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Opinion
Glossary

Active memory: information in a state of current readiness for use in

processing (including the active portion of LTM), typically over a time span

of around 20 seconds.

Analogical mapping: the process of identifying systematic correspondences

between elements of two situations (analogs) based on relational structure.

Cross-frequency coupling: interactions between different frequency bands,

such as theta and gamma, which aid in integrating neural activity across

different spatial and temporal scales.

Driver: in LISA, an analog that is currently in active memory and serves as a

generator of spreading activation.

Phase set: in LISA, the set of mutually desynchronized role bindings

represented by neuronal oscillations. The phase set corresponds to the current

focus of attention and is the most significant bottleneck for reasoning with

relations. The phase set is equivalent to working memory (WM) for relations.

Proposition: a predicate instantiated by binding its role(s) to particular

arguments (objects or other propositions). A proposition is the smallest unit

of representation that can have a truth value: intuitively, a ‘complete thought’.

In LISA, a proposition is represented by a hierarchy of structure units.

Proxy unit: a transient representation of a structure unit, formed in prefrontal

cortex in order to support structured reasoning, such as an analogical

comparison.

Recipient: in LISA, an analog that is currently receiving activation from the

driver. There may be multiple recipients in long-term memory (during retrieval)

or a single recipient in active memory (during mapping, inference, and schema

induction).

Role-based relational reasoning: reasoning that depends on the active

representation and manipulation of concepts involving roles and role binding

(see ‘proposition’).

Role binding: the binding of a single argument (object or proposition) to a

single role associated with a predicate.

Schema: a relatively abstract relational structure representing a category or

class of situations (e.g., a schema for a type of problem). In LISA, schemas can

be formed as a consequence of comparing two or more relatively specific

analogs.

Semantic unit: a unit that represents a simple element of meaning, associated

with neurons in posterior cortex. In LISA, semantic units are the sole conduits

for the transmission of activation between distinct analogs.

Spike-timing-dependent plasticity: a phenomenon based on evidence that if a

neuron is being driven at a high rate, as occurs in the high gamma band, the

inputs driving it will be strengthened. It provides a neural mechanism by which

the kind of synchronous activity that in the LISA model supports dynamic

representations will also lead to synaptic strengthening.

Structure unit: in LISA, a unit representing a component of a proposition

within an analog: P (proposition), RB (role binding), O (object), and R (role); or

a correspondence between elements of two analogs (M). Such units may be

associated with neurons in posterior cortex (when stored in LTM), but must
The representation and manipulation of structured rela-
tions is central to human reasoning. Recent work in
computational modeling and neuroscience has set the
stage for developing more detailed neurocomputational
models of these abilities. Several key neural findings
appear to dovetail with computational constraints de-
rived from a model of analogical processing, ‘Learning
and Inference with Schemas and Analogies’ (LISA). These
include evidence that (i) coherent oscillatory activity in the
gamma and theta bands enables long-distance commu-
nication between the prefrontal cortex and posterior
brain regions where information is stored; (ii) neurons
in prefrontal cortex can rapidly learn to represent abstract
concepts; (iii) a rostral-caudal abstraction gradient exists
in the PFC; and (iv) the inferior frontal gyrus exerts inhibi-
tory control over task-irrelevant information.

How is thinking realized in the human brain?
One of the deepest puzzles for cognitive neuroscience is to
explain how the most distinctively human types of think-
ing and reasoning are realized in the brain. Humans can
grasp analogies between disparate situations, infer hidden
causes of observed events, apply general rules to novel
situations, and learn new abstractions from experience [1–
3]. Such intellectual abilities, which exceed those of any
other extant primate species (perhaps in a qualitative
manner [4]) are difficult to capture in any computational
model, but pose particular challenges for those that aim for
neural fidelity. How does the brain organize neurons,
which are basically simple computing devices, so as to
achieve the kinds of complexity manifested in human
thinking and reasoning?

