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Abstract: According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to
many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer,
deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules
of logic — the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed
logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on
comparing human reasoning against logical standards.

Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically
poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic
reasoning. In Chapters 1-4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and
human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters
5-7 the psychology of “deductive” reasoning is tackled head-on: It is argued that purportedly “logical” reasoning problems,
revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning,
Wason’s selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic
approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of
this work, and the wider “probabilistic turn” in cognitive science and artificial intelligence, for understanding human rationality.

Keywords: Bayes’ theorem, conditional inference, logic, non-monotonic reasoning, probability, rational analysis, rationality, reasoning,

selection task, syllogisms

Bayesian Rationality (Oaksford & Chater 2007, hereafter
BR) aims to re-evaluate forty years of empirical research
in the psychology of human reasoning, and cast human
rationality in a new and more positive light. Rather than
viewing people as flawed logicians, we focus instead on
the spectacular success of human reasoning under uncer-
tainty. From this perspective, everyday thought involves
astonishingly rich and subtle probabilistic reasoning — but
probabilistic reasoning which is primarily qualitative,
rather than numerical. This viewpoint leads to a radical
re-evaluation of the empirical data in the psychology of
reasoning. Previously baffling logical “errors” in reasoning
about even the simplest statements can be understood as
arising naturally from patterns of qualitative probabilistic
reasoning.

Why “Bayesian” rationality, rather than mere “probabil-
istic” rationality? The answer is that our approach draws
crucially on a particular interpretation of probability, not
merely on the mathematics of probability itself.
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Probability is often taught as capturing “objective” facts
about something, for example, gambling devices such as
dice or cards. It is sometimes presumed to be a fact, for
example, that the probability of a fair coin producing
three consecutive heads is 1/8. However, in the context
of cognitive science, probability refers not to objective
facts about gambling devices or anything else, but
rather, it describes a reasoner’s degrees of belief. Prob-
ability theory is then a calculus not for solving mathemat-
ical problems about objects in the world, but a calculus for
rationally updating beliefs. This perspective is the subjec-
tive, or Bayesian view of probability. We thus argue that
human rationality, and the coherence of human thought,
is defined not by logic, but by probability.

The Bayesian perspective on human reasoning has
radical implications. It suggests that the meaning of even
the most elementary natural language sentences may
have been fundamentally mischaracterized: many such
statements may make probabilistic rather than logical
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claims. And the most elementary aspects of human reason-
ing may have been misunderstood — what appeared to be
logically certain inferences may often instead be better
understood as plausible, probabilistic reasoning. Shifting
from a logical to a Bayesian perspective entirely changes
our predictions concerning the patterns of reasoning that
we should expect people to exhibit. And experimental
work in the psychology of reasoning provides the data
against which these predictions can be compared.

This Précis outlines the argument of BR chapter by
chapter; the section numbering corresponds to the
chapter numbering of the book, with occasional modifi-
cations to assist the flow of what is now a somewhat com-
pressed argument. The first section of the book, Chapters
1-4, outlines the theoretical background of our shift from
logical to Bayesian rationality as an account of everyday
human reasoning, drawing on relevant areas of psychol-
ogy, philosophy, and artificial intelligence. The second
section of the book, Chapters 57, relates this approach
to the key empirical data in the psychology of reasoning:
conditional reasoning, Wason’s selection task, and syllogis-
tic reasoning. We argue that the patterns of results
observed in the empirical data consistently favour a Baye-
sian analysis, even for purportedly paradigmatically
“logical” reasoning problems. Chapter 8 reflects on the
implications of this approach.

1. Logic and the Western conception of mind

Since the Greeks, the analysis of mind has been deeply
entwined with logic. Indeed, the study of logical argument
and the study of mind have often been viewed as overlap-
ping substantially. One swift route to such a deep connec-
tion is to argue that minds are distinctively rational; and
that rationality is partly, or perhaps even wholly, character-
ized by logic. That is, logical relations are viewed primarily
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as unbreakable, inferential relations between thoughts;
and a coherent, intelligible agent must respect such
relations. In particular, logic aims to specify inferential
relations that hold with absolute certainty: logical infer-
ence is truth preserving, that is, if the premises are true,
the conclusion must also be true.

But which inferences are absolutely certain?® Which can
be relied upon to preserve truth reliably? We may feel
confident, from our knowledge of science, that, for
example, all women are mortal. We might generalize
from the mortality of all other living things; or note that
even the most long-lived creature will succumb in the
heat-death of the universe of the far future. But such con-
siderations, however convincing, do not give the certainty
of logic — they depend on contingent facts, and such facts
are not themselves certain. Aristotle answered these ques-
tions by providing the first logical system: the theory of the
syllogism. Syllogisms involve two premises, such as, All
women are people; All people are mortal. Aristotle
argued that these premises imply with absolute certainty
that All women are mortal.

Logical certainty is more than mere overwhelming con-
fidence or conviction. A logical argument depends purely
on its structure: thus, Aristotle noted, our logical argument
put forth here is of the form All A are B; All B are C; there-
fore, All A are C. And this argument is valid whatever A, B,
or C stand for; hence there is no appeal to contingent facts
of any kind. Aristotle’s spectacular discovery was, therefore,
that patterns of reliable reasoning could be obtained
merely by identifying the structure of that reasoning. Logic,
then, aims to provide a theory that determines which argu-
ment structures are truth-preserving, and which are not. In
avery real sense, in a logical inference, if you believe the pre-
mises, you already believe the conclusion — the meaning of
the conclusion is, somehow, contained in the meaning of
the premises. To deny the constraints of logic would thus
be incoherent, rather than merely mistaken. Thus, logic
can be viewed as providing crucial constraints on the
thoughts that any rational agent can entertain (Davidson
1984; Quine 1953).

Aristotle’s theory of the logical structure of the syllogism
proceeded by enumeration: Aristotle identified 64 forms
of the syllogism, along with a systematic, though intuitive,
approach to deciding which of these syllogisms had a valid
conclusion, and if so, what the nature of this conclusion is.
For more than two thousand years, Aristotle’s theory of the
syllogism almost exhausted logical theory—and indeed,
Kant considered all logical questions to have been decisi-
vely resolved by Aristotle’s account, stating: “It is remark-
able also, that to the present day, it has not been able to
make one step in advance, so that, to all appearance, it
[i.e., logic] may be considered as completed and perfect”
(Kant 1787/1961, p- 501).

As we have suggested, although Aristotle’s logic is
defined over patterns of verbally stated arguments (con-
verted from everyday language into the appropriate
formal structure), it is nonetheless tempting to view the
primary subject matter of logic as thought itself. If the
mind is viewed as constituted by rational thought, and
logic captures patterns of rational thought, it seems
natural to view logic as a central part of psychology.
Such was Boole’s perspective, in going beyond Aristotle’s
enumeration of patterns of logical argument. Boole
aimed to describe the “The Laws of Thought” (Boole



1854/1958); and, in doing so, provided, for the first time,
explicit mathematical rules for logical reasoning. This
allowed him to develop a calculus for logical reasoning,
albeit limited in scope. Boole also opened up the possi-
bility that logical reasoning could be carried out mechan-
istically, purely by the manipulation of logical symbols.
This insight provided a partial foundation for modern
computation and, by extension, cognitive science.

The view that rational thought is governed by logic,
which we term the logicist conception of the mind (Oaks-
ford & Chater 1991), was adopted wholeheartedly by early
cognitive theorists such as Piaget (e.g., Inhelder & Piaget
1955). Piaget viewed the pinnacle of cognitive develop-
ment as attaining the “formal operational” stage, at
which point the mind is capable of reasoning according
to a particular formal system of logic: propositional logic.
He viewed the process of cognitive development as a
series of stages of enrichment of the logical apparatus of
the child, enabling increasingly abstract reasoning, which
is less tied to the specific sensory-motor environment.
Similarly, the early foundations of cognitive science and
artificial intelligence involved attempting to realize
logical systems practically, by building computer programs
that can explicitly derive logical proofs. Tasks such as
mathematical reasoning and problem solving were then
viewed as exercises in logic, as in Newell and Simon’s
Logic Theorist and General Problem Solver (see Newell
& Simon 1972; Newell et al. 1958). Moreover, Chomsky’s
(1957; 1965) revolutionary work in linguistics showed how
the syntactic structure of language could be organized in a
deductive logical system, from which all and only the
grammatical sentences of the language could be gener-
ated. And in the psychology of adult reasoning, this
logical conception of mind was again used as the foun-
dation for explaining human thought.

Simultaneous with the construction of the logicist
program in cognition, there were some discordant and
puzzling observations. Specifically, researchers such as
Wason, who attempted to verify the Piagetian view of
the adult mind as a perfect logic engine, found that
people appeared surprisingly and systematically illogical
in some experiments. Given the dissonance between
these results and the emerging logicist paradigm in cog-
nitive science, these results were largely set aside by
mainstream cognitive theorists, perhaps to be returned
to once the logicist approach had reached a more devel-
oped state. But the general form that an account of
apparent irrationality might take was that all illogical
performance resulted from misunderstandings and
from the faulty way in which the mind might sometimes
apply logical rules. For example, Henle stated: “T have
never found errors which could unambiguously be
attributed to faulty reasoning” (Henle 1978, p. xviii).
But the central notion that thought is based on logic
was to be retained.

This fundamental commitment to logic as a foundation
for thought is embodied in contemporary reasoning theory
in two of the main theoretical accounts of human reason-
ing. The mental logic view (Braine 1978; Rips 1983; 1994)
assumes that human reasoning involves logical calculation
over symbolic representations, using systems of proof
which are very similar to those developed by Hilbert in
mathematics, and used in computer programs for
theorem-proving in artificial intelligence and computer
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science. By contrast, the mental models view (Johnson-
Laird 1983; Johnson-Laird & Byrne 1991) takes its starting
point as the denial of the assumption that reasoning involves
formal operations over logical formulae, and instead
assumes that people reason over concrete representations
of situations or “models” in which the formulae are true.
This provides a different method of proof (see Oaksford &
Chater 1991; 1998a, for discussion), but one that can
achieve logical performance by an indirect route.

Although mental logic and mental models both give
logic a central role in human reasoning, they explain
apparent irrationalities in different ways. For example,
mental logics may explain errors in terms of the accessibil-
ity of different rules, whereas mental models explain errors
in terms of limitations in how mental models are con-
structed and checked, and how many models must be
considered.

These logicist reactions to data appearing to show
human irrationality seem entirely reasonable. Every new
theory in science could be immediately refuted if the
mere existence of data apparently inconsistent with the
theory were assumed to falsify it decisively (Kuhn 1962;
Lakatos 1970). The crucial question is: Can a more plaus-
ible explanation of these puzzling aspects of human
reasoning be provided? We argue that the Bayesian
approach provides precisely such an alternative.

