubation increases the number of words recalled in the second free-
recall test due to implicit retrieval during incubation.

3. Not all participants can solve insight problems (Durso, Rea, &
Dayton, 1994); solvers’ and nonsolvers’ knowledge structures differ.

Some participants generate more diverse hypotheses, which increase
their probability of solving insight problems.

4. Implicit processing is overshadowed by explicit processing (Schooler,
Ohlsson, & Brooks, 1993).

An overly explicit mode of processing can reduce the amount of implicit
processing (e.g., by reducing the weight of implicit processing in
knowledge integration).

5. Incubation is differently affected by distracting activities (Hélie, Sun,
& Xiong, 2008).

The distracting activity and the main task may involve a variety of
cognitive processes and may or may not use the same cognitive
processes.

Note. The conceptual and mechanistic explanations (predictions) of the first four phenomena are detailed in the Simulations section of this article. The
explanation (prediction) of the last phenomenon is presented in Hélie et al. (2008).
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rameters), and makes the proposed representations and processes
clear and unambiguous.

A Connectionist Model Implementing the EII Theory

The computational model implementing the EII theory is based
on the CLARION cognitive architecture (Sun, 2002; Sun et al.,
2001, 2005; Sun & Peterson, 1998; Sun & Zhang, 2004, 2006). In
previous work, the non-action-centered subsystem of CLARION
has already been used extensively for capturing data of human
reasoning (e.g., Sun, 1994; Sun & Zhang, 2004, 2006). Because it
is assumed in EII that the preparation and verification stages of
creative problem solving are mainly captured by explicit rule-
based reasoning of some form, the non-action-centered subsystem
in CLARION can readily provide the model and thus explanations
for these two stages (based on the previous work). Hence, the
following modeling and simulations focus instead on Wallas’s
(1926) two other stages of creative problem solving, namely,
incubation and insight.

Modeling Incubation and Insight Using CLARION

In this subsection, details of the computational model for cap-
turing incubation and insight are presented, based on the non-
action-centered subsystem of CLARION (Sun et al., 2005; Sun &
Zhang, 2006). As noted earlier, the preparation and verification
stages are not included in the present model. Therefore, explicit
processing in the model is presented only to the extent sufficient
for simulating the incubation and insight stages in these tasks.
More complex rule-based reasoning has been covered in previous
work on CLARION (e.g., logical reasoning, variable binding,
hypothesis testing; see Sun, 1992, 1994; Sun & Zhang, 2006), and
the interested reader is referred to these earlier pieces. Also,
because incubation and insight do not involve much procedural
knowledge, the action-centered subsystem of CLARION is not
included in the model, but details concerning this subsystem can be
found in, for example, Sun et al. (2001, 2005).

This section presents an overview of the computational model
along with some key equations. The reader may skip the technical
details in this section on first reading without losing the thread of
the discussion. A more complete mathematical specification is
provided in the Appendix using matrix notation.

The top level. A sketch of the model is shown in Figure 2. In
the top level, explicit knowledge is represented with localist rep-
resentations, that is, each node represents a different concept or
hypothesis, and a link between two nodes stands for an explicit
rule between the two represented entities. Overall, the top level
may be viewed as a linear connectionist network (with two layers,
i.e., two sets of nodes, in this particular case). The implementation
of rule-based processing is rudimentary here but sufficient for our
purpose—to capture many data sets pertaining to creative problem
solving (as shown in the Simulations section later). Unlike in most
other connectionist networks, neither layer in the top level of the
model is the input or the output; both can be used to fill either role.
In the following discussion, we assume that information initially
enters the model from the left in Figure 2 and exits from the right
(for similar equations describing the flow of information in the
opposite direction, see the Appendix).

Often, concepts are (redundantly) encoded in the bottom level
(using distributed representations; Sun, 1994) and in the top level
(using localist representations) of CLARION. If only the top-level
representation is activated, a top-down signal may be sent to
activate the corresponding representation in the bottom level
(known as implicitation). Likewise, if the bottom level is activated,
a bottom-up signal may be sent to activate the corresponding
representation in the top level (known as explicitation). Hence, a
stimulus is often processed in both the top and bottom levels in
CLARION. The following equations describe the case where the
top and bottom levels of CLARION are both activated to begin
with. (Details of other cases are given in the Appendix.)

It should be noted that redundancy of representation (having
equivalent forms of knowledge at the two levels) does not always
implies coexistence or mutual activation across the two levels.
Here, some alternative possibilities need to be pointed out. First, if
the knowledge exists only at one level, there will be no mutual
activation. Second, if equivalent knowledge does exist at the two
levels but the link between them has not been established (i.e., the
representational equivalence has not been established), there will
be no mutual activation. Third, even when the representations
across the two levels are linked, the links may not be used (e.g.,
due to distraction, lack of attention, low activation level, etc.).
However, it is often the case that the equivalent forms of knowl-
edge coexist at the two levels and that they will be able to access
or activate each other (as generally hypothesized in CLARION;
Sun et al., 2001, 2005; see also Sun, 1994, for detailed justifica-
tions). When mutual activation happens, complex insights are
more likely to happen (as detailed later; see also Principle 4).
These are the cases emphasized in this work.

When the left layer of the top level is activated, the activations
are propagated in the top level using the following weighted sum:

yi �
1

k1i
�
j�1

n

vijxj, (1)

Figure 2. General architecture of the non-action-centered subsystem of
CLARION. The letters refer to the connection matrices (see the Appendix
for details).
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where y � {y1, y2, . . . , ym} represents the activations of nodes in
the right layer in the top level, x � {x1, x2, . . . , xn} represents the
activations of nodes in the left layer in the top level, V � (vij)
represents the (simplified) explicit rules (connecting xj and yi), and
k1i is the number of nodes in the left layer that are connected to yi

(k1i � n). Top-level node activations are binary (i.e., xj � {0, 1}
and yi � {0, 1}). Each node (xj or yi) represents an individual
concept (using localist representations).5 This transmission (node
activation) rule ensures that the activation of yi is equal to the
proportion of its associates in the left layer (xjs) that are activated.6

The bottom level. In the bottom level of CLARION, implicit
knowledge is represented by distributed activation patterns over a
set of nodes and processed using a nonlinear attractor neural
network (known as NDRAM; Chartier & Proulx, 2005). Compu-
tationally speaking, this network uses a nonlinear transmission
function that allows the model to settle/converge into real-valued
attractors (Hélie, 2008). The bottom-level representations are pat-
terns (vectors) of bipolar node activations (i.e., zi � �1), and they
are linked to the corresponding top-level representations by a set of
linear equations (as detailed in the Appendix; see Equations A16
and A17).

The transmission in the bottom-level network is described by

zi�t�1� � f��
j�1

r

wijzj�t��, (2)

where z[t] � {z1[t], z2[t], . . . , zr[t]} is the state of the attractor neural
network at time t (i.e., the activations of all the nodes in the
network at time t), W � [wij] is a weight matrix that encodes the
implicit associations among the nodes, and f(●) is a nonlinear
function (as defined in the Appendix). Computationally speaking,
this transmission rule is a regular synchronous update rule for
attractor neural networks, and it ensures the convergence/settling
of the model to a stable state (Hélie, 2008).

Transmission in the bottom level is iterative and remains in the
bottom level until convergence/settling or a time limit is reached.
Once one of these two criteria is met, the information is sent
bottom-up (explicitation) for the integration of the two types of
knowledge. Note that, following Sun and Zhang (2004), it has been
estimated that each application of Equation 2 (called a spin) takes
roughly 350 ms of psychological time.

Bottom-up explicitation. After the implicit processing is
completed, the information is sent bottom-up in the following way:

y�bottom-up�i � �k2i�
	1.1�

j�1

r

fjizj, (3)

where y[bottom-up] � {y[bottom-up]1, y[bottom-up]2, . . . , y[bottom-up]m}
represents the bottom-up activations of the nodes in the right layer
of the top level (in Figure 2), zj represents the activation of the jth
node in the bottom level, k2i is the number of nodes in the bottom
level (in z) that are connected to y[bottom-up]i (k2i � r),7 and F �
(fij) is a weight matrix connecting the distributed bottom-level
representations to their corresponding top-level representations (in
the right layer of the top level: y).8 In words, Equation 3 translates
the bottom-level activations into top-level activations (by reducing
their dimensionality to m).

Integration. Once the bottom-up activation has reached the
top level (y[bottom-up]), it is integrated with the activations already

present in the nodes of the right layer (y) of the top level using the
Max function:

y�integrated�i � Max�yi, 
 � y�bottom-up�i�, (4)

where y[integrated] � {y[integrated]1, y[integrated]2, . . . , y[integrated]m} is
the integrated activations of the nodes in the right layer of the top
level and 
 is a scaling parameter that determines how implicit the
task processing is.9

The integrated activation pattern (vector) is further transformed
into a Boltzmann distribution, which serves as the final activations
of the corresponding nodes in this layer:

P�y�integrated�i� �
ey�integrated�i/�

�
j

ey�integrated�j/�
, (5)

where � is a noise parameter (i.e., the temperature). The transfor-
mation above generates normalized activation patterns. In CLAR-
ION, each top-level node represents a hypothesis, and their nor-
malized activation (the Boltzmann distribution) is the probability
distribution of the hypotheses represented by these nodes. From
this distribution (this set of final node activations), a hypothesis (a
node) is stochastically chosen. Low noise levels in the equation
above tend to exaggerate the probability differences, which lead to
a narrow search of possible hypotheses and favor stereotypical
responses. In contrast, high noise levels tend to reduce the prob-
ability differences, which lead to a more complete search of the
hypothesis space (thus, the value assigned to � is constrained to be
equal or larger during the incubation phase, compared with the
preparation and verification phases; see, e.g., Martindale, 1995).

The statistical mode of the Boltzmann distribution (i.e., the
probability of the most likely hypothesis or, equivalently, the

5 Computationally speaking, this transmission rule is linear and repre-
sents the simplest case of neural networks. The normalizing factor (k1i)
prevents nodes with more incoming links from being more activated (on
average).

6 Note that, following Sun and Zhang (2004), it has been estimated that
each application of Equation 1 takes roughly 1,500 ms of psychological
time. However, top-level processing is done in parallel with bottom-level
processing, so only the longest processing time is used (because the fastest
process has to wait for the slowest for knowledge integration). In all the
following simulations, the bottom-level processing time is slower (and
used) because several iterations of bottom-level processing are performed
before knowledge integration.

7 The nonlinearity of the normalizing factor (k2i) is used for capturing
similarity-based processes not relevant to the present work. For detailed
mathematical derivations, see Sun (1994).

8 Note that in Equation 3, the transposition of the F weight matrix is
used. This is because top-down processing (implicitation) uses the actual F
weight matrix, whereas bottom-up processing (explicitation) uses the trans-
position of the F weight matrix (the same applies to the E weight matrix).
Likewise, top-level processing from the left layer to the right layer uses the
V weight matrix, whereas top-level processing from the right layer to the
left layer uses the transposition of the V weight matrix. This use of
transpositions to reverse the direction of processing substantially reduces
model complexity (Kosko, 1988).