Research over the past decade and a half has begun to
address this challenge. Cognitive neuropsychological and
neuroimaging studies have implicated various subregions
of the prefrontal cortex (PFC; Figure 1) as critical parts of a
larger network supporting higher cognition (for reviews,
see [5–9]). The most anterior lateral portion of the PFC,
generally termed frontopolar or rostrolateral (RLPFC), is
activated by tasks that require integration of multiple
relations, processing relatively abstract concepts, or nego-
tiating hierarchical goal structures [10–22]. More dorsal
and inferior areas of the PFC have also been implicated in
the systematic control of representations necessary for
these processes [10,13,20,23–25].
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Over roughly the same time period, a number of compu-
tational models [26–30] have attempted to explain aspects
of human thinking and reasoning within neural systems,
differing in their architectures and domains of application
(Table 1). A substantial gap remains, however, between
current theories of PFC function and computational mod-
els capable of actually performing tasks involving thinking
also be associated with dynamically recruited neurons in prefrontal cortex (see

‘proxy unit’).
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Figure 1. Anatomy and connections related to relational reasoning. Areas of the

prefrontal cortex (PFC) frequently identified in reasoning studies include the

rostrolateral prefrontal cortex (RLPFC; anterior region of the inferior frontal gyrus,

approximately Brodmann area 10, sometimes referred to as frontopolar prefrontal

cortex), the dorsolateral prefrontal cortex (DLPFC; anterior region of the middle

frontal gyrus, approximately Brodmann areas 9/46), and the ventrolateral prefrontal

cortex (VLPFC; posterior region of the inferior frontal gyrus, approximately

Brodmann areas 47/45/44). The anterior temporal lobe (ATL; located on the

anterior lateral surface of the temporal lobe, approximately Brodmann areas 20,

31, 38) is frequently associated with semantic memory (see [72]) and is important for

reasoning about semantic relations [24]. The medial temporal lobe (MTL; located on

the medial surface of the temporal lobe including the hippocampus and entorhinal

cortex, approximately Brodmann areas 27, 28, 34, 35, 36) is critical for episodic

memory [73], and thus is important for relational reasoning about specific events.

The ATL and MTL are connected to areas in the VLPFC via the uncinate fasiculus (UF).

Regions in the parietal lobe, such as areas around and including the precuneus (PC;

approximately Brodmann area 7) and the temporal parietal junction (TPJ;

approximately Brodmann area 39) have heavy reciprocal connections to the PFC

via the superior longitudinal fasciculus (SLF). These areas are frequently associated

with tasks requiring relational reasoning about visuospatial entitites. The anterior

cingulate cortex (ACC; located on the medial surface of prefrontal cortex

approximately, Brodmann areas 24, 32, 33) is frequently active during relational

reasoning and has reciprocal connections to the DLPFC.
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and reasoning. Functional theories often highlight very
general concepts such as ‘abstraction’ and ‘relational inte-
gration’, which though potentially helpful remain ill-de-
fined in the absence of computational instantiations.

Here we attempt to build an initial bridge across this
gap. Focusing on computational mechanisms instantiated
Table 1. Major neurocomputational models of human thinking

Model Architecture Domai

SMRITI [28] Localist connectionist network using

binding by synchrony

Episod

storage

LISA [27,31] Distributed connectionist network using

binding by synchrony

Relatio

STAR-2 [26] Connectionist network using tensor

products to code bindings

Relatio

ACT-R with neural

modules [30]

Production system integrated with modules

for perception, motor responses, spatial

representation, memory retrieval, and goal

maintenance

Solvin

and re

SAL (Synthesis

of ACT-R and

Leabra) [29]

Production system with declarative memory

(ACT-R); subsymbolic processes realized by

a connectionist network based on a point-

neuron activation function (Leabra)

Spatial
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in a leading model of relational reasoning, ‘Learning and
Inference with Schemas and Analogies’ (LISA; [27,31]), we
review the neural literature to construct more specific
hypotheses about how these mechanisms may be realized
in the human brain. Even though our focus is on the LISA
model, we will also note connections with other neurocom-
putational models. Our opinion article reveals a remark-
able convergence between constraints on models of human
reasoning derived from computational analyses, behavior-
al experiments, and neurophysiological investigations. Al-
though necessarily preliminary, we hope that this effort
will help the development of more detailed neural models
of high-level cognition.