2. Rationality and rational analysis

BR aims to promote a Bayesian, rather than a logical, per-
spective on human reasoning. But to make sense of any
debate between the logical and Bayesian standpoints, we
need first to clarify how we interpret the relationship
between a normative mathematical theory of reasoning
(whether logic or probability), and empirical findings
about human reasoning. In particular, how do we deal
with any systematic clashes between the theory’s dictates
concerning how people ought to reason, and empirical
observations of how they actually do reason?

Various viewpoints have been explored. One option is to
take observed human intuitions as basic, and hence as the
arbiter of what counts as a good formal theory of reasoning
(e.g., Cohen 1981). Another is to take the mathematical
theory as basic, and view it as providing a standpoint
from which to evaluate the quality of observed reasoning
performance (e.g., Rips 1994). Still a further possibility
is that clashes between the formal theory and actual
reasoning may arise because human thought itself is
divided between two systems of reasoning (e.g., Evans &
Over 1996a).

Here, we take a different line: We view normative
theory as a component of the project of providing a
“rational analysis” which aims to capture empirical data
concerning thought and behavior. Rational analysis (e.g.,
Anderson 1990; 1991a; Oaksford & Chater 1998b) has
Six steps:

1. Specify precisely the goals of the cognitive system.

2. Develop a formal model of the environment to which
the system is adapted.

3. Make minimal assumptions about computational
limitations.

4. Derive the optimal behaviour function given steps
1-3.
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(This requires formal analysis using rational norms, such as
probability theory, logic, or decision theory.)

5. Examine the empirical evidence to see whether the
predictions of the behaviour function are confirmed.

6. Repeat, iteratively refining the theory.

So the idea of rational analysis is to understand the
problem that the cognitive system faces, and the environ-
mental and processing constraints under which it operates.
Behavioral predictions are derived from the assumption
that the cognitive system is solving this problem, optimally
(or, more plausibly, approximately), under these con-
straints. The core objective of rational analysis, then, is
to understand the structure of the problem from the
point of view of the cognitive system, that is, to understand
what problem the brain is attempting to solve.

In the psychology of reasoning, this point is particularly
crucial. We shall see that even when the experimenter
intends to confront a participant with a logical reasoning
puzzle, the participant may interpret the problem in prob-
abilistic terms. If so, the patterns of reasoning observed
may be well described in a Bayesian framework, but will
appear to be capriciously errorful from a logical point of
view. In Chapters 5-7 of BR, and summarized further
on here, we argue that the core data in the psychology of
reasoning, which has focussed on putatively “logical”
reasoning tasks, can be dramatically clarified by adopting
a Bayesian rational analysis.

It might appear that Step 2, concerning the environ-
ment, could not be relevant to rational analysis of the
reasoning, as opposed to, say, perception. Mathematical
theories of reasoning are supposed to apply across
topics, and hence should surely be independent of
environmental structure. We shall see further on that
the reverse is the case. Very general features of the
environment, such as the fact that almost all natural
language categories occur with a low probability and that
arbitrarily chosen probabilistic constraints are often inde-
pendent or nearly independent, turn out to have substan-
tial implications for reasoning. Indeed, the project of
providing a rational analysis of human reasoning gains its
empirical purchase precisely by explaining how a “topic
neutral” mathematical theory applies to a specific goal,
given a particular set of environmental and computational
constraints.

Two caveats are worth entering concerning Bayesian
rational analysis. The first is that rational analysis is not
intended to be a theory of psychological processes. That is,
it does not specify the representations or algorithms that
are used to carry out this solution. Indeed, as Anderson
(1990; 1991a) points out, these representations and algor-
ithms might take many different forms — but certain
general aspects of their behavior will follow irrespective of
such specifics; they will arise purely because the cognitive
system is well-adapted to solving this particular problem.
Hence, the correct analysis of the rational structure of the
cognitive problem at hand can have considerable explana-
tory power.

The second caveat is that the aim of understanding the
structure of human reasoning, whether from a logical or a
Bayesian perspective, should be carefully distinguished
from the goal of measuring people’s performance on
logical or probabilistic problems (Evans et al. 1993; Kah-
neman et al. 1982). Indeed, both logic and probability
provide a fresh and bracing challenge to each generation
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of students; performance on logical and probability pro-
blems results from explicit instruction and study, rather
than emerging from capacities that are immanent within
the human mind. But this observation need not impact
our evaluation of logic or probability as explanations
for patterns of everyday thought. Even if the mind is a
probabilistic or logical calculating engine, it may not be
possible to engage that engine with verbally, symbolically,
or numerically stated probabilistic or logical puzzles,
which it is presumably not adapted to handle. This point
is no deeper than the observation that, although the
early visual processes in the retina may compute elaborate
convolutions and decorrelations of the image, this does
not mean that people can thereby readily apply this
machinery to solve mathematics problems concerning
convolution or decorrelation. Thus, empirical evidence
from the psychology of reasoning is not used, in BR, to
evaluate people’s logical or probabilistic reasoning compe-
tence. Rather, this evidence is used to explore the patterns
of reasoning that people find natural; and to relate such
patterns to how people reason outside the experimental
laboratory.

From the standpoint of rational analysis, the question of
whether logic or probability is the appropriate framework
for understanding reasoning is an empirical question:
Which rational analysis of human reasoning best captures
the data? In Chapters 5-7 of BR, we argue, case-by-case,
that a Bayesian rational analysis provides a better account
of core reasoning data than its logicist rivals. First, though,
we consider why. In Chapter 3, we argue that real-world,
informal, everyday, reasoning is almost never deductive,
that is, such reasoning is almost always logically invalid.
In Chapter 4, we consider what has driven the broader
“probabilistic turn” in cognitive science and related
fields, of which the Bayesian analysis of human reasoning
is a part.

3. Reasoning in the real world: How much
deduction is there?

Logic provides a calculus for certain reasoning — for
finding conclusions which follow, of necessity, from the
premises given. But in everyday life, people are routinely
forced to work with scraps of knowledge, each of which
may be only partially believed. Everyday reasoning
seems to be more a matter of tentative conjecture,
rather than of water-tight argument.

Notice, in particular, that a successful logical argument
cannot be overturned by any additional information that
might be added to the premises. Thus, if we know that
All people are mortal, and All women are people, then
we can infer, with complete certainty, that All women
are mortal. Of course, on learning new information we
may come to doubt the premises — but we cannot come
to doubt that the conclusion follows from the premises.
This property of classical logic is known as monotonicity,
meaning that adding premises can never overturn existing
conclusions.

In reasoning about the everyday world, by contrast, non-
monotonicity is the norm: almost any conclusion can be
overturned, if additional information is acquired. Thus,
consider the everyday inference from It’s raining and
I am about to go outside to I will get wet. This inference



is uncertain — indefinitely many additional premises (the
rain is about to stop; I will take an umbrella; there is a
covered walkway) can overturn the conclusion, even if
the premises are correct. The nonmonotonicity of every-
day inference is problematic for the application of logical
methods to modelling thought. Nonmonotonic inferences
are not logically valid and hence fall outside the scope of
standard logical methods.

The nonmonotonicity of everyday reasoning often
strikes in subtle and unexpected ways. Most notorious is
the “frame problem” (McCarthy & Hayes 1969), which
arose in early applications of logical methods in artificial
intelligence. Suppose an agent, with knowledge base K,
makes an action A (e.g., it turns a cup upside down).
Which other information in K needs to be updated to
take account of this action? Intuitively, almost all other
knowledge should be unchanged (e.g., that the street is
empty, or that the burglar alarm is off). But, from a
logical point of view, the “interia” of such everyday knowl-
edge does not follow, because it is logically possible that A
may have all manner of consequences. For example, given
the additional information that the cup is valuable and
placed in an alarmed glass case, then turning it over may
trigger the burglar alarm and may fill the street with
curious bystanders. The difficulties generated by the
frame problem have had a paralyzing effect on logical
approaches to planning, action, and knowledge represen-
tation in artificial intelligence.

Analogous problems arise more generally (Fodor
1983; Pylyshyn 1987). Given a database with knowledge
K, adding a new fact F (not necessarily concerning an
action) can typically overthrow many of the previous con-
sequences of K, in highly idiosyncratic ways. It proves to
be 1mp0551ble to delimit the inferential consequences of
a new fact in advance. Learning a new fact about football
can, for example, readily modify my beliefs about philos-
ophy. For example, suppose one has been told footballing
facts and philosophical facts by the same person, of uncer-
tain trustworthiness. Then learning that a footballing fact
is incorrect may cause one to doubt a putative philosophi-
cal fact. Thus, nonmonotonicty may apply to arbitrarily
remote pieces of knowledge. And note, of course, that an
inference that can be overturned by additional premises
cannot be logically valid — because standard logic is mono-
tonic by definition.

Inferences which are nonmonotonic, and hence cannot
be captured by conventional logic, are described in differ-
ent literatures using a variety of terms: non-demonstrative
inference, informal argument, and common-sense rea-
soning. For the purposes of our arguments, these
terms are interchangeable. But their import, across psy-
chology, artificial intelligence, and philosophy, is the
same: nonmonotonic arguments are outside the scope of
deductive logic.

This conclusion has alarming implications for the
hypothesis that thought is primarily based on logical infer-
ence. This is because the scope of monotonic inference is
vanishingly small — indeed, it scarcely applies anywhere
outside mathematics. As we shall see in Chapters 5-7,
this point applies even to verbally stated inferences that
are typically viewed as instances of deduction. For
example, consider the argument from if you put 50p in
the coke machine, you will get a coke and I've put 50p in
the coke machine, to I'll get a coke. This argument
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appears to be an instance of a canonical monotonic logical
inference: modus ponens.

Yet in the context of commonsense reasoning, this argu-
ment does not appear to be monotonic at all. There are
innumerable possible additional factors that may block
this inference (power failure, the machine is empty, the
coin or the can become stuck, etc.). Thus, you can put
the money in, and no can of coke may emerge. Attempting
to maintain a logical analysis of this argument, these cases
could be interpreted as indicating that, from a logical point
of view, the conditional rule is simply false — precisely
because it succumbs to counterexamples (Politzer &
Braine 1991). But this is an excessively rigorous stand-
point, from which almost all everyday conditionals will
be discarded as false. But how could a plethora of false
conditional statements provide a useful basis for thought
and action. From a logical point of view, after all, we
can only make inferences from ¢rue premises; a loglcdl
argument tells us nothing, if one or more of its premises
are false.