9 The Max operator is often used to represent disjunction in fuzzy logic
(Zadeh, 1988). Therefore, in a sense, the results of bottom-level and
top-level processing are individually considered in the integrated activation
vector.
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activation of the most highly activated node) is used as the ICL as
stipulated in EII.

Assessment. If the ICL (the statistical mode of the Boltzmann
distribution) is higher than a predetermined threshold (i.e., �), the
chosen hypothesis (represented by the chosen node) is output to
effector modules (e.g., a motor module), and the response time
(RT) of the model is computed:

RT � a � b � ICL, (6)

where a and b are the maximum response time and the slope of the
response time curve, respectively. (Computationally, this equation
was adopted because it is the simplest possible negative relation
between the ICL and the response times, as found in Costermans
et al., 1992, and Miner & Reder, 1994, and as previously used in,
e.g., J. R. Anderson, 1991.)

If no response is output by the model (i.e., if the ICL is less than
the predetermined threshold �), a new iteration starts with the
chosen hypothesis (the chosen node) as the top-level stimulus. The
result of previous implicit processing is treated as residual activa-
tions that are added to the bottom-up activations during the next
iteration.

Specifically, the information in the right layer of the top level is
sent back to the left layer of the top level:

xi � �
j�1

m

vjiy�selected�j, (7)

where xi is the activation of the ith node in the left layer of the top
level (see Figure 2), y[selected] � {y[selected]1, y[selected]2, . . . ,
y[selected]m} is the bifurcated Boltzmann distribution in the right
layer of the top level after a hypothesis has been chosen (i.e., the
chosen hypothesis [node] has activation one and the remaining
hypotheses [nodes] have activation zero), and vji is the explicit rule
connecting yj to xi. Next, the result of Equation 7 is sent top-down
to activate the bottom level (through implicitation; see the Appen-
dix for mathematical details), and the processing starts anew (with
a new iteration in the same way as described above). Intuitively,
propagating the activation backward (from right to left in the top
level) corresponds to abductive reasoning (i.e., if the chosen hy-
pothesis in y is correct, what are the possible causes in x?).
Implicitation amounts to incorporating such possible causes into
intuition (implicit processing). Starting a new iteration of process-
ing after implicitation in both the top and bottom levels allows for
inferences taking into consideration such possible causes (along
with other information in the form of residual activations in the
bottom level). This cumulating of inference processing is not
random (even in high-noise conditions) because each new iteration
of processing relies on the result from the previous iterations. The
basic algorithm of CLARION is summarized in Table 3.

An example. We examine a prototypical insight problem-
solving experiment using CLARION. In such an experiment, the
participant provides an explanation for an ill-defined problem,
such as follows (Schooler et al., 1993, p. 183):

A giant inverted steel pyramid is perfectly balanced on its point. Any
movement of the pyramid will cause it to topple over. Underneath the
pyramid is a $100 bill. How would you remove the bill without
disturbing the pyramid?

To capture and computationally explain this experiment with
CLARION, the concepts (e.g., steel, pyramid, $100 bill, etc.)
included in the problem description are represented in the left layer
of the top level (see Figure 2), while the possible explanations are
represented in the right layer of the top level. Because this is an
open-ended problem, a large number of possible explanations
(prior knowledge) are included in the model. Each concept and
each explanation are represented by a different top-level node (in
the left and the right layers, respectively), and these nodes are
linked to form rules (representing culturally shared prior knowl-
edge). Together, these nodes and links represent the explicit
knowledge in the model.

In the bottom level of CLARION, each concept represented by
a top-level node is also represented by a set of bottom-level nodes.
Exemplars of the culturally shared explanatory rules coded in the
top level are redundantly encoded in the bottom level (i.e., the
attractor neural network is trained with these exemplars to create
its corresponding attractors), which represents implicit knowledge
in the model.

To simulate this task, the nodes representing the initial problem
(in the left layer of the top level and the corresponding bottom-
level representation) are first activated. This information is then
transmitted to the right layer in the top level; in the meantime, the
bottom-level activations are allowed to settle (converge). The
stable state reached by the bottom level is sent bottom-up (explici-
tation) to be integrated with the top-level activations (in the right
layer). The integrated activations are then transformed into a
Boltzmann distribution (the final activations), and an explanation
node is stochastically chosen on that basis. The statistical mode of
the Boltzmann distribution is used to estimate the ICL, which is
compared to a threshold. If the ICL is higher than the threshold, the
chosen explanation is output to effector modules, and the process
is over. Otherwise, the chosen explanation is sent backward to
activate the left layer in the top level to infer possible causes for
the chosen explanation (abductive reasoning). The activation in the
left layer of the top level is used as the new stimulus to initiate
another iteration of processing (to allow new inferences based on
the possible causes). This iterative process ends when an explana-
tion is output or the model runs out of time (if a time limit is given
in the experiment).

Discussion

The CLARION model captures well the basic principles of the
EII theory. First, the explicit knowledge in CLARION is repre-

Table 3
Algorithm of the CLARION Model

1. Observe the current input information.
2. Simultaneously transmit the observed information in both levels

(Equations 1 and 2).
3. Compute the integrated activation vector (Equations 3 and 4) and the

hypothesis distribution (Equation 5).
4. Stochastically choose a response, and estimate the internal confidence

level using the mode of the hypothesis distribution:
a. If the internal confidence level is higher than a predefined
threshold, output the chosen response to effector modules;
b. Else, if there is time, go back to Step 1, and use the chosen
response as the input (Equation 7).

5. Compute the response time of the model (Equation 6).
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sented in a localist fashion (i.e., one node � one concept), while
implicit knowledge is represented using distributed representa-
tions. This is consistent with Principle 1 of EII (see Table 1)
because this representational difference captures, to some extent,
the difference of accessibility of explicit and implicit knowledge
(see, e.g., Sun, 2002; Sun et al., 2001, 2005). Also, the top level of
CLARION may carry out rule-based processing (of a rudimentary
form in this particular work) because the links among the nodes
(i.e., the connection matrix) may encode explicit rules of various
forms (see, e.g., Sun, 1994; Sun et al., 2001). In contrast, the
bottom level of the CLARION model implements a soft-constraint
satisfaction algorithm because implicit knowledge in the bottom
level is processed by an attractor neural network (Hertz, Krogh, &
Palmer, 1991; Hopfield & Tank, 1985). These characteristics are
exactly what is prescribed by EII (Principle 1 of EII).

Second, in line with Principle 2 of EII, most tasks are processed
simultaneously in the top and bottom levels in CLARION. Simul-
taneous processing in CLARION is facilitated by the interlevel
connections linking top- and bottom-level representations, which
ensure that the corresponding representations in both levels are
usually activated simultaneously (see the Appendix for further
technical details). Hence, notwithstanding the location of initial
activation, top- and bottom-level representations are usually simul-
taneously activated and processed in CLARION.

Third, each top-level node in CLARION corresponds to many
bottom-level nodes; it is possible to encode (in different ways) the
same associations in the bottom level and the top level. This
characteristic of CLARION is in line with Principle 3 of EII. This
redundant coding of information in CLARION is facilitated by the
presence of top-down and bottom-up learning processes. For de-
tails of top-down learning and bottom-up learning in CLARION,
which have been used to simulate a wide range of learning data,
see Sun (2002) and Sun et al. (2001, 2005).

Fourth, because the top and bottom levels of CLARION process
information differently, the results of top-level and bottom-level
processing are integrated in CLARION. This integration process is
in line with Principle 4 of EII and has been useful in modeling a
wide range of human data in past simulations (e.g., Sun, 2002; Sun
et al., 2001, 2005). Moreover, the integration function may lead to
synergy, as amply demonstrated before (e.g., Sun & Peterson,

1998; Sun et al., 2005), which is in line with much human data in
the implicit learning literature (e.g., Mathews et al., 1989; Stanley
et al., 1989; Sun et al., 2001, 2005).

Fifth, processing in CLARION is iterative and bidirectional.
The equations described in the preceding subsection go from left to
right to left and so on (see Figure 2), although information flow
can be reversed (see the corresponding equations in the Appendix).
This is consistent with Principle 5 of EII. Moreover, the reasoning
cycle in CLARION constitutes a generate-and-test process: Hy-
potheses are generated by the bottom level and made available by
the explicitation process. Knowledge integration yields a Boltz-
mann distribution of hypotheses, and its mode is compared with
predefined thresholds. This is the evaluation prescribed by EII.

In addition, the auxiliary principles included in EII are all
incorporated into the CLARION model (see Table 1). Specifically,
the mode of the Boltzmann hypothesis distribution is used to
measure the ICL, as defined in the auxiliary principles of EII.
Thresholds on the ICL (as discussed before) are used to choose
between outputting a response and restarting the process. Response
times in the CLARION model are a negative linear function of the
ICLs, consistent with the auxiliary principles of EII and as sug-
gested by empirical research (e.g., Costermans et al., 1992; Miner
& Reder, 1994).

Simulations

Some experiments (i.e., Durso et al., 1994; Schooler et al., 1993;
S. M. Smith & Vela, 1991; Yaniv & Meyer, 1987) that were
mentioned at the beginning of this article to justify the notions of
incubation and insight were simulated using the CLARION model.
These experiments draw on well-established psychological para-
digms (e.g., free recall, lexical decision, and problem solving) and
are thus highly reliable. Given the broad scope of the approach in
this article, the emphasis cannot be on extremely fine-grained
modeling of the tasks involved. Hence, the simulations are coarser
by necessity, which is inevitable given the nature of this approach.

All the simulation parameters are in Tables 4 and 5. Table 4
contains the task-related parameters, which were directly deter-
mined by the task input/output. Table 5 contains the free param-
eters, which, although not optimized, were tuned by hand using

Table 4
Task-Related Parameters Used in the Simulations

Parameter Yaniv & Meyer (1987) S. M. Smith & Vela (1991) Durso, Rea, & Dayton (1994) Schooler, Ohlsson, & Brooks (1993)

n 52 0 14 8
m 52 50 14 8
r 200 500 140 280
s 100 0 a 230
p 3 10 3 1
 0.10 0.49 0.40 0.40
Epochs 15 15 100 150

Note. n is the number of nodes in the left layer of the top level (x), m is the number of nodes in the right layer of the top level (y), r is the number of
nodes in the bottom-level network (z), s is the number of nodes in the bottom-level network that are connected to the left layer in the top level, p is the
number of spins used to pretrain the bottom-level network, and  is the slope of the transmission function in the bottom-level network. Other NDRAM
parameters (i.e., the learning rate and memory efficiency) used to pretrain the bottom-level network were set to their default values throughout (� � 0.001,
and � � 0.9999; Chartier & Proulx, 2005).
a In the simulation of Durso et al. (1994), the same concepts were represented twice in the top level (once in each layer). Hence, a unique pool of
bottom-level nodes was used.
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reasonable values. (It should be noted that 
 is constrained to be
higher than 1 in the simulations below because the tasks were
chosen to show the effect of incubation, which is mostly implicit.)
Finally, because the verbal instructions (provided to participants
before each experiment) and the preparation stage (as mentioned
before) lead to contextualization of later processing of the incu-
bation and insight stages (Wallas, 1926), only knowledge relevant
to the simulated task was included in each simulation.