Role-based relational reasoning in LISA
The LISA model provides a computational account of role-
based relational reasoning: inferences that depend on the
roles that entities play, not just on perceptual similarity.
For example, knowing that Sam is an enemy of Brian, and
Dylan is a friend of Sam, a person might conjecture that
Dylan may also be an enemy of Brian (Figure 2). This
‘mutual support’ schema may have itself been acquired
through analogical reasoning, by comparing specific cases
that share a common relational structure.

LISA codes an analog by binding distributed repre-
sentations of roles to distributed representations of their
fillers (coded on separate pools of semantic units;
Figure 2). Semantic units are assumed to be coded by
neurons in posterior regions. For each individual analog,
a hierarchy of localist structure units represents objects
(O), relational roles (R), individual role bindings (RB),
and complete propositions (P). Structure units may be
coded in long-term memory (LTM), but in order to be
made available for active comparisons, they require a
transient form (proxy units) in active memory [32]. Dur-
ing mapping, the emerging correspondences are also
coded by proxy units, called M (mapping) units, that
connect structure units of a given type across the two
analogs (e.g., P units to P units). These explicit learned
correspondences allow LISA to assess the overall simi-
larity between two analogs [33] and to generate sensible
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Figure 2. Representation of propositions in the LISA model. (a) A pool of semantic units (bottom), which are connected to localist structure units that capture bindings at

successive levels of generality: individual roles and objects, bindings of objects to roles, and bindings of role/filler combinations into propositions. (b) In a single phase of

the dynamic form of binding, one role binding of one proposition becomes active, along with its constituent O and R units and associated semantic units. (c) In a

subsequent phase, a different role binding and its constituents are activated in synchrony with each other (and out of synchrony with the first role binding). (d) The overall

pattern in which structure units for the proposition fire across a series of temporal phases.
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Figure 3. Operations on LISA’s knowledge representations at major stages of

relational reasoning and learning.
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structured inferences based on correspondences between
elements of the two analogs.

LISA exploits dynamic binding coded by neural synchro-
ny [34] to impose a hierarchical temporal structure on
knowledge representations within working memory
(WM). A small number of role bindings in one analog
(the driver) can enter the phase set – the set of mutually
desynchronized role bindings. The phase set corresponds to
the current focus of attention, and is the most significant
bottleneck in the system. Each individual phase (the smal-
lest unit of WM) corresponds to one role binding (i.e., an RB
unit and its constituents). The size of the phase set is
determined by the number of role-filler bindings (phases)
that can be simultaneously active but mutually out of
synchrony. The maximum number is proportional to the
length of time between successive peaks in a phase (the
period of the oscillation) divided by the duration of each
phase (at the level of small populations of neurons) and/or
temporal precision (at the level of individual spikes) [35].
Binding may be accomplished by synchrony in the >30 Hz
(gamma) range, with a neuron or population of neurons
generating one spike (or burst) approximately every 25 ms,
implying WM capacity of approximately 4-6 role bindings
(roughly 2-3 propositions). This value is consistent with
estimates of WM capacity based on behavioral evidence
(e.g., [36]) and may have roots in the mechanisms by which
information is processed throughout the brain, including
lower-level posterior cortex [37].

Because of the strong capacity limit on its phase set,
LISA’s processing is necessarily highly sequential,
375
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constituting a form of guided pattern recognition
(Figure 3). At any given moment, one analog (the driver)
is the focus of attention. As one or more driver propositions
enter the phase set, synchronized patterns of activation
are generated on the semantic units (one pattern per RB).
In turn, these patterns activate propositions in one or
more recipient analogs in LTM (during retrieval), or a
single recipient in active memory (during mapping, infer-
ence and schema induction).

LISA provides a natural account of the loss of relational
reasoning in populations with forms of brain damage, such
as patients suffering from either frontal-lobe or temporal-
lobe variants of Frontotemporal Lobar Degeneration [24].
The model has also been used to simulate changes in
relational reasoning during cognitive development [38–
40] and normal aging [41]. In the remainder of this article
we review several key neural findings that appear to
correspond to computational constraints that arise in
LISA.