In sum, there appears to be a fundamental mismatch
between the nonmonotonic, uncertain character of
everyday reasoning, and the monotonicity of logic; and
this mismatch diagnoses the fundamental problem with
logic-based theories of reasoning and logicist cognitive
science more broadly. In BR, we draw a parallel with
a similar situation in the philosophy of science, where
there has been a gradual retreat from early positive
claims that theoretical claims somehow logically follow
from observable premises, to Popper’s (1935/1959) limit-
ation of logical deduction, to the process of drawing pre-
dictions from theories, to the abandonment of even this
position, in the light of the nonmonotonicity of predictive
inference (there are always additional forces, or factors,
that can undo any prediction; Putnam 1974). Indeed,
modern philosophy of science has taken a resolutely Baye-
sian turn (e.g., Bovens & Hartmann 2003; Earman 1992;
Horwich 1982; Howson & Urbach 1993). BR also con-
siders attempts to deal with the apparent mismatch by
attempting to deal with uncertainty by developing non-
monotonic logics (e.g., Reiter 1980), a project that
rapidly became mired in difficulties (see, e.g., Oaksford
& Chater 1991). Perhaps it is time to shift our attention
to a calculus that deals directly with uncertainty: prob-

ability theory.

4. The probabilistic turn

We have seen how uncertainty, or nonmonotonicity, is a
ubiquitous feature of everyday reasoning. Our beliefs,
whether arising from perception, commonsense thought,
or scientific analysis, are tentative and provisional. Our
expectation that the car will start, that the test tube will
turn blue, or that one arrow is longer than another, are
continually being confounded by faulty batteries, impure
chemicals, or visual illusions.

Interestingly, Aristotle, the founder of logic, was keenly
aware of the limits of the logical enterprise. After all, he
was interested not only in mathematical and philosophical
reasoning, but also with the scientific description and
analysis of the everyday world, and with practical affairs
and human action. An often quoted passage from the Nico-
machean Ethics (1094b, Aristotle 1980, p. 3) notes that
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“it is the mark of an educated man to look for precision in
each class of things just so far as the nature of the subject
admits: it is evidently equally foolish to accept probable
reasoning from a mathematician and to demand from a
rhetorician demonstrative reasoning.”

Indeed, one key motivation for developing a theory of
probability was closely connected with Aristotle’s rhetori-
cian. The goal in rhetoric, in its traditional sense, is to
provide reasoned arguments for why people should hold
certain opinions concerning matters about which certainty
is impossible. Thus, in deciding court cases by jury, a
different piece of evidence (e.g., eye-witness testimony,
forensic evidence, evidence of previous good character)
must somehow be combined to yield a degree of belief
concerning the likely guilt of the defendant. Here,
probability is interpreted subjectively, in terms of a
person’s strength of opinion, rather than concerning an
assumption about the external world. Indeed, the very
word “probability” initially referred to the degree to
which a statement was supported by the evidence at
hand (Gigerenzer et al. 1989). Jakob Bernoulli explicitly
endorsed this interpretation when he entitled his defini-
tive book Ars Conjectandi, or the Art of Conjecture (Ber-
noulli 1713). This subjectivist, or Bayesian, conception of
probability ran through the eighteenth and into the nine-
teenth centuries (Daston 1988), frequently without clear
distinctions being drawn between probability theory as a
model of actual thought (or more usually, the thought of
“rational”, rather than common, people [Hacking 1975;
1990]) or as a set of normative canons prescribing how
uncertain reasoning should be conducted. As with logic,
early probability theory itself was viewed as a model of
mind.

Over the latter part of the twentieth century, the Baye-
sian perspective has been increasingly influential across
the cognitive sciences and related disciplines. Chapter 4
of BR surveys some of these developments. For example,
if everyday inference is inherently probabilistic, this
raises the possibility that natural language statements
should be interpreted as making probabilistic, rather
than logical, claims. So, for example, Adams (e.g., 1975;
1998) directly imports probability into logical theory,
arguing that the conditional If A then B should, roughly,
be interpreted as saying that B is probable, if A is true.
Later we shall see how this, and other probabilistic ana-
lyses of familiar “logical” structures (e.g., concerning the
quantifiers All, Some, etc.), cast new light on the empirical
reasoning data.

It is, we suggest, significant that three key domains in
which uncertain inference is ubiquitous, philosophy of
science, artificial intelligence, and cognitive psychology,
have all embraced the Bayesian approach. BR reviews
some of the key developments: the application of Bayes’
theorem to hypothesis confirmation (e.g., Earman 1992);
the development of graphical models for knowledge rep-
resentation and causal reasoning (Pearl 1988; 2000); and
the application of Bayesian methods in rational models
of cognitive phenomena (Chater & Oaksford 2008b; Oaks-
ford & Chater 1998b) in areas as diverse as categorization
(Anderson 1991b; Anderson & Matessa 1998), memory
(Anderson & Milson 1989; Anderson & Schooler 1991),
conditioning (Courville et al. 2006; Kakade & Dayan
2002), causal learning (Griffiths & Tenenbaum 2005;
Novick & Cheng 2004), natural language processing
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(Chater et al. 1998; Chater & Manning 2006), and vision
(Knill & Richards 1996; Yuille & Kersten 2006).

There has, in short, been a “probabilistic turn” across a
broad range of domains — a move away from the attempt
to apply logical methods to uncertain reasoning, and
towards dealing with uncertainty by the application of
probability theory. In Chapters 5-7, we illustrate how
the switch from logical to Bayesian rationality leads to
a radical re-evaluation of the psychology of human
reasoning — so radical, in fact, that even apparently para-
digmatic “logical” reasoning tasks turn out to be better
understood from a probabilistic point of view.

5. Does the exception prove the rule? How
people reason with conditionals

In Chapters 5-7 of BR, we describe Bayesian probabilistic
models for the three core areas of human reasoning
research: conditional inference (Ch. 5), data selection
(Ch. 6), and quantified syllogistic inference (Ch. 7). The
key idea behind all these models is to use conditional prob-
ability, P(q|p), to account for the meaning of conditional
statements, if p then g (e.g., if you turn the key then the
car starts). The aim is to show that what appear to be
“errors and biases” from a logicist standpoint are often
entirely rational from a Bayesian point of view. In this
Précis, for each area of reasoning, we introduce the task,
the standard findings, and existing logicist accounts. We
then introduce a Bayesian rational analysis for each
problem, show how it accounts for the core data, and
provide a snapshot of some of the further data that we
discuss in BR. Finally, for each area of reasoning, we sum-
marise and describe one or two outstanding problems con-
fronting the Bayesian approach.

Chapter 5 of BR begins with conditional inference, that
is, inferences directly involving the conditional if p then g.
In the conditional, p is called the “antecedent” and ¢ is
called the “consequent.” Four inference patterns have
been extensively studied experimentally (see Fig. 1).
Each inference consists of the conditional premise and
one of four possible categorical premises, which relate
either to the antecedent or consequent of the conditional,
or their negations (p, —p, g, =¢ where “=" = not). For
example, the inference Modus Ponens (MP) combines
the conditional premise if p then g with the categorical
premise p; and yields the conclusion q.

According to standard logic, two of these inferences are
logically valid (MP and Modus Tollens [MT], see Fig. 1),
and two are fallacies (Denying the Antecedent [DA] and

(MP) pP=4p
Soq Se=p

(DA) pP=4q,—p (AC) P=4.9
- P

Sog

Figure 1. The four inference patterns investigated in the
psychology of conditional inference: Modus Ponens (MP) and
Modus Tollens (MT) are logically valid. Denying the Antecedent
(DA) and  Affirming the Consequent (AC) are logically
fallacious. These inference schemata read that if the premises
above the line are true then so must be the conclusion below
the line. “p = ¢~ signifies the “material conditional” of
standard logic, which is true unless p is true and ¢ is false.
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Figure 2. The fits to the experimental data (Schroyens &
Schaeken 2003) of standard logic (Panel A), standard logic plus
the biconditional interpretation and error (Panel B), the
original probabilistic model (Panel C), and the probabilistic
model adjusted for rigidity violations (Panel D).

Affirming the Consequent [AC], see Fig. 1). Figure 2
(Panel A) shows the results of a meta-analysis of exper-
iments where people are asked whether they endorse
each of these four inferences (Schroyens & Schaeken
2003). Panel A also shows the predictions of the standard
logical model, revealing a large divergence.

From a logicist standpoint, this divergence may be
reduced by assuming that some people interpret the con-
ditional as a biconditional, that is, that if p then ¢ also
means that if g then p. This move from conditional to
biconditional is, of course, logically invalid. For example,
if a bird is a swan, then it is white clearly does not entail
that if a bird is white, then it is a swan. Nonetheless, the
biconditional interpretation may be pragmatically reason-
able, in some cases. For example, promises such as if you
mow the lawn, I will pay you £5 do seem to allow this prag-
matic inference; it seems reasonable to assume that I will
only pay you £5 if you mow the lawn (or, at least, that I will
not pay you £5 if you refuse). By assuming that people make
this pragmatic inference for the stimuli used in experimen-
tal tasks and by making some allowance for random error,
the best fit that standard logic can provide is shown in
Figure 2 (Panel B) (see Oaksford & Chater 2003a).

To further close the gap with the data in Figure 2, logi-
cist theories of conditional inference typically assume not
only that people adopt the pragmatic inference to the
biconditional interpretation, but also that they fail to rep-
resent logic completely in their cognitive system. For
example, mental logic (e.g., Rips 1994) is typically
assumed to involve an MP inference rule, but no MT
rule. This means that MT inferences must be drawn in a
more complex way, often leading to error. Similarly,
according to mental models theory, people do not initially
represent the full meaning of the conditional (Johnson-
Laird & Byrne 2002). To draw an MT inference, they
must “flesh out” their representations to fully capture
the meaning of the conditional. In both cases, logically
unwarranted pragmatic inferences and assumptions
about cognitive limitations are invoked to explain the data.

In contrast, the Bayesian approach only invokes prob-
ability theory. There are four key ideas behind the prob-
abilistic account of conditional inference. First, the
probability of a conditional is the conditional probability,
that is, P(if p then g) = P(qlp). In the normative literature,
this identification is simply called “The Equation” (Adams
1998; Bennett 2003; Edgington 1995). In the psychological
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literature, the Equation has been confirmed experimen-
tally by Evans et al. (2003) and by Oberauer and
Wilhelm (2003). Second, as discussed earlier, probabilities
are interpreted “subjectively,” that is, as degrees of belief.
It is this interpretation of probability that allows us to
provide a probabilistic theory of inference as belief updat-
ing. Third, conditional probabilities are determined by a
psychological process called the “Ramsey Test” (Bennett
2003; Ramsey 1931/1990b). For example, suppose you
want to evaluate your conditional degree of belief that if
it is sunny in Wimbledon, then John plays tennis. By the
Ramsey test, you make the hypothetical supposition that
it is sunny in Wimbledon and revise your other beliefs so
that they fit with this supposition. You then “read off”
your hypothetical degree of belief that John plays tennis
from these revised beliefs.