In each subsection below, an experiment is first reviewed in detail
along with the resulting human data. Following each set of empirical
data, the simulation setup is presented along with complete conceptual
and mechanistic explanations of the task in the EII/CLARION frame-
work. This is followed by the simulation results and a discussion of
the implications of the simulation for creative problem solving in
general and the EII theory in particular. A statistical threshold of � �
.01 has been adopted throughout the article.

Incubation in a Lexical Decision Task

Yaniv and Meyer (1987) used a rare-word association task and
a lexical decision task to test the unconscious work theory of
incubation (Dorfman et al., 1996; S. M. Smith & Dodds, 1999).
These tasks are detailed below.

Experimental setting. In Yaniv and Meyer’s (1987) Experi-
ment 1, each trial was initiated by the presentation of a definition
to the participant, who had 15 s to find the associated word (the
rare-word association task). If the participant was able to produce
the associated word, the lexical decision task started. If the par-
ticipant did not find the associated word, she or he was asked to
estimate the FOK prior to starting the lexical decision task.

In the lexical decision task, the participant’s task was to identify
strings of letters as words or nonwords. Each rare-word association
trial was followed by a block of six lexical decision trials. The block
was composed of three types of strings: unrelated words (distractors),
nonwords, and the response to the rare-word association trial (the
target word). The prediction was that the participants who were
unable to provide an answer in the rare-word association task but had
a high FOK would be primed for the target word in the lexical
decision task (leading to faster response times), but not those who had
a low FOK. Likewise, correct responses in the rare-word association
task would prime the target, but incorrect responses would not. If
these were the cases, one might interpret these results as an indication
that incubation is a form of unconscious processing and that incom-
plete (unconscious) processing might be sufficient to prime a target
word (despite the failure to produce the target word).

Experimental results. Forty-four participants were tested in
52 rare-word association trials and associated 52 � 6 � 312

lexical decision trials. The results of interest were those obtained
in the lexical decision task, factorized by the performance in the
rare-word association task. As predicted, correct responses in the
rare-word association task primed the target word in the lexical
decision task, t(2100) � 8.5, p � .001. In contrast, incorrect
responses in the rare-word association trial did not affect the
performance of the subsequent lexical decision task (i.e., no prim-
ing for the target word), t(2100) � 0.7, ns.10 In trials in which no
response was given in the preceding rare-word association task,
analyses of the response times showed a significant interaction
between the FOK and the type of stimuli (targets vs. distractors),
t(1648) � 2.28, p � .05. Gamma correlation coefficients (provided
by Yaniv and Meyer, 1987) suggested that targets were faster than
distractors when the FOK was high; this relation was reversed
when the FOK was low (see Figure 3).

Simulation setup. In the top level of the CLARION model, the
left layer was used to represent the words, while the right layer
represented the definitions (see Figure 2). Each word and each defi-
nition were represented by a different node (i.e., using localist repre-
sentations), and each word was associated to its definition by a link
within the top level. In the bottom level of the CLARION model, half
of the nodes were used to represent the words, while the remaining
nodes were used to represent the definitions (both with distributed
representations). Each word/definition was represented by randomly
generated activation patterns in the bottom level.11 The bottom-level
network was pretrained to encode the associations between the words
and their corresponding definitions. The values given to the task-
related parameters were as shown in Table 4.12

10 It should be noted that mean response time data in the lexical decision
task following correct and incorrect responses in the rare-word association
task were not available in Yaniv and Meyer (1987); only the test statistics
were reported.

11 Note that random representations were generated each time. One seed
representation was generated once (randomly generated). However, a Gauss-
ian noise vector (� � 0, � � 0.01) was added each time to the definitions to
represent individual differences. This corresponds to people (say, from the
same linguistic community) using words relatively consistently in communi-
cation but possibly with some relatively minor individual variations.

12 Note that the number of epochs used to pretrain the bottom level was
kept to a minimum to represent the rareness of the associations. This
increased the number of spins necessary for convergence in the bottom
level during performance. If the associations used had not been rare, more
epochs would have been used to pretrain the bottom level, convergence
would have been faster during performance, and all the definitions would
have been found within the allotted time.

Table 5
Free Parameters Used in the Simulations

Parameter Yaniv & Meyer (1987) S. M. Smith & Vela (1991) Durso, Rea, & Dayton (1994) Schooler, Ohlsson, & Brooks (1993)


 1.5 a a 1.1
� 0.2 {0.06, 0.085} {10	2–105} {0.12, 0.16}
� {0.715, 0.71, 0.69} 0.896 0.90 0.70

Note. 
 scales the importance of implicit processing in the integrated activation, � is the temperature (randomness) in the Boltzmann distribution, and
� is the threshold on the internal confidence level.
a When no stimulus is presented to the model, processing has to be initiated from random activation in the bottom level. In these cases, the result of top-level
processing is initially ignored by setting 
 to a large value (e.g., 
 � 50 or 
 � 500).

1007INCUBATION, INSIGHT, AND CREATIVE PROBLEM SOLVING



To simulate a rare-word association trial, a stimulus activated
the right (definition) layer in the top level and the corresponding
representation in the bottom level. Explicit rules were applied in
the top level (in this case, amounting to retrieving definition-word
associations), and the information in the bottom level was pro-
cessed for 42 spins13 (with roughly 350 ms per spin, as hypothe-
sized earlier; see also Libet, 1985), approximating the fact that
human participants had 15 s. Following this processing, the out-
puts from both levels were integrated using the parameters shown
in Table 5 and transformed into a Boltzmann distribution (which
served as the activations of the nodes in the left layer of the top
level). The statistical mode of the distribution (the maximum
activation of the left-layer nodes in the top level) was used to
estimate the ICL. Because there was no time for further iteration,
a response was output if the ICL was higher than the first threshold
in Table 5. Otherwise, no answer was provided, and the FOK was
estimated using the ICL (as in the human experiment). If the ICL
was higher than the second threshold in Table 5, the FOK was
estimated as high, and if the ICL was lower than the last threshold
in Table 5, the FOK was estimated as low. The remaining range
was rated as medium.

For simulating the lexical decision task, three types of stimuli
had to be represented. The target was the same word used in the
corresponding rare-word association trial, and the distractors were
the words used in other trials of the rare-word association task.
Nonwords used randomly generated representations (real values

within [0, 1]). Note that words (either distractors or targets) were
represented explicitly in the top level (in the left layer), whereas
nonwords were not.

Following each rare-word association trial, six lexical decision
trials were conducted. Because the stimuli were presented rapidly,
a normally distributed noise pattern (a noise vector) was added to
each stimulus (� � 0, � � 0.05). The information was transmitted
within the CLARION model as follows. First, a stimulus activated
a node in the left layer of the top level of the CLARION model and
the corresponding implicit (bottom-level) representation. Activa-
tions were transmitted simultaneously in the top level and the
bottom level. The bottom level underwent six spins, as human
participants had a maximum of 2 s (6 � 350 � 2,100 ms).
Residual activations from the end of the rare-word association trial
were present in the bottom level, which added to the result of
current bottom-level processing (for technical details, see the Ap-
pendix). The output from the bottom level was integrated with the
activations in the right layer of the top level using the Max
function and transformed into a Boltzmann distribution (which
served as activations for the nodes in the right layer of the top
level). A response was stochastically selected, and the ICL was
computed (as explained before) and used to estimate the response
time of the model (with a � 1,530 and b � 1,380). Note that no
threshold was used on the ICL because a response had to be output.

Rationale and explanations.
Conceptual explanation based on EII. According to the EII

theory, a rare-word association trial produces a simultaneous
search at the explicit and the implicit levels (Principle 2 of EII).
Because the target association is rare, explicit memory search is
not likely to yield a satisfactory solution within the allotted time
(i.e., the existing set of hard constraints does not necessarily lead
to solutions). In contrast, according to EII, implicit memory search
is more likely to retrieve the desired association if given enough
time because soft-constraint satisfaction can allow a partial match
that can be iteratively improved. However, implicit memory search
is often cut short by the experimenter who then asks the participant
to take part in lexical decision trials (for the no-response partici-
pants). At the beginning of the lexical decision trials, implicit
knowledge is still in the same state as it was at the end of the
corresponding rare-word association trial. Hence, if the association
was retrieved or nearly retrieved during the rare-word association
trial (i.e., with high FOK), the memory search is not wasted, and
the target word is primed for the lexical decision trials. In contrast,
the correct recognition of unrelated words (distractors) is not
affected by the previous state of implicit knowledge in the lexical
decision trials because the cognitive work during the correspond-
ing rare-word association trial was irrelevant. This conceptual
explanation by EII is in line with Yaniv and Meyer’s (1987)
results.

Mechanistic explanation based on CLARION. In the
CLARION-based computational simulation, the FOK from the
rare-word association trial should have a strong effect on the
response time to the target during the subsequent lexical decision
trials because the FOK is represented by the ICL (which estimates

13 A spin is a round of synchronous updating of all the nodes in the
bottom-level neural network (i.e., an application of Equation 2; see The
Bottom Level subsection).
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Figure 3. Lexical decision task response times from Yaniv and Meyer’s
(1987) Experiment 1 when no response was produced in the rare-word asso-
ciation task. The x-axis represents the feeling of knowing as measured after the
rare-word association task, and the y-axis represent the response times (in ms)
in the lexical decision task. Adapted from “Activation and Metacognition of
Inaccessible Stored Information: Potential Bases for Incubation Effects in
Problem Solving,” by I. Yaniv and D. E. Meyer, 1987, Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 13, p. 194. Copyright 1987
by the American Psychological Association.
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the efficiency of processing toward the target word during the
rare-word association trial). Hence, in a sense, the residual activa-
tions determine the amount of priming in the lexical decision trials.
If the priming is relevant to a lexical decision trial (i.e., if the
stimulus in the lexical decision trial is the target), the residual
activations reduce the response time because the new bottom-level
processing is consistent with the result of previous bottom-level
processing and additively combining the activations magnifies the
effect. In contrast, when the stimulus in the lexical decision trial is
not the target (i.e., it is a distractor or a nonword), the priming is
irrelevant, and the residual activations can increase the response
time because previous processing (toward the target) can result in
more noise in the Boltzmann response distribution. This mecha-
nistic explanation leads directly to Yaniv and Meyer’s (1987)
results.

Simulation results. Three thousand simulations were run
(each corresponding to a human participant in the experiment),
each containing 52 rare-word association trials (each stimulus was
seen once during the rare-word association trials), each followed
by six lexical decision trials, exactly as in the human experiment.
Figure 4a shows the response times in the lexical decision trials
split by performance in the rare-word association trials (correct vs.
incorrect) and stimulus type. As can be seen, targets were recog-
nized faster than distractors in the lexical decision task when the
correct response was provided in the rare-word association task (as
predicted). Targets and distractors also slightly differed when an
incorrect response was given in the rare-word association task, but
the response time difference was much smaller in this case.