Role of oscillatory activity in reasoning
LISA fundamentally depends on the representation of
information in a temporal structure. RB units must be
activated in synchrony with O and P units (and their
associated semantic units) to form dynamic representa-
tions, while these different representational complexes
must be kept out of synchrony with each other to maintain
distinct, non-overlapping role-filler bindings (Figure 4a, b).
Temporal structure in the form of oscillatory activity is in
fact prominent in the brain [42], although no direct evi-
dence yet connects such activity to the coding of proposi-
tions. Rhythmic neural activity, as reflected in the firing of
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groups of neurons, can be detected throughout the central
nervous system, both in local interactions within a neural
ensemble, and across brain regions through long-distance
connections between populations of neurons [43].

Oscillations can arise from the intrinsic circuit proper-
ties of the central nervous system, as neurons tend to be
interconnected with numerous excitatory and inhibitory
neurons, resulting in entrainment of firing of an ensemble
of neurons at a specific frequency. These oscillations may
reflect the firing rates of individual neurons, such as those
that show bursts of firing in the gamma band. Slower
oscillations, such as firing in the theta band (4–8 Hz),
generally do not arise from a group of individual neurons
firing at that frequency; rather, summed over a large group
of neurons, peaks of firing will be apparent at this lower
frequency due to slower feedback modulation.

In LISA, the smallest unit of WM is essentially defined
as the synchronous firing of representational units. Impor-
tantly, LISA uses phase to maintain the separation of
multiple role-filler bindings. Behavioral experiments using
a priming paradigm suggest that synchrony underlies the
representations of perceptual relations for humans [44].
Likewise, a recent EEG study suggests that phase syn-
chrony within the fronto-parietal network can bind object
properties together in WM [45]. Electrophysiological stud-
ies in nonhuman primates have revealed a link between
WM and the synchronous firing of neural ensembles. For
example, pairs of neurons have been shown to fire in
synchrony in a task-dependent manner, consistent with
the hypothesis that synchronous firing dynamically repre-
sents the representations needed in WM to perform the
current task [46]. The fact that neural assemblies can
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rapidly shift between different patterns of synchrony
depending on the information being held in WM indicates
that the method of representing propositions in LISA is
neurally credible.

LISA also depends on long-distance communication
between prefrontal regions and posterior regions of the
cortex, where semantic information is stored. In order for
prefrontal RB units to be activated by semantic informa-
tion, there must be a means by which oscillatory activity in
the temporal lobes engages circuits in PFC that represent
this information. In the brain, synchrony in lower frequen-
cy bands, including theta, is detectable between sites
separated by several millimeters, suggesting that entrain-
ment of neural activity across brain regions occurs at lower
frequency oscillations [47–49]. In contrast, synchronous
activity within local neural circuits tends to be higher
frequency, in the gamma range. Within the PFC, local
circuits will require inhibition to maintain the phase rela-
tionships of different role-filler bindings.

Studies of learning and memory have shown that brain
oscillatory activity is relevant to behavior. For example,
successful memory formation is associated with the tighter
coupling of the firing of individual neurons to the theta
frequency [50]. In addition, stimulation during theta peaks
is particularly effective in inducing long-term potentiation
in the hippocampus, whereas blocking theta prevents the
induction of long-term potentiation [51,52]. It thus appears
that neural oscillations provide support for neural plastic-
ity. Reasoning similarly requires the rapid formation of
new representations. In LISA, M units are formed between
structure units in the driver and recipient to capture
correspondences between them. This type of rapid learning
of connections has been observed in PFC, based on single-
unit recordings with non-human primates [53,54].

It appears that, in addition to plasticity being related to
the phase of the theta cycle, high gamma frequency itself
can directly enhance neural plasticity through a Hebbian
learning mechanism [55]. When neuronal circuits fire at
this high rate, inputs to a neuron arrive shortly before the
neuron fires, which thus becomes depolarized. In Hebbian
plasticity, synaptic inputs that are active when the neuron
is depolarized are strengthened. Thus, if the neuron is
driven at a high rate, as occurs in the high gamma band,
the inputs driving it will be strengthened. This phenome-
non, termed ‘spike-timing-dependent plasticity’ [56],
implies that there is a neural mechanism by which the
kind of synchronous activity postulated by LISA will also
lead to synaptic strengthening. Such increases in synaptic
strength may underlie the strengthening of M units during
the mapping process. The facilitatory influences of theta-
and gamma-band activity on neural plasticity appear to be
related [47,48]. Through cross-frequency coupling (see
[57]), the phase of the low frequency theta wave modulates
the power of the gamma band, such that the amplitude of
EEG measured in the gamma band is greatest at a specific
point in the theta wave (Figure 4c, d). The theta wave may
serve to entrain bursts at gamma frequency by shifting the
probability of spike timing. By this mechanism, long-dis-
tance communication across regions in the form of theta
activity could modulate the timing of gamma bursts. It
follows that information in regions of posterior cortex
responsible for representing semantic information may
influence local gamma activity in the PFC via theta fre-
quency firing.