The final idea concerns standard conditional inference:
how we reason when the categorical premise is not merely
supposed, but is actually believed or known to be true.
This process is known as conditionalization. Consider an
MP inference, for example, If it is sunny in Wimbledon,
then John plays tennis, and It is sunny in Wimbledon,
therefore, John plays tennis. Conditionalization applies
when we know (instead of merely supposing) that it is
sunny in Wimbledon; or when a high degree of belief
can be assigned to this event (e.g., because we know that
it is sunny in nearby Bloomsbury). By conditionalization,
our new degree of belief that John plays tennis should
be equal to our prior degree of belief that if it is sunny
in Wimbledon, then John plays tennis (here “prior”
means before learning that it is sunny in Wimbledon).
More formally, by the Equation, we know that Py(if it is
sunny in Wimbledon, then John plays tennis) equals
Po(John plays tennislit is sunny in Wimbledon), where
“Po(x)” = prior probability of x. When we learn it is
sunny in  Wimbledon, then Py(it is sunny in
Wimbledon) = 1, where “Pj(x)” = posterior probability
of x. Conditionalizing on this knowledge tells us that our
new degree of belief in John plays tennis Pi(John plays
tennis), should be equal to Po(John plays tennis|it is
sunny in Wimbledon). That is, P1(q) = Po(qlp), where
p =it is sunny in Wimbledon, and g = John plays
tennis! So from a probabilistic perspective, MP provides
a way of updating our degrees of belief in the consequent,
¢, on learning that the antecedent, p, is true.

So, quantitatively, if you believe that Py(John plays
tennislit is sunny in Wimbledon) = 0.9, then given you
discover that it is sunny in Wimbledon (Py(it is sunny in
Wimbledon) = 1) your new degree belief that John
plays tennis should be 0.9, that is, Py(John plays
tennis) = 0.9. This contrasts with the logical approach in
which believing the conditional premise entails with cer-
tainty that the conclusion is true, so that Py(John plays
tennislit is sunny in Wimbledon) = 1. This is surely too
strong a claim.

The extension to the other conditional inferences is not
direct, however. Take an example of AC, if it is sunny in
Wimbledon, John plays tennis and John plays tennis,
therefore, it is sunny in Wimbledon. In this case, one
knows or strongly believes that John play tennis (perhaps
we were told by a very reliable source), so Py(q) = 1.
But to use Bayesian conditionalization to infer one’s new
degree of belief that it is sunny in Wimbledon, P(p),
one needs to know one’s conditional degree of belief
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that it is sunny in Wimbledon given John plays tennis, that
is, Po(plq). However, the conditional premise of AC, like
that of MP, is about Pylglp) not about Py(plg)
(Sober 2002). The solution proposed by Oaksford et al.
(2000; see also Wagner 2004) is that that people also
know the prior marginal probabilities (at least approxi-
mately). That is, they know something about the prob-
ability of a sunny day in Wimbledon, Py(p), and the
probability that John plays tennis, Py(q), before learning
that it is in fact a sunny day in Wimbledon. With this
additional information, Py(plg) can be calculated from
the converse conditional probability, Po(glp), using
Bayes’ Theorem.? The same approach also works for DA
and MT where the relevant probabilities are Po(—q|—p)
and Po(—=p|—q), respectively. The fact that the conditional
premises of AC, DA, and MT do not determine the appro-
priate conditional probability marks an important asym-
metry with MP. For these inferences, further knowledge
is required to infer the relevant conditional degrees of
belief.

The rest of Chapter 5 in BR shows how the errors and
biases observed in conditional inference are a conse-
quence of this rational probabilistic model. The first set
of “biases” relates directly to the data in Figure 2. These
are what, in BR, we call “the inferential asymmetries.”
That is, MP is drawn more than MT and AC is drawn
more than DA (MT is also drawn more than AC).
Figure 2, Panel C shows how well a probabilisitic
account can explain these asymmetries. Here we have cal-
culated the values of Py(glp), Po(p), and Py(qg) that best fit
the data, that is, they minimize the sum of squared error
between the data and the models predictions (“model”
in Fig. 2). As Panel C shows, a probabilistic account can
capture the asymmetries without pragmatic inference or
appeal to process limitations. Panel C also shows,
however, that this probabilistic model (Oaksford et al.
2000) does not capture the magnitudes of the inferential
asymmetries (Evans & Over 2004; Schroyens & Schaeken
2003). It underestimates the MP — MT asymmetry and
overestimates the DA — AC asymmetry.

In BR, we argue that this is because learning that the
categorical premise is true can have two inferential roles.
The first inferential role is in conditionalization, as we
have described. The second inferential role is based on
the pragmatic inference that being told that the categorical
premise is true often suggests that there is a counterexam-
ple to the conditional premise. For example, consider the
MT inference on the rule: If I turn the key, the car starts. If
you were told that the car did not start, it seems unlikely
that you would immediately infer that the key was not
turned. Telling someone that the car did not start seems
to presuppose that an attempt has been made to start it,
presumably by turning the key. Consequently, the categ-
orical premise here seems to suggest a counterexample
to the conditional itself, that is, a case where the key was
turned but the car did not start. Hence, one’s degree of
belief in the conditional should be reduced on being told
that the car did not start. Notice, here, the contrast
between being told that the car did not start (and
drawing appropriate pragmatic inferences), and merely
observing a car that has not started (e.g., a car parked in
the driveway). In this latter situation, it is entirely
natural to use the conditional rule to infer that the key
has not been turned.
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Where the second, pragmatic, inferential role of the cat-
egorical premise is operative, this violates what is called the
rigidity condition on conditionalization, Py(q|p) = P1(glp)
(Jeffrey 1983). That is, learning the categorical premise
alters one’s degree of belief in the conditional premise. In
BR, we argue that taking account of such rigidity violations
helps capture the probability of the conditional; and that, for
MT this modified probability is then used in conditionaliza-
tion. Furthermore, we argue that DA and AC also suggest
violations of the rigidity condition, concerning the case
where the car starts without turning the key. These viola-
tions lead to reductions in our degree of belief that the
cars starts, given that the key is turned (Py(g|p)). Using
this lower estimate to calculate the relevant probabilities
for DA, AC, and MT can rationally explain the relative mag-
nitudes of the MP — MT and DA — AC asymmetries (see
Fig. 2, Panel D).

We now turn to one of the other biases of conditional
inference that we explain in Chapter 5 of BR: negative con-
clusion bias. This bias arises when negations are used in
conditional statements, for example, If a bird is a swan,
then it is not red. In Evans’ (1972) Negations Paradigm,
four such rules are used: If p then gq; if p then not-q; if
not-p then gq; if not-p then not-q. The most robust
finding is that people endorse DA, AC, and MT more
when the conclusion contains a negation (see Fig. 3). So,
for example, DA on if p then ¢ (see Panel A in Fig. 3)
yields a negated conclusion, not-q. Whereas, DA on if p
then not-q (see Panel B in Fig. 3) yields an aflirmative con-
clusion, g (because not-not-q = ). In Figure 3, it is clear
that the frequency with which DA is endorsed for if p then
¢ is much higher than for if p then not-q.

To explain negative conclusion bias, we appeal to the
idea that most categories apply only to a minority of
objects (Oaksford & Stenning 1992). Hence, the prob-
ability of an object being, say, red is lower than the prob-
ability of it not being red, that is, Po(Red) < Po(—Red).
Consequently, the marginal probabilities (Py(p) and Py(q))
will take on higher values when p or ¢ are negated. Higher
values of the prior probabilities of the conclusion imply
higher values of the relevant conditional probabilities for
DA, AC, and MT, that is, to higher values of the posterior
probability of the conclusion. So, for example, for our rule
if a bird is a swan, then it is white, the prior probability of
the conclusion of the DA inference (Py(—White)) is high.
This means that the conditional probability (Po(—White|—

== Data —O~—Model

-

A B Cc D
- 08
2
S 06
g
S
30.4
Eoz
’ R2=.90 Error Bars = 95% Cls
0 +—r—T—r—r—r—r—— T
MP DA ACMT  MP DA ACMT  MP DA ACMT  MP DA AC MT
Inference

Figure 3. The results of Oaksford et al.’s (2000) meta-analysis
of the negations paradigm conditional inference task for if p
then g (Panel A), if p then —q (Panel B), if —p then g (Panel
C), and if —p then —q (Panel D), showing the fit of the
original probabilistic model.
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Figure 4. The results of Oaksford et al.’s (2000) Experiment 1
for the low P(p), low P(g) rule (Panel A), the low P(p), high
P(q) rule (Panel B), the high P(p), low P(q) rule (Panel C), and
the high P(p), high P(q) rule (Panel D), showing the fit of the
original probabilistic model.

Swan)) is also high and, consequently, so is the probability of
the conclusion (P;(=White)). Therefore, an apparently
irrational negative conclusion bias can be seen as a rational
“high probability conclusion” effect. Oaksford et al. (2000)
tested this explanation by manipulating directly Py(p) and
Py(g) rather than using negations and showed results
closely analogous to negative conclusion bias (see Fig. 4).

To conclude this section on conditional inference, we
briefly review one of the most cited problems for a prob-
abilistic account. Like any rational analysis, this account
avoids theorising about the specific mental representations
or algorithms involved in conditional reasoning. This may
seem unsatisfactory. We suggest, by contrast, that it is pre-
mature to attempt an algorithmic analysis. The core of our
approach interprets conditionals in terms of conditional
probability, that is, using the Equation; and our current
best understanding of conditional probability is given by
the Ramsey test (Bennett 2003). But there is currently
no possibility of building a full algorithmic model to
carry through the Ramsey test, because this involves
solving the notorious frame problem, discussed in
Chapter 3. That is, it involves knowing how to update
one’s knowledge-base, in the light of a new piece of
information — and this problem has defied 40 years of arti-
ficial intelligence research.

Nonetheless, an illustrative small-scale implementation
of the Ramsey test is provided by the operation of a con-
straint satisfaction neural network (Oaksford 2004a). In
such a model, performing a Ramsey test means clamping
on or off the nodes or neurons corresponding to the categ-
orical premise of a conditional inference. Network con-
nectivity determines relevance relations and the weight
matrix encodes prior knowledge. Under appropriate con-
straints, such a network can be interpreted as computing
true posterior probabilities (McClelland 1998). A chal-
lenge for the future is to see whether such small-scale
implementations can capture the full range of empirically
observed effects in conditional inference.

6. Being economical with the evidence: Collecting
data and testing hypotheses

Chapter 6 of BR presents a probabilistic model of Wason’s
selection task. In this task, people see four double-sided
cards, with a number on one side and a letter on the
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other. They are asked which cards they should turn over,
in order to test the hypothesis that if there is an A (p) on
one side of a card, then there is a 2 (q) on the other. The
upturned faces of the four cards show an A (p), a K
(—p), a2 (q), and a 7 (—q) (see Fig. 5). The typical
pattern of results is shown in Figure 6 (Panel A, Data).