The same statistical analyses as in Yaniv and Meyer (1987)
were performed on the simulated participants. Target recognition
was significantly faster than distractor recognition when a correct
response was given in the rare-word association task, t(2976) �
6.87, p � .0001, as in Yaniv and Meyer’s results. As in Yaniv and
Meyer’s results, this difference between targets and distractors was
not statistically significant when an incorrect response was given
in the rare-word association task, t(2221) � 1.91, ns. This suggests
that the small difference between target and distractors when an
incorrect response was produced in the rare-word association task
may be attributed to random variation (especially considering the
high statistical power from several thousand simulated partici-
pants). These simulation results above are all in line with the
results from Yaniv and Meyer’s Experiment 1.14

Of more interest are the trials in which no response was given in
the rare-word association task. Figure 4b shows the response times
in the lexical decision trials split by FOK and stimulus type. As can
be seen, the FOK (from the corresponding rare-word association
trial) had a strong effect on the difference between response times
to targets and distractors. As predicted, targets were faster than
distractors when the FOK was high, but this relation was reversed
for low FOK. The interaction in a Stimulus Type � FOK analysis
of variance (ANOVA) reached statistical significance, F(2,
5998) � 42.87, p � .0001. Further decomposition of the analysis
showed that targets were faster than distractors when the partici-
pants rated their FOK as high, F(1, 2999) � 12.51, p � .0001. The
opposite effect was found for low FOK: Distractors were faster
than target words, F(1, 2999) � 67.85, p � .0001. These statisti-
cally significant differences were not present for medium FOK,
F(1, 2999) � 5.05, ns. All these results are in line with Yaniv and
Meyer’s (1987; see Figure 3).

Discussion. The simulation results obtained with the CLAR-
ION model matched well the human data of Yaniv and Meyer
(1987). The reproduction of these qualitative and quantitative
results supports the psychological plausibility of the proposed
model and the adequacy of the EII theory. Several effects were
simultaneously reproduced without varying the free parameters
across tasks. The model was not designed specifically to simulate
this task but was well supported by fundamental theoretical con-
siderations (Sun, 2002). Overall, CLARION captured and mech-
anistically explained the human data demonstrating the effect of
incubation in a lexical decision task.

Incubation in a Free-Recall Task

S. M. Smith and Vela (1991) studied the effect of incubation on
the number of new words recalled during the second free-recall
phase in a two-phased free-recall experiment. This measure is
referred to as reminiscence.

Experimental setting. The participants had 5 min to memo-
rize 50 line drawings. Following this study phase, the participants
took part in the first free-recall test, which lasted 1, 2, or 4 min.
Once the first free-recall test was completed, the participants had
a 0-, 1-, 5-, or 10-min break (which constituted the incubation
phase). After the incubation phase, all the participants took part in
a second free-recall test. The length of the second free-recall test
was the same as the first (and based on the same set of line
drawings seen earlier, without restudying them). Two hundred
twenty-one participants were tested in this 3 � 4 design, and the
dependant variable was reminiscence.

Experimental results. A Test Duration � Incubation Interval
ANOVA was performed on reminiscence (see Figure 5a). There
was no effect of test duration, F(2, 209) � 0.27, ns, but incubation
interval had a significant effect on reminiscence, F(3, 209) � 9.40,
p � .01. The mean reminiscence scores for each incubation inter-
val were 2.90, 3.15, 3.72, and 5.00. Post hoc tests (� � .05)
showed that the first two incubation intervals (0 and 1 min) yielded
similar reminiscence scores and that these scores were smaller than
those obtained for longer incubation intervals (5 and 10 min,
respectively, which did not differ statistically). Subsequent exper-
iments showed that the effect of the incubation interval on remi-
niscence was significant only during the first minute of the second
free-recall test (S. M. Smith & Vela, 1991).

Simulation setup. To simulate this task, only the right layer
was used in the top level of CLARION (see Figure 2), and each
node represented a different line drawing (word).15 In the bottom
level of CLARION, all the concepts (each represented by a top-
level node) were encoded with a common pool of nodes using
distributed representations, and a different bottom-level distributed
representation was randomly generated for each line drawing
(word).

To simulate the first recall test, a random pattern activated the
bottom level, and the activations were propagated within the

14 While we could not directly compare the simulated response times
with human data, the estimates were reasonable, and all the statistical
effects were reproduced.

15 This can be accomplished in the CLARION model by setting the
number of nodes in the left layer to zero and the knowledge integration
parameter to a large value (causing top-level rules to be ignored).
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bottom level until convergence of the attractor neural network. The
resulting stable activation state activated the top-level right-layer
nodes through bottom-up explicitation, and the top-level activa-
tions were transformed into a Boltzmann distribution (using the
first noise-level value from Table 5). The mode of the distribution
(the maximum activation of the right layer of the top level) was
used to estimate the ICL, which was compared with the threshold.
If the ICL was sufficiently high, a word (node) was stochastically
chosen for recall. Otherwise, no response was output, and a new
random pattern was used to activate the bottom level to start the
process again. As in all other simulations, each spin in the bottom
level took 350 ms of psychological time. Hence, the durations of
recall were 171, 343, and 686 spins (for 1, 2, and 4 min, respec-
tively).

Simulation of the incubation period was basically the same as
that of the first recall test except for the following: (a) The noise
level in the Boltzmann response distribution was increased to the
second value in Table 5. (b) If an item was recalled, it was stored
in a buffer memory (J. R. Anderson & Milson, 1989). The incu-
bation intervals were 0, 171, 857, and 1,714 spins (for 0, 1, 5, and
10 min, respectively).

The second free-recall test was identical to the first, except that
items in the buffer memory were output at the beginning of this
period. This represented the fact that in the human experiment of
S. M. Smith and Vela (1991), most words were recalled during the
first minute of the second test (as mentioned earlier). The CLAR-
ION parameter values were as shown in Tables 4 and 5.

Rationale and explanations.
Conceptual explanation based on EII. According to the EII

theory, parallel memory searches are conducted in explicit and
implicit memories during the free-recall tests (Principle 2 of EII).
However, the incubation period is different: Principle 1 of the EII
theory stipulates that explicit memory search requires more atten-
tional resources, whereas implicit memory search is mostly auto-
matic. Thus, mostly implicit processes are deployed during the
incubation phase, and words are being retrieved from implicit
memory during that period (but not much from the explicit mem-
ory). These additional words are output at the beginning of the
second test, increasing the number of words recalled in this second
test (but not the first test). According to the EII theory, reminis-
cence increases as the number of words recalled in the second test
becomes larger compared with the number of words recalled in the
first test (on the average, i.e., by statistical facilitation). This
conceptual explanation is in line with S. M. Smith and Vela’s
(1991) results.

Mechanistic explanation based on CLARION. In CLARION,
words are being generated (recalled) from the bottom level during
the recall tests. Because the eventual effect of incubation is to
increase the number of words recalled during the second recall test
(but not the first; see the previous conceptual explanation), the
likelihood of recalling new items in the second test should be
increased due to incubation. In contrast, test length should affect
the total numbers of recalled items during both the first and second
tests (i.e., the effects of test length should be roughly the same for
the two recall tests). This is different from the effect of incubation
because it does not change much the likelihood of recalling new
(additional) words during the second recall test (because the key to
increasing the likelihood of recalling new words is the difference
between the numbers of words recalled during the two recall tests).

Figure 4. a: Simulated response times in the lexical decision task when
an answer was given in the rare-word association task. The x-axis repre-
sents the performance in the rare-word association task (correct vs. incor-
rect), and the y-axis represent the response times (in ms) in the lexical
decision task. b: Simulated response times in the lexical decision task when
no answer was given in the rare-word association task. The axes are the
same as in Figure 3. In both panels, error bars indicate standard errors.
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As a result, only incubation should increase reminiscence in the
CLARION simulation, which is consistent with S. M. Smith and
Vela’s (1991) human data.

Simulation results. Twelve thousand simulations were run
(1,000 in each of the 12 conditions). The results are shown in
Figure 5b. As predicted, the mean reminiscence scores were pos-
itively affected by the incubation length. The mean reminiscence
scores were 1.73, 2.03, 3.04, and 3.81 for the 0-, 1-, 5-, and 10-min
incubation intervals, respectively, which is similar to the human
data. However, the duration of the recall tests did not show such a
clear pattern. In particular, test duration seemed to have a positive
effect on reminiscence when there was no incubation interval, no
effect for moderate incubation intervals (1 and 5 min), and a
negative effect for a long incubation interval (10 min). However,
unlike the effect of incubation interval, all these effects of test
duration are small: The biggest group difference within each
incubation level is smaller than one word (0.739). A Test Dura-
tion � Incubation Interval ANOVA was performed on the remi-
niscence scores to confirm these observations. First, the incubation
length had a significant effect on reminiscence, F(3, 11998) �
1,661.34, p � .0001, as in the human data. Post hoc Tukey
analyses showed that all incubation levels were statistically differ-
ent ( p � .0001). Second, the main effect of test duration did not
reach statistical significance, F(2, 11988) � 0.78, ns, as in the
human data.16

Discussion. CLARION was able to reproduce the effect of
incubation on reminiscence found by S. M. Smith and Vela (1991).
The main difference between the simulation and the human ex-
periment was that the simulation made the simplifying assump-
tions that (a) words are recalled independently during each recall
test and (b) the two recall tests are independent. This does not seem
to be the case with human participants as many effects of words
and test dependencies (e.g., priming) have been observed (e.g.,
Cohen, 1963). These differences could probably be resolved by
modeling the dependencies between the words (e.g., by using
top-level rules or the correlation between the bottom-level repre-
sentations) and by adding a recency-based base-level activation
(J. R. Anderson & Milson, 1989). However, the focus of this
simulation was not to capture the minute details of free recall.17

Overall, CLARION was successful in capturing the data concern-
ing the effect of incubation on reminiscence in a free-recall ex-
periment.

Insight in Problem Solving

Experimental setting. Many theories of insight assume that
insight is the consequence of knowledge restructuring (e.g.,
Mayer, 1995; Pols, 2002; Schilling, 2005; Schooler & Melcher,
1995; S. M. Smith, 1995). Because declarative knowledge has
often been modeled using graphs (Schilling, 2005), Durso et al.
(1994) hypothesized that insight could be observed by constructing
and comparing participants’ knowledge graphs before and after
insight had occurred. To test this hypothesis, the participants were
asked to explain the following story:

A man walks into a bar and asks for a glass of water. The bartender
points a shotgun at the man. The man says, “Thank you,” and walks
out. (Durso et al., 1994, p. 95)

The participants’ task was to explain why the sight of the
shotgun replaced the man’s need for a glass of water (i.e., because
he had the hiccups). To explain this story, the participants had 2 hr
to ask the experimenter yes–no questions. After this questioning
period, the participants were split into two groups (solvers and
nonsolvers) and asked to rate the relatedness of pairs of concepts
using a Likert-type scale (Likert, 1932). These ratings were used to
construct the solvers’ and nonsolvers’ knowledge graphs (via the
Pathfinder scaling algorithm; Schvaneveldt, Durso, & Dearholt,
1989).

Experimental results. Twelve participants tried to explain the
story, and only half of the participants successfully accomplished
the task. The resulting aggregated knowledge graphs were as
shown in Figure 6. As can be seen, the solvers’ knowledge graph
(see Figure 6a) differed from the nonsolvers’ (see Figure 6b) by 12
edges. These differences reflected a shift of the focal points of the
graph (i.e., the center and median of the graph) from “Bartender”
to “Relieved.” Furthermore, the correlation between the two
graphs was essentially zero (Durso et al., 1994). (Note that no
further statistical analysis was provided by Durso et al. 1994.)