Additional evidence supports the hypothesis that the
phase of neuronal oscillations in the PFC codes the repre-
sentation of specific items in WM. Simultaneous recording
of single units and the local-field potential in monkeys have
demonstrated that spikes in response to a specific stimulus
occur at a characteristic point in a 32-Hz cycle, correspond-
ing to the gamma band. When the monkey’s task was to
keep more than one item in mind at a time, spikes corre-
sponding to the second item occurred at a different point in
the wave [58]. Interestingly, spike synchronization was
also observed at approximately 3 Hz, at the lower end of
the theta band. The fact that both theta and gamma band
oscillations are synchronized in the PFC is consistent with
the possibility that cross-frequency coupling is a means to
coordinate activity in distant regions with the rapid oscil-
lations that support local processing. The finding that
phase-specific spiking in the gamma phase is related to
segregation of information in WM is consistent with LISA’s
mechanism for representing propositions via temporal
asynchrony of role bindings.

Proxy units in prefrontal cortex
In LISA, when propositions enter active memory, proxy
units (the transient form of structure units) are rapidly
formed in PFC. These proxy units that code individual
analogs in turn connect to M units that represent corre-
spondences between the elements of two analogs. The
rapid learning required by these units could be supported
by the spike-timing-dependent plasticity that can occur
during high gamma-band activity synchronized to the
theta rhythm [56]. The rapid changing of weights on these
units makes them suitable to dynamically represent dif-
ferent stimuli depending on the information being pro-
cessed at the moment. Neurons with the properties
ascribed to proxy units have been identified in the primate
lateral PFC [53,54,59]. About a third of neurons in the
lateral PFC respond to categories of stimuli, which means
that the neuron will increase firing rate when presented
with members of a particular category (e.g., dogs). Impor-
tantly, these neurons fire based on the conceptual proper-
ties of the stimuli, and not simply on the basis of their
visual features. Unlike neurons in inferotemporal cortex,
neurons in lateral PFC respect the sharp boundaries be-
tween categories. These neurons respond similarly to typi-
cal and atypical members of a category, which suggests
that they are sensitive to the rules defining the concept
itself. This property is necessary for the proxy units in
LISA, in that they must be able to represent high-level
propositions that are abstract.

Furthermore, neurons in the PFC appear to also be able
to code abstract relational rules. Cromer et al. [54] had
monkeys perform two different tasks: one in which they
had to respond to matching stimuli and another in which
they had to respond if the stimuli did not match [13]. The
most common type of neuron recorded in the prefrontal
cortex (41% of all those recorded) responded selectively to
the current rule, regardless of the stimuli that were pres-
ent. These neurons thus appear to represent the relation
377
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between stimuli and a rule governing the current task – not
the stimuli themselves – a major requirement for the proxy
units posited by LISA. Although neurons responding to
abstract rules could be found in all regions of the PFC, the
majority were located in the lateral subregion.

The apparent flexibility of these neurons is another
property that makes them suitable as instantiations of
the proxy units postulated by LISA. Individual neurons do
not simply respond to one type of stimulus; rather, in the
context of different tasks, they respond to different catego-
ries [54]. A neuron’s response to the same stimulus can
vary on a trial-by-trial basis depending on the task per-
formed [60]. This flexibility stands in stark contrast to the
firing properties of inferotemporal neurons, in which firing
to a complex visual stimulus is relatively static [61]. Al-
though caution is warranted in extrapolating from studies
of monkeys to more complex human reasoning, such find-
ings suggest that PFC neurons may act as representational
elements for very different propositions depending on the
task context.