As Popper (1935/1959) argued, logically one can never
be certain that a scientific hypothesis is true in the light of
observed evidence, as the very next piece of evidence one
discovers could be a counterexample. So, just because all
the swans you have observed up until now have been
white, is no guarantee that the next one will not be
black. Instead, Popper argues that the only logically sanc-
tioned strategy for hypothesis testing is to seek falsifying
cases. In testing a conditional rule if p then ¢, this means
seeking out p, —¢ cases. This means that, in the standard
selection task, one should select the A (p) and the 7 (—¢q)
cards, because these are the only cards that could poten-
tially falsify the hypothesis. Figure 6 (Panel A, Model)
shows the logical prediction, and, as for conditional infer-
ence, the divergence from the data is large. Indeed, rather
than seek falsifying evidence, participants seem to select
the cases that confirm the conditional (p and ¢). This is
called “confirmation bias.”

The range of theories of the selection task parallels the
range of accounts of the conditional inference task
described earlier. Mental logic theories (e.g., Rips 1994)
assume that people attempt to perform conditional infer-
ences, using the upturned face as the categorical
premise to infer what is on the hidden face. Again, a bicon-
ditional interpretation is invoked: that if A then 2 may
pragmatically imply if 2 then A. If people perform an
MP inference on both conditionals, this will yield a confir-
matory response pattern. To infer that the 7 card should
be turned, involves considering the hidden face. If
people consider the possibility that the hidden face is
not an A, then the complex inference pattern required
for MT can be applied. A problem for mental logic is
that, on this explanation, selection task performance
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Figure 5. The four cards in Wason’s Selection Task.

—+—Data --3--Model

B

- 0.8
o
]
T 0.6
L2
S04
L0

0.2

0 Error Bars = 95% Cls
P P q 7q P P q 7q
Card

Figure 6. The fits to the experimental data on the Wason
Selection Task of standard logic (Panel A) and of the optimal
data selection model (Oaksford & Chater 1994) (Panel B).

BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1 77



Oaksford & Chater: Précis of Bayesian Rationality

should look like conditional inference task performance
where selecting the 2 (g) card corresponds to AC and
selecting the 7 (—¢) card corresponds to MT. However,
in conditional inference, MT is endorsed more than AC,
but in the selection task this is reversed, that is, ¢ (AC)
is selected more than —¢g (MT).® For mental models,
similar predictions are made if people initially represent
the conditional as a biconditional and do not “flesh out”
this representation.

The optimal data selection (ODS) model of this task
(Oaksford & Chater 1994; 1996; 2003b) is a rational analy-
sis derived from the normative literature on optimal exper-
imental design in Bayesian statistics (Lindley 1956). The
idea again relies on interpreting a conditional in terms of
conditional probability. For example, the hypothesis, if
swan (p) then white (p), is interpreted as making the
claim that the probability of a bird being white given
that it is a swan, P(qlp), is high, certainly higher than the
base rate of being a white bird, P(g). This hypothesis is
called the dependence hypothesis (Hp5). Bayesian hypoth-
esis testing is comparative rather than exclusively concen-
trating on falsification. Specifically, in the ODS model, it is
assumed that people compare Hp, with an independence
hypothesis (Hj) in which the probability of a bird being
white, given it is a swan, is the same as the base rate of a
bird being white, that is, P(q|p) = P(q). We assume that,
initially, people are maximally uncertain about which
hypothesis is true (P(Hp) = P(H;) = 0.5) and that their
goal in selecting cards is to reduce this uncertainty as
much as possible while turning the fewest cards.

Take, for example, the card showing swan (p). This card
could show white on the other side (p, ¢) or another color
(p, —q). The probabilities of each outcome will be quite
different according to the two hypotheses. For example,
suppose that the probability of a bird being white, given
that it is a swan is 0.9 (P(glp, Hp) = 0.9) in the depen-
dence hypothesis; the marginal probability that a bird is
swan is 0.2 (P(p)=0.2); and the marginal probability
that a bird is white is 0.3 (P(g) = 0.3). Then, according
to the dependence hypothesis, the probability of finding
white (q) on the other side of the card is 0.9, whereas
according to the independence hypothesis it is 0.3 (as
the antecedent and consequent are, in this model, inde-
pendent, we need merely consult the relevant marginal
probability). And, according to the dependence hypoth-
esis, the probability of finding a color other than white
(—q) on the other side of the card is 0.1, whereas according
to the independence hypothesis it is 0.7. With this infor-
mation it is now possible to calculate one’s new degree
of uncertainty about the dependence hypothesis after
turning the swan card to find white on the other side
(P(Hplp, q)). According to Bayes’ theorem (see Note 2),
this probability is 0.75. Hence, one’s new degree of
belief in the dependence model should be 0.75 and
one’s degree of belief in the independence model should
be 0.25. Hence, the degree of uncertainty about which
hypothesis is true has been reduced. More specifically,
the ODS model is based on information gain, where infor-
mation is measured in bits as in standard communication
theory. Here, the initial uncertainty is 1 bit (because
P(Hp) = P(Hy) = 0.5, equivalent to the uncertainty of a
single fair coin flip) and in this example this is reduced
to 0.81 bits (because now P(Hp)=0.75 and
P(H;) = 0.25). This is an information gain of 0.19 bits.
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In Wason’s task, though, participants do not actually
turn the cards, and hence they cannot know how much
information they will gain by turning a card before doing
so. Consequently, they must base their decision on
expected information gain, taking both possible outcomes
(p, g and p, —¢) into account. The ODS model assumes
that people select each card in direct proportion to its
expected information gain.

The ODS model also makes a key assumption about the
task environment — that is, Step 2, in rational analysis: The
properties that occur in the antecedents and consequents
of hypotheses are almost always rare and so have a low
base rate of occurrence. For example, most birds are not
swans and most birds are not white. This assumption has
received extensive independent verification (McKenzie
et al. 2001; McKenzie & Mikkelsen 2000; 2007).

The ODS model predicts that the two cards that lead to
the greatest expected information gain are the p and the ¢
cards. Figure 6 (Panel B) shows the fit of the model to the
standard data (Oaksford & Chater 2003b). The value of
P(glp, Hp) was set to 0.9 and the best fitting values of
P(p) and P(g) were 0.22 and 0.27 respectively, that is,
very close to the values used in the earlier example. The
ODS model suggests that performance on the selection
task displays rational hypothesis testing behavior, rather
than irrational confirmation bias. Taking rarity to an
extreme provides a simple intuition here. Suppose we con-
sider the (rather implausible) conditional: If a person is
bitten by a vampire bat (p), they will develop pointed
teeth (g). Clearly, we should check people who we know
to have been bitten, to see if their teeth are pointed (i.e.,
turn the p card); and, uncontroversially, we can learn
little from people we know have not been bitten (i.e., do
not turn the —p card). If we see someone with pointed
teeth, it is surely worth finding out whether they have
been bitten — if they have, this raises our belief in the con-
ditional, according to a Bayesian analysis (this is equivalent
to turning the ¢ card). But it seems scarcely productive to
investigate someone without pointed teeth (i.e., do not
turn the —q card) to see if they have been bitten. To be
sure, it is possible that such a person might have been
bitten, which would disconfirm our hypothesis, and lead
to maximum information gain; but this has an almost
infinitesimal probability. Almost certainly, we shall find
that they have not been bitten, and learn nothing.
Hence, with rarity, the expected informativeness of the
g card is higher than that of the —¢ card, diverging
sharply from the falsificationist perspective, but agreeing
with the empirical data.

It has been suggested, however, that behaviour on this
task might be governed by what appears to be a wholly
non-rational strategy: matching bias. This bias arises
in the same context as negative conclusion bias that we dis-
cussed earlier, that is, in Evans’ (1972) negations para-
digm. Take, for example, the rule if there is an A on one
side, then there is not a 2 on the other side (if p
then —q). The cards in this task are described using
their logical status, so for this rule, 2 is the false consequent
(FC) card and 7 is the true consequent (TC) card. For this
negated consequent rule, participants tend to select the
A card (TA: true antecedent) and the 2 card (FC). That
is, participants now seem to make the falsifying response.
However, as Evans and Lynch (1973) pointed out, partici-
pants may simply ignore the negations entirely and match



the values named in the conditional, that is, A and 2. Prima
facie, this is completely irrational. However, the “contrast
set” account of negation shows that because of the rarity
assumption — that most categories apply to a minority of
items — negated categories are high probability categories
(discussed earlier). Having a high probability antecedent
or consequent alters the expected information gains
associated with the cards. If the probability of the conse-
quent is high, then the ODS model predicts that people
should make the falsifying TA and FC responses,
because these are associated with the highest information
gain. Consequently, matching bias is a rational hypothesis
testing strategy after all.

Probabilistic effects were first experimentally demon-
strated using the reduced array version of Wason’s selec-
tion task (Oaksford et al. 1997), in which participants
can successively select up to 15 ¢ and 15 —¢g cards
(there are no upturned p and —p cards that can be
chosen). As predicted by the ODS model, where the prob-
ability of ¢ is high (i.e., where rarity is violated), partici-
pants select more —¢q cards and fewer g cards. Other
experiments have also revealed similar probabilistic
effects (Green & Over 1997; 2000; Kirby 1994; Oaksford
et al. 1999; Over & Jessop 1998).

There have also been some failures to produce probabil-
istic effects, however (e.g., Oberauer et al. 1999; 2004).
We have argued that these arise because of weak prob-
ability manipulations or other procedural problems (Oaks-
ford & Chater 2003b; Oaksford & Moussakowski 2004;
Oaksford & Wakefield 2003). We therefore introduced a
natural sampling (Gigerenzer & Hoffrage 1995) pro-
cedure in which participants sample the frequencies of
the card categories while performing a selection task
(Oaksford & Wakefield 2003). Using this procedure, we
found probabilistic effects using the same materials as
Oberauer et al. (1999), where these effects were not
evident.

In further work on matching bias, Yama (2001) devised
a crucial experiment to contrast the matching bias and the
information gain accounts. He used rules that introduced a
high and a low probability category, relating to the blood
types Rhesus Negative (Rh—-) and Positive (Rh+). People
were told that one of these categories, Rh—, was rare.
Therefore, according to the ODS model and the rule if
p then —=Rh+ should lead participants to select the rare
Rh- card. In contrast, according to matching bias they
should select the Rh+ card. Yama’s (2001) data were
largely consistent with the information gain model. More-
over, this finding was strongly confirmed by using the
natural sampling procedure with these materials (Oaks-
ford & Moussakowski 2004).

Alternative probabilistic accounts of the selection task
have also been proposed (Evans & Over 1996a; 1996b;
Klauer 1999; Nickerson 1996; Over & Evans 1994; Over
& Jessop 1998). Recently, Nelson (2005) directly tested
the measures of information underpinning these models,
including Bayesian diagnosticity (Evans & Over 1996b;
McKenzie & Mikkelsen 2007; Over & Evans 1994), infor-
mation gain (Hattori 2002; Oaksford & Chater 1994; 1996;
2003b), Kullback-Liebler distance (Klauer 1999; Oaksford
& Chater 1996), probability gain (error minimization)
(Baron 1981; 1985), and impact (absolute change) (Nick-
erson 1996). Using a related data selection task, he
looked at a range of cases in which these norms predicted
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different orderings of informativeness, for various data
types. Nelson found the strongest correlations between
his data and information gain (.78). Correlations with diag-
nosticity (—.22) and log diagnosticity (—.41) were actually
negative. These results mirrored Oaksford et al.’s (1999)
results in the Wason selection task. Nelson’s work provides
strong convergent evidence for information gain as the
index that most successfully captures people’s intuitions
about the relative importance of evidence.