Simulation setup. To simulate this task, each concept was
represented by a separate node in each layer in the top level of
CLARION. The nonsolvers’ graph (see Figure 6b) was assumed to
represent common prior knowledge (i.e., common prior semantic
associations) and was thus precoded as rules in the top level
(linking corresponding nodes across the two layers of the top level)
before the simulation started. In the bottom level, each concept
was represented using 10 nodes (with distributed representations,
which were randomly generated). The explicit rules (in the top
level) were also coded as implicit associations in the bottom level
(i.e., the idea of redundant encoding) through pretraining the
bottom-level network using example stimuli consistent with the
top-level rules. The values given to the parameters were as shown
in Tables 4 and 5.

As in the simulation of the free-recall task (S. M. Smith & Vela,
1991; see the subsection Incubation in a free-recall task), hypoth-
esis generation was initiated by a random activation pattern in the
bottom level of CLARION. This pattern was further processed by
the neural network (by repeatedly applying the nonlinear transmis-

16 The interaction between the factors also reached statistical signifi-
cance, F(6, 11988) � 59.70, p � .0001. This interaction indicates that the
effect of test duration is different for short and long incubation intervals.
Yet the statistical significance of the difference is mainly due to the large
number of degrees of freedom in the statistical analysis (i.e., number of
simulations). This difference could probably be resolved by directly mod-
eling the upper limit of short-term memory capacity using an extra param-
eter (to avoid a ceiling effect caused by the upper limit of short-term
memory being set by the complex interaction of several free parameters)
and adding more short-term memory details (see also footnote 17).

17 It should be noted that the emphasis of this simulation was on
simulating the effect of incubation on reminiscence, not free recall per se.
A more complete simulation of this experiment would require more com-
plex memory processes (such as short-term memory) and more parameters.
Although available in the CLARION cognitive architecture (Sun, 2002),
these detailed memory processes and parameters are not included here for
the sake of focus and clarity. As a result, a detailed comparison of the
simulated numbers of recalled words with corresponding human data is not
attempted here.
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sion function) until convergence (settling) of the bottom-level
neural network. The resulting stable state was sent bottom-up to
activate the right layer of the top level (through explicitation) and
integrated with the result of explicit processing (although the
scaling parameter was set to ignore the effect of rule-based pro-
cessing due to the absence of rules relevant to finding the solution

to this problem). The integrated result was transformed into a
Boltzmann distribution, which served as activations for the right-
layer nodes in the top level. The mode of the distribution (the
maximum activation in the layer) was used to estimate the ICL to
determine if a question was to be asked of the simulated experi-
menter.

Figure 5. a: Reminiscence effect found in S. M. Smith and Vela’s (1991) Experiment 1. b: Simulated
reminiscence effect. Error bars indicate standard errors. In both panels, the black bars represent 1-min tests, the
white bars represent 2-min tests, and the grey bars represent 4-min tests.
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If the ICL was higher than a chosen threshold, a question was to
be asked of the simulated experimenter. Questions concerned a
direct link between a node in the right layer and a node in the left
layer (both in the top level). A node in the right layer was first
stochastically chosen based on the Boltzmann distribution in place;
then, abductive reasoning was performed to activate the left layer
in the top level; the activations in the left layer were also trans-

formed into a Boltzmann distribution (which served as activations
of the left-layer nodes), and a node from the left layer was
stochastically chosen. A question was then asked concerning the
existence of a link between the chosen node in the right layer and
the chosen node in the left layer (both in the top level). If the
answer was yes (i.e., when the link was present in the solvers’
graph as shown in Figure 6a), a new rule (link) was added to the
top level (i.e., to the explicit knowledge of the simulated partici-
pant); otherwise, the corresponding rule (if it existed in the top
level) was removed from the top level. If the ICL was too low to
come up with a question to the experimenter, the same procedure
was used, except that the top-level weight matrix (explicit knowl-
edge) was not modified.

In all cases, the activations present in the left layer of the top
level were sent top-down (i.e., implicitation) for another iteration
of processing (see the Appendix for mathematical details). This
iterative process ended if a solution was found (i.e., the top-level
explicit knowledge of the simulated participant was identical to the
solvers’ graph; see Figure 6a) or 20,571 iterations had occurred in
the bottom level (20,571 � 350 ms � 7,199,850 ms � 2 hr, as in
the human experiment).

Most associationistic theories of insight argue that a more dif-
fused search in memory is more likely to yield a creative solution
(e.g., Campbell, 1960; Martindale, 1995; Mednick, 1962). In
CLARION, this phenomenon may be captured using the noise
(temperature) parameter in the Boltzmann distribution (see the
Modeling Incubation and Insight Using CLARION subsection).
The present simulation served to test the adequacy of this hypoth-
esis. The noise (temperature) level, used for selecting a node based
on the Boltzmann distribution, was varied between 10	2 and 105

(with an increment of 1 for the exponent). One thousand simula-
tions were run with each of these noise levels.

Rationale and explanations.
Conceptual explanation based on EII. After the participant is

read the story, she or he engages in explicit memory retrieval and
implicit memory search (incubation). However, explicit processing
is mostly rule based (Principle 1 of EII), which only brings up
stereotypical semantic associations from the words included in the
story. In contrast, the gradient of associations is flatter in implicit
memory (Martindale, 1995; Mednick, 1962): The search is more
diffused, and thus, more remote (creative) associations can be
retrieved using soft-constraint satisfaction (Hadamard, 1954).
Hence, according to the EII theory, implicit processing allows the
retrieval of approximate hypothetical associations that differ from
those retrieved explicitly. These implicit associations are then
integrated with the result of explicit processing (Principle 4 of EII).
If the chosen integrated association is deemed plausible (i.e., if the
ICL is high enough), a question concerning the validity of this
association is put to the experimenter. If the experimenter confirms
the association, it is added into explicit knowledge; otherwise, it is
removed. This process is iterated, and explicit and implicit pro-
cessing are reinitiated with the new state of the knowledge. This
iterative process ends when the participant finds the correct solu-
tion or the allowed time elapses.

Mechanistic explanation based on CLARION. During the
questioning period, a random activation pattern is used to initiate
processing and randomly sample the implicit associations (i.e., the
preexisting implicit knowledge; see Figure 6b). However, each
time an implicit association is sent bottom-up (through explicita-

Figure 6. Knowledge graphs inferred by the participants in Durso, Rea,
and Dayton’s (1994) Experiment 1.

1013INCUBATION, INSIGHT, AND CREATIVE PROBLEM SOLVING



tion), noise is added in constructing the Boltzmann distribution,
and a hypothesis is stochastically chosen. Low noise should result
in a higher probability of choosing the most likely hypothesis
according to the existing knowledge structure, which tends to be
uncreative (and often counterproductive in this particular context).
However, when more noise is added during the construction of the
Boltzmann distribution, hypotheses that are somewhat inconsistent
with the currently existing knowledge structure are more likely to
be sampled. This can lead to altering the connection patterns of the
top-level explicit knowledge structure (through questions and an-
swers as described earlier), which may eventually lead to some-
thing resembling the correct solution (the solvers’ knowledge
graph; see Figure 6a). This process constitutes a typical generate-
and-test algorithm (Russell & Norvig, 1995). This mechanistic
explanation is in line with the human results obtained by Durso et
al. (1994).

Simulation results. The mean performance by noise level was
as shown in Figure 7. As can be seen, the CLARION model was
generally able to modify its explicit representations based on
yes–no questions to the experimenter. As predicted, this ability to
produce a new explicit representation of the problem was posi-
tively related to the noise level (�) in low noise conditions but
leveled off with a reasonable amount of noise. This was confirmed
by a between-subject ANOVA. The effect of the noise level on the
mean number of edges differing between the solution proposed by
CLARION and the solvers’ graph (see Figure 6a) was highly
significant, F(7, 7992) � 12,193.40, p � .0001. More precisely,
Tukey post hoc analyses showed that low noise levels resulted in
poor performance and that each increment between 10	2 and 100

significantly improved the performance of the model ( p � .01).
From that point on, increasing the noise level did not significantly
improve the performance of the model. Overall, the noise (tem-
perature) parameter in CLARION changed the probability of cor-
rectly solving an insight problem, which is in line with associa-
tionistic theories of insight. (Note that the absence of statistical
analysis in Durso et al., 1994, limited our ability to compare the
simulated data with the human data. However, the simulated
results clearly showed the shift of the problem representation in the
model, as in the human data.)

Discussion. The preceding analysis showed that the perfor-
mance of CLARION improved as the noise level was increased.
Martindale (1995) equated creativity to a more thorough explora-
tion of the solution space, which increased the probability of
finding creative solutions to ill-defined problems. This can be
modeled by altering the noise level (i.e., temperature, stochastic-
ity) in the search process. A lower noise level suggests a more
timid exploration of the solution space and thus the generation of
common, uncreative solutions (which may not solve ill-defined
problems). Adding more noise (increasing stochasticity) initiates a
more complete investigation of the possible solutions, thus allow-
ing less frequent solutions to be sampled. These infrequent solu-
tions might be responsible for insight (see also the associationistic
theory of insight; e.g., Pols, 2002).

In particular, this interpretation of the simulation results is in
line with the evolutionary theory of insight (e.g., Campbell, 1960;
Simonton, 1995). According to this theory, noisy hypotheses are
implicitly generated and explicitly evaluated (somewhat similar to
the heuristic-analytic theory; Evans, 2006). According to this
theory, more creative individuals would implicitly generate a
greater number of hypotheses. In modeling, this amounts to cre-
ative and uncreative people having different noise (temperature/
stochasticity) levels (with the former being modeled with a higher
noise level). To summarize, CLARION was successful in simu-
lating the search process leading to insight in problem solving, and
the simulation results were in line with previous theories of insight
and creativity. This constitutes converging evidence for the EII
theory.

Overshadowing in Problem Solving

The implicit learning literature has repeatedly shown that ex-
plicitly looking for rules and regularities can impair performance
when none exist or when they are difficult to extract (Berry &
Broadbent, 1988; Reber, 1989; Sun et al., 2005). This overshad-
owing of implicit processing by explicit processing is robust and
also present in insight problem solving (Schooler et al., 1993;
Schooler & Melcher, 1995). A typical insight problem is addressed
below.

Figure 7. Number of edges differing between the solutions found by the CLARION model and the solvers’
knowledge graph (see Figure 6a). The x-axis represents the noise level (temperature) in the Boltzmann
distribution.
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Experimental setting. Schooler et al. (1993) asked partici-
pants to solve the following problem:

A dealer in antique coins got an offer to buy a beautiful bronze coin.
The coin had an emperor’s head on one side and the date 544 B.C.
stamped on the other. The dealer examined the coin, but instead of
buying it, he called the police. Why? (Schooler et al., 1993, p. 182)

Each of the 82 participants had 2 min to solve this problem.
Following this initial problem-solving period, half of the partici-
pants were assigned to an unrelated task, while the remaining half
were asked to verbalize their problem-solving strategies. In both
cases, the interruption period lasted 90 s and was followed by
another 4-min attempt to solve the initial problem. The dependant
variable was the proportion of insight problems solved by the
participants.