Such dynamic repurposing of neurons is consistent with
the flexible role played by proxy units in the LISA model.
Proxy units are formed rapidly to represent propositions
during reasoning. Spike-timing-dependent plasticity
resulting from fast gamma-band activity in prefrontal
neurons can support the kind of rapid changes in response
properties that are necessary for proxy units. Importantly,
synaptic strength can be rapidly decreased, as well as
increased, based on the timing of presynaptic firing and
post-synaptic depolarization. Long-term depression of syn-
aptic strength allows neurons to be returned to a pool from
which they can be recruited for the representation of new
propositions. Moreover, the shift from long-term potentia-
tion to long-term depression occurs as the result of a shift
in spike timing on the order of milliseconds [62]. These
findings suggest that spike-timing-dependent plasticity
can support the rapid binding and unbinding that is fun-
damental to the LISA model.

Rostral-caudal abstraction gradient in PFC
Recently, an effort has been made to understand the sub-
regions in PFC in terms of a hierarchy of action. Badre and
D’Esposito [6] have argued that more caudal regions of the
PFC are involved in generating specific stimulus-response
motor actions, whereas progressively more rostral regions
become more involved when actions must be based on more
abstract information (e.g., a plan based on the integration
of multiple subgoals) [6]. For example, although caudal
regions of the PFC are sufficient to subserve the act of
picking up a cup from which to drink, more rostral regions
would become engaged in the act of deciding what to drink
in order to satisfy more abstract goals (e.g., trying to be
healthy). Similarly, Christoff et al. [16] have shown that a
set to process more abstract concepts selectively activates
RLPFC.

In LISA, the highest level of hierarchical organization is
reflected in the M units, which form rapid associations
between elements of propositions in the analogs being com-
pared. These mapping units represent very abstract infor-
mation, specifically, shared relational roles that can make
otherwise dissimilar propositions analogous. Moreover, the
378
very process of identifying relational commonalities can
trigger the acquisition of more abstract schemas for classes
of situations. The LISA architecture is thus based on repre-
sentations at successive levels of abstraction, an overall
structure that appears to be reflected in the organization
of the PFC.

The role of inhibition in reasoning
The nervous system is characterized by the interplay of
excitation and inhibition. At the circuit level, the tight
coupling of inhibitory interneurons and excitatory neurons
results in oscillatory activity that allows for temporal
coding of information in LISA’s WM. As discussed above,
circuit-level inhibition is required to maintain role-filler
bindings mutually out of synchrony, and thus distinct in
WM (Figure 4a, b). In addition, inhibition plays a role in
reducing interference from competing semantic concepts
during analogical reasoning (e.g., [24,25,34,40]). Activation
of propositions in the driver analog will trigger activation
in related semantic units, which in turn will activate
candidate recipient propositions. The most active recipient
propositions will eventually enter WM and be available for
analogical mapping.

However, if task-irrelevant propositions are activated in
the driver, these may bias the system to find suboptimal
correspondences. LISA postulates top-down inhibition of
propositions tagged as low in goal-relevance, which helps
prevent these propositions from entering the phase set. This
selectivity increases the efficiency of the mapping process by
enhancing the signal-to-noise ratio favoring goal-relevant
matches. Regions in the PFC exhibit similar properties by
selectively inhibiting semantic representations in posterior
regions of cortex. The PFC has many reciprocal connections
with posterior cortical regions, including in particular tem-
poral and posterior parietal lobes (see [63]), and thus is able
to influence processing in these regions. The primary evi-
dence for the role of the PFC in inhibition is that a major
consequence of prefrontal lesions is behavioral disinhibi-
tion. Patients with damage to the prefrontal cortex often fail
to inhibit inappropriate behaviors and have difficulty main-
taining cognitive control. By one view, the main role of the
prefrontal cortex is the dynamic filtering of activations in
posterior cortical regions to facilitate behavior directed
towards a goal [64]. Different subregions appear to support
inhibition in different domains. In particular, damage to the
right inferior prefrontal cortex impairs ability to inhibit a
prepotent response in cognitive tasks whereas damage to
orbitofrontal regions results in social and emotional disin-
hibition [65].