There has been much discussion in the literature of the
fact that selection task results change dramatically for con-
ditionals that express rules of conduct, rather than putative
facts, about the world (Cheng & Holyoak 1985; Mankte-
low & Over 1991). In such tasks, people typically do
select the p and —¢ cards — the apparently “logical”
response. One line of explanation is that reasoning is
domain-specific, rather than applying across-the-board; a
further claim, much discussed in evolutionary psychology,
is that such tasks may tap basic mechanisms of social
reasoning, such as “cheater-detection” (Cosmides 1989),
which enables “correct” performance.

A Bayesian rational analysis points, we suggest, in a
different direction — that such deontic selection tasks
(i.e., concerning norms, not facts) require a different
rational analysis. In the deontic selection task, participants
are given conditionals describing rules concerning how
people should behave, for example, if you enter the
country, you must have an inoculation against cholera.
The rule is not a hypothesis under test, but a regulation
that should be obeyed (Manktelow & Over 1987).
Notice, crucially, that it makes no sense to confirm or dis-
confirm a rule concerning how people should behave:
People entering the country should be inoculated,
whether or not they actually are. The natural interpret-
ation of a deontic task is for the participant to check
whether the rule is being disobeyed — that is, to look for
p, —q cases (people who enter the country, but are not
inoculated); and indeed, in experiments, very high selec-
tions of the p and —¢g cards are observed. This is not
because people have suddenly become Popperian falsi-
fiers. This is because the task is no longer about attempting
to gain information about whether the conditional is true
or false. The conditional now concerns how people
should behave, and hence can neither be confirmed nor
disconfirmed by any observations of actual behavior.

We adopted a decision theoretic approach to these tasks
(Oaksford & Chater 1994; Perham & Oaksford 2005). Vio-
lators are people who enter the country (p) without a vac-
cination (—¢). Thus, we assume that participants whose
role it is to detect violators attach a high utility to detecting
these cases, that is, U(p, —¢q) is high. However, every other
case represents a cost, as it means wasted effort. We argue
that people calculate the expected utility associated with
each card. So, for example, take the case where someone
does not have an inoculation (—¢). She could be either
entering the country (p, —¢) or not entering the country
(=p, —q). Just as in calculating expected information
gain, both possible outcomess have to be taken into
account in calculating expected utility (EU(x)):

EU(—q) = P(p|—q)U(p, =q) + P(—p|=¢q)U(—p, —q)

We argue that people select cards in the deontic selection
task to maximise expected utility. As only the utility of
detecting a violator — someone trying to enter without an
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inoculation — is positive, this means that only the p and
the —¢ cards will have positive utilities (because only
these cards could show a violator). This model can
account for a broad range of effects on deontic reasoning,
including the effects of switched rules (Cosmides 1989),
perspective changes (Manktelow & Over 1991), utility
manipulations (Kirby 1994), and probability manipula-
tions (Manktelow et al. 1995).

Recently, we have also applied this model to rules that
contain emotional content, for example, if you clean up
blood, then you must wear gloves (Perham & Oaksford
2005). With the goal of detecting cheaters (Cosmides
1989), you will look at people who are not cleaning up
blood but who are wearing gloves (—p, ¢). With the goal
of detecting people who may come to harm, you will
want to check people who are cleaning up blood but
who are not wearing gloves (p, —¢). Perham and Oaksford
(2005) set up contexts in which cheater detection should
dominate, but in which the goal of detecting people
who may come to harm may still be in play. That is,
U(=p, ¢g)>U(p, —q)>0. The threatening word
“blood” can appear for either the p, ¢ case or the p, =g
case. In calculating generalized expected utility (Zeelen-
berg et al. 2000), a regret term (Re) is subtracted from
the expected utility of an act of detection, if the resulting
state of the world is anticipated to be threatening. For
example, by checking someone who is not wearing
gloves (—q), to see if they are at risk of harm, one must
anticipate encountering blood (p). Because “blood” is a
threatening word, the utility for the participant of
turning a —¢ card is reduced; that is, the utility of encoun-
tering a p, —q card is now U(p, —q) — Re, for regret term
Re. Consequently, selections of the “not wearing gloves”
card (—q) should be lower for our blood rule than for a
rule that does not contain a threatening antecedent, such
as, if you clean up packaging, then you must wear gloves.

In two experiments, Perham and Oaksford (2005)
observed just this effect. When participants’ primary goal
was to detect cheaters, their levels of —=p and ¢ card selec-
tion were the same for the threat (blood rule) as for the no-
threat rule. However, their levels of p and —¢g card selec-
tion were significantly lower for the threatening than for
the non-threatening rules. This finding is important
because it runs counter to alternative theories, in particu-
lar the evolutionary approach (Cosmides 1989; Cosmides
& Tooby 2000), which makes the opposite prediction,
that p and —¢ card selections should, if anything, increase
for threat rules.

Of the models considered in BR, the optimal data selec-
tion and expected utility models have been in the literature
the longest, and have been subject to most comment. In
the rest of Chapter 6, we respond in detail to these com-
ments, pointing out that many can be incorporated into
the evolving framework, and that some concerns miss
their mark.

7. An uncertain quantity: How people reason with
syllogisms

Chapter 7 of BR presents a probabilistic model of quanti-

fied syllogistic reasoning. This type of reasoning relates
two quantified premises. Logic defines four types of
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quantified premise: All, Some, Some. . .not, and None. An
example of a logically valid syllogistic argument is:

Some Londoners (P) are soldiers (Q)
All soldiers (Q) are well fed (R)

Therefore  Some Londoners (P) are well fed (R)
In this example, P and R are the end terms and Q is the
middle term, which is common to both premises. In the
premises, these terms can only appear in four possible
configurations, which are called figures. When one of
these terms appears before the copula verb (“are”) it is
called the subject term (in the example, P and Q) and
when one appears after this verb it is called the predicate
term (Q and R). As the premises can appear in either
order, there are 16 combinations, and as each can be in
one of four figures, there are 64 different syllogisms.

There are 22 logically valid syllogisms. If people are
reasoning logically, they should endorse these syllogisms
and reject the rest. However, observed behavior is
graded, across both valid and invalid syllogisms; and
some invalid syllogisms are endorsed more than some
valid syllogisms. Table 1 shows the graded behaviour
over the 22 logically valid syllogisms. There are natural
breaks dividing the valid syllogisms into three main
groups. Those above the single line are endorsed most,
those below the double line are endorsed least, and
those in between are endorsed at an intermediate level.

Table 1. Meta-analysis of the logically valid syllogisms showing
the form of the conclusion, the number of mental models (MMs)
needed to reach that conclusion, and the percentage of times the
valid conclusion was drawn, in each of the five experiments
analyzed by Chater and Oaksford (1999b)

Syllogism Conclusion MMs Mean
All(Q.P), Al(R.Q) All 1 89.87
All(P.Q), All(Q.R) All 1 75.32
All(Q.P), Some(R,Q) Some 1 86.71
Some(Q,P), All(Q.R) Some 1 87.97
All(Q.P), Some(Q.R) Some 1 88.61
Some(P.Q), All(Q.R) Some 1 86.71
No(Q.P), All(R.Q) No 1 92.41
All(P.Q), No(R.Q) No 1 84.81
No(P.Q), All(R.Q) No 1 88.61
All(P.Q), No(Q.R) No 1 91.14
All(P.Q), Some. . not(R,Q) Some. . .not 2 67.09
Some. . not(P.Q), All(R,Q) Some. . .not 2 56.33
All(Q.P), Some. . not(Q.R) Some. . .not 2 66.46
Some. . .not(Q,P), All(Q.R) Some. . .not 2 68.99
Some(Q,P), No(R,Q) Some. . .not 3 16.46
No(Q.P), Some(R.Q) Some. . .not 3 66.46
Some(P.Q), No(R,Q) Some. . .not 3 30.38
No(P.Q), Some(R,Q) Some. . .not 3 51.90
Some(Q,P), No(Q.R) Some. . .not 3 32.91
No(Q.P), Some(Q.R) Some. . .not 3 48.10
Some(P.Q), No(Q.R) Some. . .not 3 44.30
No(P.Q), Some(Q.R) Some. . .not 3 26.56

Note. The means in the final column are weighted by sample size.



Alternative theories of syllogistic reasoning invoke
similar processes to explain these data as for conditional
inference and the selection task. However, here both
mental logic and mental models have to introduce new
machinery to deal with quantifiers. For mental logic
(Rips 1994), this requires new logical rules for All and
Some, and a guessing mechanism to account for the sys-
tematic pattern of responses for the invalid syllogisms.
For mental models, dealing with quantifiers requires re-
interpreting the lines of a mental model as objects
described by their properties (P, Q, and R) rather than
as conjunctions of propositions. For the different syllo-
gisms different numbers of mental models are consistent
with the truth of the premises. Only conclusions that are
true in all of these possible models are logically valid. As
Table 1 shows, for the most endorsed valid syllogisms,
there is only one model consistent with the truth of the
premises, and so the conclusion can be immediately read
off. For the remaining valid syllogisms, more than one
model needs to be constructed. If people only construct
an initial model, then errors will occur. As Table 1
shows, mental models theory provides a good qualitative
fit for the valid syllogisms, that is, the distinction
between 1, 2, and 3 model syllogisms maps on to the key
qualitative divisions in the data.

The probabilistic approach to syllogisms was developed
at both the computational and the algorithmic levels in the
Probabilistic Heuristics Model (PHM, Chater & Oaksford
1999b). One of the primary motivations for this model was
the hypothesis that, from a probabilistic point of view,
reasoning about all and some might be continuous with
reasoning about more transparently probabilistic quanti-
fiers, such as most and few. By contrast, from a logical
standpoint, such generalised quantifiers require a differ-
ent, and far more complex, treatment (Barwise &
Cooper 1981), far beyond the resources of existing logic-
based accounts in psychology. Perhaps for this reason,
although generalised quantifiers were discussed in early
mental models theory (Johnson-Laird 1983), no empirical
work on these quantifiers was carried out in the psychology
of reasoning.

In deriving PHM, the central first step is to assign prob-
abilistic meanings to the central terms of quantified
reasoning using conditional probability. Take the univer-
sally quantified statement, All P are Q (we use capitals to
denote predicates; these should be applied to variables x,
which are bound by the quantifier, e.g., P(x), but we
usually leave this implicit). Intuitively, the claim that All
soldiers are well fed can naturally be cast in probabilistic
terms: as asserting that the probability that a person is
well fed given that they are a soldier is 1. More generally,
the probabilistic interpretation of All is straightforward:
because its underlying logical form can be viewed as a con-
ditional, that is, All(x)(if P(x) then Q(x)). Thus, the meaning
is given as P(Q|P) = 1, as specifying the conditional prob-
ability of the predicate term (Q), given the subject term (P).