Experimental results. The results were as shown in Figure 8
(gray bars). After the participants spent the interruption period
working on an unrelated task, 45.8% of the insight problems were
solved. In contrast, only 35.6% of the problems were solved after
the participants verbalized their problem-solving strategies. This
constitutes a decrease of nearly 30% in the proportion of solved
problems. According to Schooler et al. (1993), this statistically
significant difference, t(74) � 2.13, p � .05, was the consequence
of an overly verbal mode of problem solving, which prevented the
participants from reaching an insight.

Simulation setup. As argued earlier, the participants only
relied on the information present in the problem following the
preparation period: the coin material, the carved pattern, the coin
date, and the dealer’s decision. The first three features were
independent, while the last feature was a function of the first three
(i.e., the antique dealer only buys high-quality items). In addition,
the relative sizes of bottom-level (implicit) representations were
made to reflect the task constraints. For instance, the dealer’s
decision was to be explained and thus should not be changed by
the neural network settling (convergence) process in the bottom
level. Hence, the dealer’s decision was represented by more nodes
in the bottom level. Accordingly, other features were represented
by fewer nodes in the bottom level (in particular, the emphasis on
the antique nature of the coin in the original problem suggested
that the date might be problematic and thus the date was repre-
sented by even fewer nodes).

More precisely, each of the problem features (i.e., coin material,
carved pattern, coin date, dealer’s decision) was represented by
two nodes in the left layer of the top level (see Figure 2): the date
(good, bad), the material (good, bad), the carved pattern (good,
bad), and the dealer’s decision (buy, do not buy). In the right layer
of the top level, eight abstract explanations were locally repre-
sented (using eight nodes in total).18 In addition, the dependency
between the dealer’s decision and the other features was coded into
the top level: When all the coin features were good, the dealer
bought the coin; otherwise, the dealer did not buy the coin.

In the bottom level of the CLARION model, each concept
(represented by each top-level node) was represented by a ran-
domly generated distributed pattern. As previously indicated, the
problem constraints suggested that some features were more rel-
evant or more reliable than others, which led to the use of distrib-
uted representations of variable sizes: The coin date was repre-
sented by 30 bottom-level nodes, the dealer’s decision was
represented by 100 bottom-level nodes, and the remaining features

(and the explanations) were represented using 50 bottom-level
nodes each (all with distributed representations). Eight training
stimuli (i.e., one for each explanation, thus representing all the
possible cases) were generated by concatenating the random rep-
resentations (the training served to reencode the top-level rules in
the bottom level).

To simulate this task, a stimulus was first presented to the left
layer in the top level, as well as to the bottom level, representing
a good date, good material, a good carved pattern, but a refusal of
the dealer to buy the coin. This stimulus did not correspond to any
exemplar used to pretrain the bottom level and was inconsistent
with the precoded rules in the top level (in the cases used for
pretraining, coins with all the good features were bought). The
stimulus was transmitted through the top-level connections and the
bottom-level neural network settling (convergence) process. As in
all the other simulations, the resulting bottom-level stable state was
sent bottom-up (through explicitation), integrated with the result of
top-level processing in the right layer of the top level, and trans-
formed into a Boltzmann distribution (using the first noise value
from Table 5). A node was stochastically chosen based on the
distribution (as the model response), and the statistical mode of the
distribution was used to estimate the ICL. If the ICL was higher
than a predefined threshold, the response was output to effector
modules. Otherwise, the response was used to initiate another
round of processing (by transmitting the activation backward from
the right layer to the left layer in the top level and then implici-
tation, as discussed before). As explained earlier, this constituted a
form of abductive reasoning to infer possible causes of the selected
explanation. These possible causes were used for the next iteration
of processing. As in all the other simulations, each spin in the
bottom level took approximately 350 ms of psychological time, so
the first period of problem solving lasted a maximum of 343 spins
(because human participants had 2 min).

The interruption period lasted 257 spins in the simulation (be-
cause the interruption period lasted 90 s for human participants).
During this time, the participants who were assigned to an unre-
lated task continued to generate implicit hypotheses to explain the
initial problem because implicit processing did not require much
attentional resource and thus might go on during the performance
of the unrelated task. The simulation runs representing these par-
ticipants continuously worked on the problem (with the second
noise value from Table 5). In contrast, the verbalization group did
not have this incubation period because verbalization prevented
the participants from working on the task and forced them into an
explicit mode (Schooler et al., 1993).

Finally, both conditions had another 4-min period of implicit
and explicit processing to solve the initial problem (i.e., a maxi-
mum of 686 spins). During this final problem-solving period, the
noise parameter of the simulated unrelated interruption partici-
pants was reset to its initial value (to refocus the search). The
dependent variable was the proportion of simulations that selected

18 This number of explanations was determined by the Cartesian product
of the first three features (recall that the dealer’s decision was assumed
dependent on the three other features). Each explanation represented one
configuration of activation in the left layer. The correct explanation rep-
resented a good material, a good carved pattern, a bad date, and a refusal
to buy the coin.
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the correct explanation for the insight problem. The values of all
the parameters were as shown in Tables 4 and 5.

Rationale and explanations.
Conceptual explanation based on EII. According to the EII

theory, both explicit processing and implicit processing are initi-
ated by the problem (Principle 2 of EII). However, insight prob-
lems are more likely to be solved by the implicit processes because
rule-based processes are ineffective in solving such problems
(Bowden et al., 2005). As in the earlier explanation of Durso et
al.’s (1994) experiment, implicit hypotheses are generated using
implicit knowledge and then verified using explicit knowledge.
When the participants were interrupted to take part in an unrelated
activity, hypotheses were still being generated implicitly (as in the
explanation of S. M. Smith and Vela’s, 1991, reminiscence data).
In contrast, participants who had to verbalize their problem-
solving strategies could not generate implicit hypotheses easily
(because they were likely stuck in an explicit processing mode).
When the participants went back to working on the problem, the
verbalization group had fallen behind, so the overall probability of
the verbalization group’s solving the problem was lower than that
of the unrelated interruption group.

Mechanistic explanation based on CLARION. In this simu-
lation, only the bottom level of the CLARION model can generate
the correct explanation because the top level can only produce
stereotypical responses that are the direct consequences of its
precoded explicit rules. In contrast, the bottom level involves a
neural network settling (convergence) process that can be viewed
as performing soft-constraint satisfaction (as discussed before; see
Hertz et al., 1991; Hopfield & Tank, 1985). Because more nodes
were used to represent the dealer’s decision than the other features
in the bottom level, the dealer’s decision was considered a stronger
constraint. Hence, the activation pattern (vector) was more likely
to be pulled toward existing attractors that satisfied this constraint
(which were likely to be the correct explanations for this task). The
verbalization group did not benefit as much from this soft-
constraint satisfaction process because the implicit processes were
disengaged during the interruption period. This explanation clari-

fies the mechanistic processes underlying overshadowing in hu-
man insight problem solving (Schooler et al., 1993).

Simulation results. Five thousand simulations were run in
each condition. The simulation results were as shown in Figure 8
(black bars). As predicted, simulations of the verbalization condi-
tion were less likely to select the appropriate solution to the coin
problem than were the simulations of the unrelated interruption
condition. Only 35.3% of the simulation runs in the verbalization
condition selected the correct explanation for the problem, whereas
45.3% of the simulation runs in the unrelated problem condition
selected the correct explanation (compared with 35.6% and 45.8%
in the human data, respectively). This difference between the
simulated verbalization and unrelated interruption conditions was
reliable according to a binomial test, B(5000, 0.353) � 2,265, p �
.0001.19 The fit to the human data was also excellent: The differ-
ence between the human and the simulation data was smaller than
0.5%. CLARION thus successfully simulated the data related to
overshadowing in insight problem solving. (More detailed statis-
tical analysis comparing the simulated data with human data was
impossible due to the unavailability of the complete human data.)

Discussion. CLARION did a good job of simulating the over-
shadowing effect of explicit processes on implicit processes
(Schooler et al., 1993). In CLARION, overshadowing was cap-
tured by disengaging implicit processing (under proper circum-
stances). The data were captured because the bottom level carried
out soft-constraint satisfaction (Hertz et al., 1991; Hopfield &
Tank, 1985) that can weigh some constraints (e.g., the dealer’s
decision) more heavily than others (e.g., the coin date). The
activation pattern (the activation vector) was pulled toward exist-
ing attractors that satisfied the stronger constraint, which is a
natural explanation of the phenomenon.

19 A binomial statistic was used here because each simulation produced
a single output classified as correct or incorrect.
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Figure 8. Proportion of correct explanations selected by the participants in Schooler, Ohlsson, and Brooks’s
(1993) Experiment 1 (gray bars) and by the CLARION model (black bars). The x-axis represents the distracting
activity during the interruption period.
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General Discussion

In the literature, creative problem solving has been used as an
umbrella term that encompasses research on incubation and insight
in problem solving (Bowden et al., 2005). As a result of the
diversity of the field, existing theories of creative problem solving
are notably fragmentary and often contradictory to each other
(Lubart, 2001). The main goal of this work was to provide a new
theory of creative problem solving that allows a somewhat coher-
ent integration and unification (to some extent) of abstract theories
of creative problem solving (e.g., stage decompositions; Wallas,
1926) with process theories that focus on the detailed explanations
of particular stages (e.g., Dorfman et al., 1996; Mayer, 1995;
Ohlsson, 1992, in press; Pols, 2002; Schilling, 2005; Schooler &
Melcher, 1995; Simon, 1966; Simonton, 1995; S. M. Smith, 1995;
S. M. Smith & Dodds, 1999). Furthermore, the proposed theory
aimed at integrating and unifying the existing process theories by
performing a reinterpretation of their assumptions, operations, and
predictions.

The EII theory is an initial attempt at such a theory. EII relies
mainly on five basic principles, and each of the principles is
motivated by psychological as well as theoretical considerations
(see the section EII: An Integrative Theory of Creative Problem
Solving). In this article, we have shown how the EII theory may be
used to capture Wallas’s (1926) stage decomposition of creative
problem solving and have reinterpreted six process theories of
incubation and four process theories of insight. In addition, the EII
theory has been able to capture and provide an explanation for
many data sets that support the notions of incubation and insight in
human cognition, including the four detailed in this article. The
conceptual explanations provided by the EII theory are intuitively
appealing.

In addition to providing high-level conceptual explanations, the
formulation of EII was sufficiently precise to be implemented as a
computational model based on the CLARION cognitive architec-
ture (Sun, 2002; Sun et al., 2001, 2005). This implementation led
to quantitative simulation results that closely matched human data,
including the data showing the effect of incubation in a lexical
decision task (Yaniv & Meyer, 1987), the data showing the effect
of incubation in a free-recall task (S. M. Smith & Vela, 1991), the
data showing the effect of knowledge restructuring in achieving
insight (Durso et al., 1994), and the data showing the effect of
overly explicit processing on insight problem solving (overshad-
owing; Schooler et al., 1993).