Behavioral studies have shown that the presence of
irrelevant relations in analogs can impact relational rea-
soning, suggesting the inhibition is a necessary component
of analogical reasoning [24,25,38,40,41,66]. Neuroimaging
studies have produced even more direct evidence of the
engagement of prefrontal inhibitory control during analog-
ical reasoning. In a number of studies, activity was ob-
served in the inferior frontal gyrus while subjects were
solving analogy problems [23,67]. This same region has
been shown to be active in a number of tasks of inhibitory
control or semantic competition (see [65]). Cho et al. (2010)
found direct evidence for the involvement of this region in
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inhibitory control during analogy, showing that activity in
a region of right inferior frontal gyrus increased when the
amount of interfering information increased [13]. Similar-
ly, using recordings of scalp EEG, Sweis et al. (2012) found
that when participants needed to ignore a distracting
relation while solving a visual analogy, right PFC was
modulated at late stages of processing, and the degree of
modulation interacted with the reasoner’s WM capacity
[20]. The inferior frontal gyrus thus may be the anatomical
source of the active inhibition of competing units postulat-
ed by the LISA model.

Further directions
Many open questions remain (Box 1). Although we have
focused on implications of neural evidence for the LISA
model, these findings have implications for other neurocom-
putational models. Moreover, aspects of several of these
models might be integrated to broaden coverage of high-
level human cognition. LISA and SMRITI [28] both use
patterns of neural timing to encode binding information,
and can be viewed as complementary (LISA focusing on
prefrontal functions and reflective reasoning, SMRITI focus-
ing on hippocampal functions). The macro-level neural mod-
ules postulated by ACT-R [30] are compatible with LISA;
ACT-R can be viewed as a model of the control structure
within which human relational reasoning may operate.

There is reason to hope that advances in neuroimaging
techniques [68], combined with refined methods for ana-
lyzing temporal patterns of neural activity, will make it
possible to directly test some of the hypotheses we have
laid out concerning the neural basis of relational reason-
ing. In addition, the general LISA architecture may be
extended to incorporate additional factors related to PFC
function. For example, in order to capture information
processing in the PFC more fully, the LISA model would
Box 1. Questions for future research

Recent work in the cognitive neuroscience of thinking and in

computational modeling has raised new hypotheses about how

thinking is realized in the human brain. Some current questions are:

� Can direct evidence be obtained to support the possible role of

oscillatory neural activity in coding propositions in human PFC?

� Can computational models employing oscillatory algorithms such

as cross-cortical coupling be used to predict the brain’s complex

network dynamics during relational reasoning as measured via

electrophysiology?

� How are the various types of inhibition necessary for a model

such as LISA implemented in the brain throughout the time

course of relational reasoning?

� What functions does the RLPFC support in relational reasoning at

a computational level and how do these relate to its functions in

other tasks?

� What is the relationship between dynamic role binding in the PFC

and the binding operations subserved by the hippocampus and

medial temporal cortex?

� What roles do neurotransmitters play in relational reasoning and

can their effects be mapped onto components of a computational

model?

� What learning processes are involved in creating the pools of

semantic units that code the meanings of objects and relations?

� What role do subcortical structures play in relational reasoning?

Are fronto-striatal circuits particularly important for mapping

units, which must be maintained without continuous attention

over short periods of time during reasoning?
need to incorporate the influences of neuromodulators.
Monoamine neurotransmitters, including dopamine, nor-
epinephrine and serotonin, each have complex neuromo-
dulatory roles. Depending on the conditions, these
compounds have very large inhibitory or excitatory effects
on neural transmission within the PFC; moreover, their
effects often seem to interact with one another [69]. A large
number of psychiatric conditions that affect cognition in-
volve monoamine dysregulation, and a suitably expanded
LISA model could aid in understanding these disorders at
the circuit level. It is likely that some individual differences
in reasoning ability may be explained by polymorphisms in
genes that code for monoamine receptors (e.g., [70]). In
addition, the cognitive monitoring and evaluative func-
tions of the anterior cingulate cortex may impact PFC
processing via connections with neurons in the locus coer-
ruleus that are the source of cortical noradrenergic modu-
lation [71]. Thus, elaborating the LISA model to
incorporate neuromodulatory effects could lead to further
advances in understanding the conditions that lead to
optimal (and suboptimal) reasoning in the human brain.
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