Similar constraints can be imposed on this conditional
probability to capture the meanings of the other logical
quantifiers. So, Some P are Q means that P(Q|P) > 0;
Some P are not Q) means that P(Q|P) < 1; and No P are
© means that P(Q|P) = 0. Thus, for example, “Some Lon-
doners are soldiers” is presumed to mean that the prob-
ability that a person is a soldier given that he or she is a
Londoner is greater than zero, and similarly for the
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other quantifiers. Such an account generalises smoothly
to the generalised quantifiers most and few. Most P are Q
means that 1 — A < P(Q|P)<1 and Few P are Q) means
that 0 < P(Q|P) < A, where A is small. So, for example,
Most soldiers are well fed may be viewed as stating that
the probability that a person is well fed, given that they
are a soldier, is greater than, say, 0.8, but less than 1.

At the level of rational analysis, these interpretations are
used to build very simple graphical models (e.g., Pearl
1988) of quantified premises, to see if they impose con-
straints on the conclusion probability. For example, take
the syllogism:

Some P are Q
All Q are R
Some P are R

P—Q—R
Therefore

The syllogistic premises on the left define the dependen-
cies on the right because of their figure, that is, the
arrangement of the middle term (Q) and the end terms
(P and R) in the premises. There are four different
arrangements or figures. The different figures lead to
different dependencies, with different graphical struc-
tures. Note that these dependency models all imply that
the end terms (P and R) are conditionally independent,
given the middle term, because there is no arrow linking
P and R, except via the middle term Q. Assuming con-
ditional independence as a default is a further assumption
about the environment (Step 2 in rational analysis). This is
an assumption not made in, for example, Adams’ (1998)
probability logic.

These dependency models can be parameterised. Two
of the parameters will always be the conditional probabil-
ities associated with the premises. One can then deduce
whether the constraints on these probabilities, implied
by the earlier interpretations, impose constraints on the
possible conclusion probabilities, that is, P(R|P) or
P(PIR). In this example, the constraints that P(Q|P) > 0,
and P(R|Q) =1, and the conditional independence
assumption, entail that P(R|P) > 0. Consequently, the
inference to the conclusion Some P are R is probabilisti-
cally valid (p-valid). If each of the two possible conclusion
probabilities, P(R|P) or P(P|R), can fall anywhere in the
[0, 1] interval given the constraints on the premises,
then no p-valid conclusion follows. It is then a matter of
routine probability to determine which inferences are p-
valid, of the 144 two premise syllogisms that arise from
combining most and few and the four logical quantifiers
(Chater & Oaksford 1999b).

In the PHM, however, this rational analysis is also
supplemented by an algorithmic account. We assume
that people approximate the dictates of this rational analy-
sis by using simple heuristics. Before introducing these
heuristics, though, we introduce two key notions: the
notions of the informativeness of a quantified claim, and
the notion of probabilistic entailment between quantified
statements.

According to communication theory, a claim is informa-
tive in proportion to how surprising it is: informativeness
varies inversely with probability. But what is the prob-
ability of an arbitrary quantified claim? To make sense of
this idea, we begin by making a rarity assumption, as in
our models of the conditional reasoning and the selection
task, that is, the subject and predicate terms apply to only
small subsets of objects. On this assumption, if we selected
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subject term P, and predicate term, Q, at random, then
it is very likely that they will not cross-classify any object
(this is especially true, given the hierarchical character
of classification; Rosch 1975). Consequently, P(Q[P) =0
and so No P are Q is very likely to be true (e.g., No
toupees are tables). Indeed, for any two randomly chosen
subject and predicate terms it is probable that No P
are Q. Such a statement is therefore quite uninformative.
Some P are not Q is even more likely to be true, and
hence still less informative, because the probability
interval it covers includes that for No P are Q. The
quantified claim least likely to be true is All P are Q,
which is therefore the most informative. Overall, the
quantifiers have the following order in informativeness:
1(All) > I(Most) > I(Few) > I(Some) > I(None) > 1(Some-
not) (see Oaksford et al. 2002, for further analysis and
discussion).

Informativeness applies to individual quantified prop-
ositions. The second background idea, probabilistic entail-
ment, concerns inferential relations between quantified
propositions. Specifically, the use of one quantifier fre-
quently provides evidence that another quantifier could
also have been used. Thus, the claims that All swans are
white is strong evidence that Some swans are white —
because P(white|swan) =1 is included in the interval
P(white|swan) > 0 (according to standard logic, this does
not follow logically, as there may be no swans). Thus, we
say that All probabilistically entails (or p-entails) Some.
Similarly, Some and Some. . .not are mutually p-entailing
because the probability intervals P(Q|P) >0 and
P(Q|P) < 1 overlap almost completely.

With this background in place, we can now state the
probabilistic heuristics model (PHM) for syllogistic
reasoning. There are two types of heuristic: generate heur-
istics, which produce candidate conclusions, and test heur-
istics, which evaluate the plausibility of the candidate
conclusions. The PHM account also admits the possibility
that putative conclusions may also be tested by more ana-
Iytic test procedures such as mental logics or mental
models. The generate heuristics are:

(G1) Min-heuristic: The conclusion quantifier is the
same as that of the least informative premise (min-
premise)

(G2) P-entailments: The next most preferred conclusion

uantifier will be the p-entailment of the min-conclusion

(G3) Attachment-heuristic: If just one possible subject
noun phrase (e.g., Some R) matches the subject noun
phrase of just one premise, then the conclusion has that
subject noun phrase.

The two test heuristics are:

(T1) Max-heuristic: Be confident in the conclusion gen-
erated by G1 — G3 in proportion to the informativeness of
the most informative premise (max-premise)

(T2) Some_not-heuristic: Avoid producing or accepting
Some_not conclusions, because they are so uninformative.
We show how the heuristics combine in the following
example:

All P are Q
Some R are not Q
Some_not (by min-heuristic)
Some R are not P (by attachment-heuristic)
and a further conclusion can be drawn:

Some R are P [by p-entailment]

(max-premise)
(min-premise)
Therefore
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In BR, we compare the results of these heuristics with
probabilistic validity, and show that where there is a
p-valid conclusion, the heuristics generally identify it.
For example, the idea behind the min-heuristic is to ident-
ify the most informative conclusion that validly follows
from the premises. Out of the 69 p-valid syllogisms, the
min-heuristic identifies that conclusion for 54; for 14 syllo-
gisms the p-valid conclusion is less informative than the
min-conclusion. There is only one violation; that is,
where the p-valid conclusion is more informative than
the min-conclusion.

In turning to the experimental results, in BR we first
show how all the major distinctions between standard syl-
logisms captured by other theories are also captured by
PHM. So, returning to Table 1, all the syllogisms above
the double line have the most informative max-premise,
All (see heuristic T1). Moreover, all the syllogisms below
the single line have uninformative conclusions, Some-
not (see heuristic T2), and those below the double line
violate the min-heuristic (heuristic G1) and require a p-
entailment (heuristic G2), that is, Some...not < Some.
Consequently, this simple set of probabilistic heuristics
makes the same distinctions among the valid syllogisms
as the mental models account.

In this Précis, we concentrate on novel predictions that
allow us to put clear water between PHM and other the-
ories. As we discussed earlier, the most important
feature of PHM is the extension to generalised quantifiers,
like most and few. No other theory of reasoning has been
applied to syllogistic reasoning with generalised quanti-
fiers. Table 2 shows the p-valid syllogisms involving gener-
alised quantifiers showing the conclusion type and the
percentage of participants selecting that conclusion type
in Chater and Oaksford’s (1999b) Experiments 1 and 2.
The single lines divide syllogisms with different max-
premises, showing a clear ordering in levels of endorse-
ments dependent on heuristic T1. All those above the
double line conform to the min-heuristic (heuristic G1),
whereas those below it do not and require a p-entailment
(heuristic G2). As Chater and Oaksford (1999b) pointed
out, one difference with experiments using standard
logical quantifiers was that the Some...not conclusion
was not judged to be as uninformative, that is, heuristic
T2 was not as frequently in evidence. However, in
general, in experiments using generalised quantifiers in
syllogistic arguments the heuristics of PHM predict the
findings just as well as for the logical quantifiers (Chater
& Oaksford 1999b).

Many further results have emerged that confirm
PHM. The min-heuristic captures an important novel dis-
tinction between strong and weak possible conclusions
introduced by Evans et al. (1999). They distinguished
conclusions that are necessarily true, possibly true, or
impossible. For example, taking the syllogism discussed
earlier (with premises, Some P are Q, All Q are R), the
conclusion Some P are R follows necessarily, No P are R
is impossible, and Some P are not R is possible. Some
possible conclusions are endorsed by as many participants
as the necessary conclusions (Evans et al. 1999). More-
over, some of the possible conclusions were endorsed by
as few participants as the impossible conclusions. Evans
et al. (1999) observed that possible conclusions that are
commonly endorsed all conform to the min-heuristic,
whereas those which are rarely endorsed violate the



Table 2. The p-valid syllogisms less the syllogisms that are also
logically valid (shown in Table 1), showing the form of the
conclusion and the proportion of participants picking the p-valid
conclusion in Chater and Oaksford’s (1999b) Experiments

1and 2
Syllogism Conclusion Mean
All(Q.P), Most(R,Q) Most 85
Most(Q,P), All(R,Q) Most 65
All(P.Q), Most(Q.R) Most 70
Most(P.Q), All(Q.R) Most 55
Few(PQ), All(R,Q) Few 80
All(P.Q), Few(R,Q) Few 85
Few(P.Q), All(R,Q) Few 85
All(PQ), Few(Q,R) Few 75
Most(Q.P), Most(R,Q) Most 65
Most(P.Q), Most(Q.R) Most 50
Few(Q,R), Most(R,Q) Few 60
Most(Q.R), Few(R.,Q) Few 75
Most(P.Q), Few(Q.R) Few 70
Most(Q,P), Some. . .not(R,Q) Some. . .not 80
Some. . mot(Q.P), Most(R,Q) Some. . .not 60
Some. . .not(Q,P), Most(Q.R) Some. . .not 75
Most(Q,P), Some. . .not(Q,R) Some. . .not 65
Most(P.Q), Some. . not(Q.R) Some. . .not 75
Some. . not(P.Q), Most(Q.R) Some. . .not 75
Few(Q,P), Some. . .not(R,Q) Some. . .not 60
Some. . mot(Q,P), Few(R,Q) Some. . .not 40
Some. . .not(Q,P), Few(Q,R) Some. . .not 30
Few(Q,P), Some. . .not(Q,R) Some. . .not 60
Few(P.Q), Some. . not(Q.R) Some. . .not 60
Some. . not(P.Q), Few(Q,R) Some. . .not 40
All(P.Q), Most(R,Q) Some. . .not 35
Most(P.Q), All(R.Q) Some. . .not 35
Few(Q,P), Few(R.,Q) Some. . .not 35
Few(P,Q), Few(Q.R) Some. . .not 30
Few(P.Q), Most(Q.R) Some. . .not 30

Note. This table excludes the eight MI, IM, FI, and IF syllogisms,
which have two p-valid conclusions only one of which was available
in Chater and Oaksford’s (1999b) Experiment 2.

min-heuristic (with one exception). Hence, PHM captures
this important new set of data.