It should be mentioned that the emphasis of the above-
mentioned simulations was not on fine-grained modeling of each
task involved but on a broad-stroke coverage of a variety of tasks,
thus making the model coarser by necessity. As a result, the
simulations may have overlooked a few phenomena in these tasks
that we consider to be of secondary importance (e.g., fitting the
exact number of recalled words in S. M. Smith & Vela, 1991) or
may have focused on only a few data sets of a task instead of all
(e.g., ignoring the data related to hypermnesia in S. M. Smith &
Vela, 1991). This oversight may actually be beneficial. As in any
function approximation or data-fitting situations, a balance has to
be stricken between fitting data faithfully and avoiding fitting
noise in the data (i.e., overfitting). Coarser grained modeling may
be beneficial in this regard. Finally, very importantly, a broad-
scoped but coarse-grained synthesis of a range of data is essential

to the goal of understanding the general principles of cognition
(Newell, 1990).

This being said, the formulation of the EII theory and the
development of the CLARION model to capture human data in
creative problem solving have important implications beyond the
scope of creative problem solving. In particular, implications for
other research on creativity are examined below.

Implications for Psychological Theories of Creativity

Empirical phenomena. The notion of creativity has been
defined almost as many times as there have been studies on
creativity published (for reviews, see, e.g., Mayer, 1999). How-
ever, there are two common themes in most definitions: novelty
and usefulness. To be deemed creative, an idea must be novel to
the individual who generated it and useful according to some set of
criteria.

Many different approaches have been used to study creativity
(Mayer, 1999). For instance, research in the psychometric tradi-
tion, which focuses on the comparison of people who score high
and low in creativity tests, has found that creative individuals work
hard, prefer to make their own agenda, strive for originality, and
are more flexible than uncreative individuals (Hayes, 1989). While
the psychometric tradition has been around for nearly a century,
most current research efforts belong to the psychological approach.
This approach is mainly experimental (or quasi-experimental;
Runco & Sakamoto, 1999) and focuses on the processes involved
in creative thinking. Mostly, this line of research involves studying
creative problem solving and the factors that affect such problem
solving (Mayer, 1999). For instance, research has suggested that
the information provided to participants could either increase or
decrease the creativity of their solutions (Runco & Sakamoto,
1999). Also, there seems to be an optimal level of expertise for
creative work: Novices rarely contribute significant creative work,
but high levels of expertise often lead to the automatic production
of overlearned solutions (Runco, 2004). In addition, focused at-
tention, anxiety, and rewards tend to decrease creativity (Runco,
2004; Runco & Sakamoto, 1999). Consistent with the personality
traits found to be associated with creativity by psychometric re-
search, intrinsic motivation seems to be the most important factor
leading to creativity (for full reviews and for other factors, see
Runco, 2004; Runco & Sakamoto, 1999).

The EII theory can provide intuitively appealing explanations
for the cognitive factors found to affect creativity. First, most
creative solutions in EII are explained by implicit processing or by
its integration with explicit processing (as hypothesized by Runco
& Sakamoto, 1999; for a neuropsychological argument, see Di-
etrich, 2004). The effect of task instructions on creativity can
sometimes be explained with inducing more or less explicit modes
of processing. For example, we have shown that relying mostly on
explicit processes in insight problem solving can lead to the
overshadowing effect found in human participants (see the expla-
nation of the simulation of Schooler et al., 1993). Second, exper-
imental instructions can also affect the content of explicit knowl-
edge (see the explanation of the simulation of Durso et al., 1994),
and tasks that rely mainly on newly acquired explicit knowledge,
which has not yet been recoded into implicit knowledge (Principle
3 of EII), can also produce an overly explicit mode of processing
(and, consequently, uncreative solutions). Third, however, too
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little explicit knowledge would also produce low-quality responses
because the context for implicit processing, which follows from
mostly explicit processing in the preparation stage, could be erro-
neous or insufficient. Fourth, the effects of focused attention,
anxiety, and rewards can all be accounted for by EII. According to
Runco and Sakamoto (1999), all these factors are one and the
same: Anxiety focuses the participants’ attention on the stress-
generating stimulus, while rewards focus their attention on what-
ever leads to rewards. Hence, they all amount to focused attention,
which is represented by an overly explicit mode of processing in
EII (Principle 1 of EII). To summarize, according to the EII theory,
implicit processing plays a major role in the explanation of most
creative solutions, and the cognitive factors known to decrease
creativity often lead to an overly explicit mode of processing (and
hence the decrease of creativity).

Theoretical considerations. The EII theory of creative prob-
lem solving is not the earliest theory that proposes an explanation
for the cognitive processes involved in creativity (see, e.g., Camp-
bell, 1960; Finke et al., 1992; Johnson-Laird, 1988; Mednick,
1962). One of the most successful previous theories of creativity is
Geneplore (Finke et al., 1992). According to this theory, the
creative process is composed of two distinct processing compo-
nents: a generative process and an exploratory process. First, the
generative processes (such as memory retrieval, association, and
analogical transfer) are used to construct mental representations
known as preinventive structures. When several preinventive
structures have been generated, the exploration processes (such as
attribute finding, conceptual interpretation, and hypothesis testing)
are employed to interpret and evaluate these structures. If one or a
combination of preinventive structures is sufficient to solve the
problem at hand (i.e., it meets all the constraints), the creative
product is output, and work on the problem is over. Otherwise, the
cycle starts anew.

While this theory provides a useful high-level description of the
creative process, it does not include a more fine-grained analysis of
the realization of the processing components. The evolutionary
theory of creativity (Campbell, 1960; Johnson-Laird, 1988), which
is very similar to the evolutionary theory of insight, can be used to
explain the formation of preinventive structures (the generative
process) and their interpretation/evaluation (the exploratory pro-
cess). Like the evolutionary theory of insight, the evolutionary
theory of creativity assumes Darwin’s three principles (i.e., blind
variation, evaluation/selection, and retention), which roughly map
onto the generation, exploration, and output of a creative solution
in Geneplore. Also, as in the evolutionary theory of insight, solu-
tion generation and selection are assumed to be unconscious in the
evolutionary theory of creativity (and only the selected solution
reaches consciousness, as reviewed earlier). Hence, using the
evolutionary theory of creativity to enhance Geneplore would lead
to the prediction that creative individuals are generally unaware of
the underlying process. This can account for the apparent sudden-
ness of creative ideas.

The EII theory can capture the Geneplore theory of creativity,
similar to EII’s reinterpretation of the evolutionary theory of
insight (Campbell, 1960). According to the EII theory, the gener-
ative process can be captured by implicit processing because it
captures both memory retrieval and association (via soft-constraint
satisfaction). Furthermore, explicitation and knowledge integration
in EII can be used to capture the exploratory process. These

processes have been used in EII to provide an intuitive explanation
for attribute finding (see the simulation of Schooler et al., 1993),
conceptual interpretation (see the simulation of S. M. Smith &
Vela, 1991), and hypothesis testing (see the simulation of Durso et
al., 1994). Finally, in EII, the integrated output is used to estimate
the ICL. High ICLs indicate that the proposed solution meets most
constraints, whereas low ICLs indicate important violations. In the
former case, a creative solution is output, while in the latter case,
information is sent top-down for another iteration, which captures
the reinitialization of the generative process in Geneplore.

Implications for Computational Theories of Creativity

Early on, we argued that an important contribution of EII is its
precision, which allows for a computational implementation of the
theory. EII and its implementation (in CLARION) thus have
important implications for computational research on creativity.
Here, we present a few examples of artificial intelligence models
along with a rough description of how CLARION could capture
the related phenomena.

One of the acknowledged sources of creativity in artificial
intelligence is analogies in problem solving (Langley & Jones,
1988). According to most theories, analogies are found by match-
ing the structure of a new problem with the structure of previously
solved problems (Gentner & Markman, 1997). Langley and Jones
(1988) assumed that the search for an adequate analogy would be
performed implicitly and that the identification of a useful analogy
would produce an insight. While Schank and Cleary (1995) did not
acknowledge the existence of implicit processes, they argued that
this theory could be implemented by using explanation patterns
(e.g., plans, scripts). Using these knowledge structures in unusual
contexts violates top-down expectations, which constitutes creativ-
ity (Schank & Cleary, 1995). Accordingly, Schank and Cleary
argued that research on creativity should focus on finding the
explanation patterns that are shared in a culture, how they are
normally accessed, and how they are (creatively) misapplied. For
a computational model to be creative, a set of heuristics to access
explanation patterns, a set of heuristics to adapt old patterns to new
situations, and a set of heuristics to keep seemingly useless hy-
potheses alive are needed (Schank & Cleary, 1995). These ideas
have been applied in commonsense adaptive planners such as
PLEXUS (Alterman, 1988).

According to EII (and CLARION), it appears that finding analogies
by applying previously encoded scripts and plans is a constraint
satisfaction problem. Implicit knowledge in CLARION is captured by
using an attractor neural network in the bottom level, which has been
shown to constitute a parallel soft-constraint satisfaction algorithm
(Hertz et al., 1991; Hopfield & Tank, 1985). Hence, if the explanation
patterns were encoded as attractors in the bottom level of CLARION,
it would naturally apply existing explanation patterns to new situa-
tions by the neural network settling (convergence) process. The re-
sulting stable state would then be sent bottom-up (via explicitation)
for integration, and if the bottom-up activation were somehow in line
with the top-level activation, integration would likely lead to crossing
the insight threshold. This insight would represent the application of
a known explanation pattern in a novel situation (described by the
input information that entered the system). This CLARION-based
reinterpretation has the advantage of avoiding the use of psycholog-
ically dubious memory representations and processes (such as sym-
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bolic indexing and symbolic local memory retrieval; see Schank &
Cleary, 1995). Also, soft-constraint satisfaction appears to be a natural
substrate for the flexible use of explanation patterns (although the
issue of representing complex structural relationships in connectionist
networks is still a difficult one; see, e.g., Sun, 1992, 1994).

A second example of creativity research in artificial intelligence
involves the use of connectionist networks (e.g., Boden, 2004;
Duch, 2006; Martindale, 1995). According to Martindale (1995), a
noisy neural network, where a random signal is added to the
connection weights or inserted in the activation function, can be
used to model an evolutionary theory of creativity. Also, the noise
level can be used to represent the flatness of the associative
hierarchy in creative individuals by making the activation more
homogeneous (Mednick, 1962). Hence, more creative individuals
could be modeled by using more noise, whereas less creative
individuals would be modeled by using less noise. This addition of
noise in neural networks is essentially similar to Duch’s (2006)
chaotic activation and Boden’s (2004) R-unpredictability (i.e.,
pragmatic unpredictability).

This line of computational models of creativity is compatible with
EII and its implementation in CLARION. In CLARION, both explicit
knowledge and implicit knowledge are modeled using connectionist
networks, and responses are stochastically chosen through a Boltz-
mann distribution. This distribution includes a noise parameter that
has been shown to affect the probability of solving insight problems
(see the simulation of Durso et al., 1994). Hence, the EII theory and
its implementation in CLARION are fully compatible with the afore-
mentioned connectionist theories of creativity.

To summarize, CLARION is able to roughly capture some
computational models of creativity (at a conceptual level). In
addition, theoretically, CLARION can also provide similar high-
level conceptual reinterpretations for computational models of
scientific discovery (e.g., Newell, Shaw, & Simon, 1962; for
reviews, see Boden, 2004; Rowe & Partridge, 1993) and creative
analogy (e.g., Hofstadter & Mitchell, 1994; Rowe & Partridge,
1993). However, implementation of these computational theories
constitutes a major undertaking by itself in terms of time and
effort. Because this is tangential to the focus of the present article,
we do not delve into it here.

Future Work

While proposing a unified framework to study creative problem
solving is an important step, the EII theory needs to address a more
fundamental problem—the role of implicit processes in problem
solving. The role of implicit processes has been suggested by
several studies in both deductive reasoning (e.g., Evans, 2006;
Sun, 1994) and inductive reasoning (Heit, 1998; Osherson, Smith,
Wilkie, Lopez, & Shafir, 1990; Sun, 1994). In both cases, the
similarity between the entities involved affects rule application and
rule generation through softening the hard constraints involved in
rule-based processing. The simulations in this article mostly cap-
tured the effect of similarity through bottom-up knowledge inte-
gration. We have shown in this article that this knowledge inte-
gration process can be used to capture empirical human data
related to creative problem solving. Future work should be devoted
to capturing the effect of similarity (through bottom-level process-
ing) on inductive and deductive reasoning, as well as the comple-
mentary effect—the effect of explicit knowledge (e.g., explicit

rules in deductive or inductive reasoning) on similarity (Tenen-
baum & Griffiths, 2001).
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Appendix

Mathematical Specification of the CLARION Model

This Appendix is a technical description of the non-action-
centered subsystem of CLARION in a matrix algebra form (using
the implementation known as CLARION-H). An overview of the
algorithm is presented in Table 3 in the main text.

The Top Level

In the top level, explicit knowledge is locally represented using
binary vectors xi � {0, 1}n, yj � {0, 1}m, and ||xi|| � ||yj|| � 1 (in
Figure 2 in the main text, xi and yj are vectors describing the
activation in the left and right layers of the top level, respectively),
and ||●|| is the Euclidean norm. These layers are connected using
the matrix V, and the associations can be exactly retrieved using
the following linear transmission rule:

yi � �VN1�xi,

xi � �VTN2�yi, (A1)

where N1 and N2 are defined as

N1 � �
�v

1
�	2 0 . . . 0

0 �v2�
	2 0 0

. . . . . . . . . . . .
0 . . . 0 �vn�

	2
�

N2 � �
�v1

T�	2 0 . . . 0
0 �v2

T�	2 0 0
. . . . . . . . . . . .
0 . . . 0 �vm

T�	2
� , (A2)

where xi � {xi1, xi2, . . . , xin} is the activation in the left layer, yi �
{yi1, yi2, . . . , yim} is the activation in the right layer, and V � {v1,
v2, . . . , vn} is the matrix containing the rules (see Equation A14).

The N1 and N2 matrices are used to normalize the activation so
that the activation of a node cannot be higher than one (it is
equivalent to the k1is in the main text). To do that, the number of
associates of each node must be determined and used to divide the
summed activation (the dot product). This number can be obtained
by counting the number of nonzero elements in each row of the V
matrix (to find the number of associates for each node in xi) or in
each column (to find the number of associates for each node in yi).
Because the V matrix is binary, this can be calculated using the
squared norm. As a result, if proportion p of the associates of yij are
activated in xi, the activation of yij is p. Note that, following Sun
and Zhang (2004), it has been estimated that each application of
Equation A1 takes roughly 1,500 ms of psychological time.

The Bottom Level

In CLARION, the bottom level has been implemented by an
attractor neural network (J. A. Anderson, Silverstein, Ritz, &
Jones, 1977; Hopfield, 1982) using NDRAM (Chartier & Proulx,
2005). Each top-level association is redundantly encoded using a
random vector zi � t1i � t2i, where t1i �{	1, 1}s � {0}r	s is a
vector representing the first s nodes in the bottom level, which are
connected to the left layer in the top level using matrix E, while
t2i � {0}s � {	1, 1}r	s is a vector representing the remaining r 	

s nodes in the bottom level, which are connected to the right layer
in the top level using matrix F (see Figure 2 in the main text).

The distributed representation of the stimulus (zi) is transmitted
in the bottom level using this nonlinear transmission rule (Chartier
& Proulx, 2005):

zi�t�1� � f�Wzi�t��, (A3)

� j, 1 � j � r:f�zij�t��

� � �1, zij�t� � 1
� � 1�zij�t� � zij�t�

3 , � 1 � zij�t� � 1,
�1, zij�t� � � 1

(A4)

where zi[t] � {zi1[t], zi2[t], . . . , zir[t]} is the distributed representa-
tion after t spins in the network (there is a total of p spins per trial)
and 0 �  � 0.5 is the slope of the transmission function. This
network is guaranteed to settle in a stable state (Hélie, 2008).
Following Sun and Zhang (2004), we assumed that each spin in the
bottom level takes roughly 350 ms of psychological time.

Bottom-up Transmission (Explicitation)

Once the bottom-level processing is completed, the information
is sent bottom-up using the following equations. If the initial
stimulus first activated the left layer in the top level, the bottom-up
activation is transmitted to the right layer of the top level:

y�bottom-up� � �FTN3�zi�p�, (A5)

where y[bottom-up] is the bottom-up signal sent to the right layer in
the top level and zi[p] is the bottom-level activation after p spins.

Otherwise, if the initial stimulus first activated the right layer in
the top level, the bottom-up activation is transmitted to the left
layer of the top level:

x�bottom-up� � �ETN4�zi�p�, (A6)

where x[bottom-up] is the bottom-up signal sent to the left layer in the
top level. N3 and N4 are the following square diagonal matrices:

N3 � �
�f1

T�	2.2 0 . . . 0
0 �f2

T�	2.2 0 0
. . . . . . . . . . . .
0 . . . 0 �fr

T�	2.2
�

N4 � �
�e1

T�	2.2 0 . . . 0
0 �e2

T�	2.2 0 0
. . . . . . . . . . . .
0 . . . 0 �er

T�	2.2
� , (A7)

where F � {f1, f2, . . . , fr} and E � {e1, e2, . . . , er} are the
matrices linking the top- and bottom-level representations (see
Equations A16 and A17). Like N1 and N2, the N3 and N4 matrices
are counting the number of nonzero elements in each column of
matrices F and E so that if a node in the top level is associated to
d nodes in the bottom level, its total activation is divided by d1.1.
The exponent, which is not present in top-level activation, was
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added to bottom-up activation to capture similarity-based process-
ing (Sun, 1994).

Top-Down Transmission (Implicitation)

If the left layer in the top level is activated, the corresponding
distributed representation is activated in the bottom level:

zi � Exi � t1i. (A8)

Likewise, if the right layer in the top level is activated, the
corresponding distributed representation can be activated in the
bottom level:

zi � Fyi � t2i. (A9)

Integration

Once the bottom-up activation has reached the top level, it is
integrated with the activation already present in this level using the
Max function. Hence, if the initial stimulus activated the left layer
of the top level, the integrated activation vector is located in the
right layer of the top level:

� j, 1 � j � m: y�integrated�j � Max�yij, 
 � y�bottom-up�j � 
r

� residualj�, (A10)

where y[integrated] � {y[integrated]1, y[integrated]2, . . . , y[integrated]m} is
the integrated activation vector, y[bottom-up] � {y[bottom-up]1,
y[bottom-up]2, . . . , y[bottom-up]m} is the bottom-up activation (Equa-
tion A5), 
 is a scaling parameter that determines how implicit the
processing is, residualj is the bottom-up activation resulting from
the final state of the bottom level at the end of the previous
processing iteration at node j, and 
r is a scaling parameter. 
r is
set to 1 in the Yaniv and Meyer (1987) simulation (because of the
two-task sequence) and to 0 in all the other simulations reported
here (because there is no task sequence).

Likewise, if the initial stimulus activated the right layer in the
top level, the integrated activation vector is located in its left layer:

� j, 1 � j � n: x�integrated�j � Max�xij, 
 � x�bottom-up�j � 
r

� residualj�, (A11)

where x[integrated] � {x[integrated]1, x[integrated]2, . . . , x[integrated]n} is
the integrated activation vector, and x[bottom-up] � {x[bottom-up]1,
x[bottom-up]2, . . . , x[bottom-up]n} is the bottom-up activation (Equa-
tion A6).

In all cases, the integrated activation vector is further trans-
formed into a Boltzmann probability distribution:

P(y�integrated�i) �
ey�integrated�i/�

�
j

ey�integrated�j/�
, or (A12)

P�x�integrated�i� �
ex�integrated�i/�

�
j

ex�integrated�j/�
,

where � is the temperature (randomness parameter). Equation A12
is also called the hypothesis distribution in the main text and
replaces the activation in the integrated activation vector. In other
words, each y[integrated]i or each x[integrated]i represents a hypothesis,
and Equation A12 represents the probability distribution of the
hypotheses. The statistical mode of Equation A12 is used to
estimate the internal confidence level (ICL).

Assessment

The statistical mode of the hypothesis distribution is used to
estimate the ICL of the model, and a hypothesis is stochastically
chosen. If the ICL is higher than a predetermined threshold (�), the
chosen hypothesis is output to effector modules; else, the iterative
process continues with the chosen hypothesis as the top-level
stimulus (Equation A1) and the scaled previous bottom-up activa-
tion as the new residual activation in the bottom level (Equation
A5 or Equation A6, scaled by 
).

If a response is output, the response time of the model is
computed as follows:

RT � a � b � ICL, (A13)

where a and b are the maximum response time and the slope,
respectively.

Learning

In the top level, explicit knowledge is represented using weight
matrix V � (vij), which was trained to encode the explicit rules
using standard Hebbian learning (Kohonen, 1972):

V � �
i

yixi
T , (A14)

where X � {x1, x2, . . . , xk} and Y � {y1, y2, . . . , yk} are the sets
containing the stimuli (k � n and k � m), and xi is associated to
yi. The use of Hebbian learning to encode the rules ensures that
vij � 1 if xi is associated to yj and zero otherwise (because of the
restriction on the stimuli; see the Top Level section above).

In the bottom level, implicit knowledge is represented by the W
weight matrix, which is pretrained to encode the implicit associ-
ations using a contrastive Hebbian learning rule (Chartier &
Proulx, 2005):

W�t� � �W�t	1� � �� zi�0�zi�0�
T � zi�p�zi�p�

T � , (A15)

(Appendix continues)
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where W[t] is the weight matrix at trial t, 0 � � � � 1 is a memory

efficiency parameter, and 0 � � �
1

2�1 � 2�r
is a general

learning parameter (for a demonstration, see Chartier & Proulx,
2005). Note that Equation A15 is the only iterative learning algo-
rithm in this implementation of CLARION.

The associations between the top- and bottom-level representa-
tions are encoded using the E and F weight matrices. These
matrices are trained using the same linear Hebbian rule as V:

E � �
i

t1ixi
T , (A16)

F � �
j

t2jyj
T , (A17)

where T1 � {t11, t12, . . . , t1k} and T2 � {t21, t22, . . . , t2k} are
the sets containing the distributed representations (defined in the
Bottom Level section above).
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Correction to Trope and Liberman (2010)

The article “Construal-Level Theory of Psychological Distance,” by Yaacov Trope and Nira
Liberman (Psychological Review, 2010, Vol. 117, No. 2, pp. 440-463), contained a misspelling in
the last name of the second author in the below reference. The complete correct reference is below.
The online version has been corrected.
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