Some experiments designed to test the claim that syl-
logism difficulty is determined by the number of alterna-
tive mental models can also be interpreted as confirming
PHM (Newstead et al. 1999). Participants wrote down or
drew diagrams consistent with the alternative conclusions
they entertained, during syllogistic reasoning. No
relationship was found between the number of models
a syllogism requires (according to mental models
theory) for its solution and the number of conclusions
or diagrams participants produced. This suggests that
sophisticated analytical procedures, such as those
described in mental models, play, at most, a limited
role in the outcome of syllogistic reasoning. By contrast,
participants” responses agreed with those predicted by
the min- and attachment-heuristics. Furthermore, no
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differences in task difficulty dependent on syllogistic
figure were observed, a finding consistent with PHM,
but not mental models.

Recent work relating memory span measures to syllogis-

tic reasoning has also confirmed PHM (Copeland & Rad-
vansky 2004). PHM makes similar predictions to mental
models theory because the number of heuristics that
need to be applied mirrors the one, two, and three
model syllogism distinction (see Table 1). For one model
syllogisms, just the min-heuristic and attachment is
required (two heuristics). For two model syllogisms, the
some__not-heuristic is also required (three heuristics). In
addition, for three model syllogisms a p-entailment is
required (four heuristics). The more mental operations
that need to be performed, the more complex the infer-
ence will be, and the more working memory it will
require. Copeland and Radvansky (2004) found significant
correlations between working memory span and strategy
use, for both mental models and PHM. While not discri-
minating between theories, this work confirmed the inde-
pendent predictions of each theory for the complexity of
syllogistic reasoning and its relation to working memory
span.
pAs with Chapters 5 and 6, Chapter 7 of BR closes by
addressing the critiques of PHM that have arisen since
the theory first appeared. One criticism is that PHM
does not generalise to cardinal quantifiers (Geurts 2003)
such as Exactly three P are Q, which have no probabilistic
interpretation. Yet, such quantifiers can, nonetheless,
naturally mesh with the generalized quantifiers, to yield
interesting inferences. For example, suppose you are
told that exactly three birds in the aviary are black. If
there are twenty birds in the aviary, then few of the
birds are black; if there are four, then most of the birds
are black; and, in either case, further inferences from
these generalized quantifiers can be drawn, as
appropriate.

8. Conclusion

As we have seen, Chapters 5 to 7 of BR provide the
empirical support for taking a probabilistic approach to
human reasoning and rationality. The final chapter pro-
vides further arguments for pursuing this research
strategy in the form of a dialogue between an adherent
of the probabilistic approach and a sceptic. In this
Précis, we concentrate on two key issues that emerge
from that debate.

The first topic we consider is whether the brain is a
probabilistic inference machine. BR focuses primarily, as
we have seen, on providing rational analyses of human rea-
soning — and we have noted that rational analysis does not
make direct claims about underlying computational oper-
ations. But, to what extent can the mind or brain be viewed
as a probabilistic (or for that matter, a logical) calculating
engine? Although not the primary focus in this book, this is
nonetheless a fundamental question for the behavioural
and brain sciences. We suspect that, in general, the prob-
abilistic problems faced by the cognitive system are too
complex to be solved by direct probabilistic calculation.
Instead, we suspect that the cognitive system has devel-
oped relatively computationally “cheap” methods for
reaching solutions that are “good enough” probabilistic
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solutions to be acceptable. In particular, where we
propose a specific processing theory (in our account of syl-
logistic reasoning) this account consists of simple, but sur-
prisingly effective, heuristics — heuristics that, however,
lead to errors, which we argue are revealed in the empiri-
cal data. Moreover, in related work on the topic of rational
choice and decision making, which we do not consider
here, we and others have proposed models that solve
probabilistic/decision making problems, but do so using
relatively cheap, and hence approximate, methods (Giger-
enzer & Goldstein 1996; Gigerenzer et al. 1999; Stewart
et al. 2006).

To the degree that algorithmic models can be formu-
lated, is rational analysis simply redundant? We argue
that it is not. Rational analysis is essential because it
explains why the particular algorithms used by the cog-
nitive system are appropriate. That is, without a charac-
terization of what problem the cognitive system solves,
we cannot ask, let alone answer, the questions of why
the algorithm has its particular form, or how effectively
it works. Moreover, it may be that a good deal of empiri-
cal data about human reasoning (and indeed, human
cognition more generally) can be understood as arising
from the structure of the problem itself — that is, the
nature of the problem drives any reasonable algorithmic
solution to have particular properties, which may be
evident in the data. This idea is a core motivation for
the rational analysis approach (Anderson 1990; 1991a);
and we have seen that a broad spectrum of data on
human reasoning can be understood purely at the
rational level — that is, without formulating an algorith-
mic theory of any kind.

The second topic we consider is the importance of
qualitative patterns of probabilistic reasoning, rather
than precise numerical calculations. Suppose, for concre-
teness, we consider a person reasoning about a game of
dice. If the dice are unbiased, then it is easy, of course,
for the theorist to formulate a probabilistic model specify-
ing that each throw is independent, and that each face has
a probability of 1/6. But this model is both too strong and
too weak. It is too strong because it generates all manner of
subtle mathematical predictions, concermng say, the rela-
tive probabilities of rolling at least one six out of six dice
rolls versus rolling at least two sixes out of twelve dice
rolls, predlctlons that are not available to everyday intui-
tion. And it is too weak because it ignores many factors
of crucial importance in everyday reasoning. For
example, watching a dice being thrown, we have not
only a model of the probability that each face will be
uppermost, but a rough model of where it will land, how
likely it is to fall off the table, how loud that impact is
likely to be, how another player is likely to react to a par-
ticular outcome, given their temperament, the gamble
they have placed, and so on.

This observation implies that, if the cognitive system
is indeed building probabilistic models of the world,
then it is building models of considerable complexity —
models that can take into account any aspect of knowl-
edge, from naive physics to folk psychology. This
implies that the probabilistic turn does not resolve the
difficulty of representing knowledge — rather it provides
a framework into which this knowledge must be inte-
grated. The advantage of the probabilistic viewpoint,
though, is that it provides a powerful framework for
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dealing with an uncertain world; and, indeed, for asses-
sing competing explanations of observed phenomena
(rival interpretations of perceptual input; competing gram-
mars; alternative interpretations of sentences, stories, or
court-cases). Moreover, probabilistic models of complex
domains do not need to be fully specified, at a numerical
level — most critical is that the functional relationships
between pieces of information are represented. What
tends to cause what? What is evidence for what? The direc-
tion and existence of functional dependencies between
pieces of information may be mentally represented, even
though precise numerical probabilities may be unknown.
Thus, probability theory can provide a framework for
qualitative reasoning, without using numerical values
(e.g., Pearl 2000). We tentatively suggest that much of
the power, and limitations, of human reasoning about the
everyday world flows from this qualitative style of reason-
ing. From this point of view, it is perhaps not surprising
that people are not good at explicit reasoning with prob-
abilities — indeed, they fall into probabilistic fallacies
just as readily as they fall into logical contradictions (e.g.,
Kahneman et al. 1982).

The probabilistic mind is not, of course, a machine for
solving verbally or mathematically specified problems of
probability theory. Instead, we suggest, the mind is a
qualitative probabilistic reasoner, in the sense that the
rational analysis of human reasoning requires understand-
ing how the mind deals qualitatively with uncertainty. As
we have stressed, this does not imply that the mind is a
probabilistic calculating machine (although it may be);
still less does it imply that the mind can process probabil-
istic problems posed in a verbal or mathematical format.
Nonetheless, the concepts of probability are, we suggest,
as crucial to understanding the human mind as the con-
cepts of aerodynamics are in understanding the operation

of a bird’s wing.
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NOTES

1. The case where the categorical premise is uncertain can be
accommodated using a generalization of this idea, Jeffrey condi-
tionalization (Jeffrey 1983). The new degree of belief that John
plays tennis (¢), on learning that it is sunny in Bloomsbury
(which confers only a high probability that it is sunny in Wimble-
don [p]), is:

Pi(q) = Polqlp)Pi(p) + Polgl—p)P1(—p)

2. Bayes’ theorem is an elementary identity of probability
theory that allows a conditional probability to be calculated
from its converse conditional probability and the priors:
P(plg) = (Plqlp)P(p)/P(q)

3. However, this may be because of the different way that
negations are used in each task (see Evans & Handley 1999;
Oaksford 2004b).
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Abstract: Reasoning with conditionals is often thought to be non-
monotonic, but there is no incompatibility with classical logic, and no
need to formalise inference itself as probabilistic. When the addition of
a new premise leads to abandonment of a previously compelling
conclusion reached by modus ponens, for example, this is generally
because it is hard to think of a model in which the conditional and the
new premise are true.

We doubt two claims made by Oaksford & Chater (O&C), one
linguistic and one about inference, as they relate to conditionals
(Bayesian Rationality, Oaksford & Chater 2007, henceforth BR
as in target article). We do not think that the case has been
made that sentences of the form “If A then B” have a semantics
diverging from the material implication of propositional logics.
We focus here on the related claim that human inference is
probabilistic.

Classical Propositional Logic (CPL) is often claimed to be
inadequate for explaining our spontaneous propositional infer-
ences. The claim is based on the observation that, whereas
CPL is monotonic, human inferences seem to be non-monotonic.
For example, it is argued that the validity of some inferences,
such as the one in (la), may be cancelled by addition of
another premise, such as the premise R in (1b). The claim is
that now that John has broken his left leg, John will no longer
run, even if the weather is fine. This is claimed to show the inade-
quacy of CPL as a tool to explain our propositional inferences,
because in CPL, addition of another premise does not influence
the provability of the sequent, as is shown in the inference from
top to bottom in (1c).

(la) (Premise 1) P — Q: If the weather is fine, John runs
for a mile.

(Premise 2) P: The weather is fine.
(Conclusion) 3. Q: John runs for a mile.

The valid inference: Whenever Premise 1 and Premise 2
are true, 3 is also true.

(1b) R: John breaks his left leg.
(Ie)P,P—Q FQ
P P— Q,R F Q Weakening

However, it is not clear that the addition of the premise R in
(1b) to the set of premises in (1a) actually cancels out the validity
of the initial sequent, P, P — Q F Q, in our propositional infer-
ences. The point becomes clearer if we add the new proposition
R to the set of premises, asin P, P — Q, R F Q. With the spe-
cification of the premise propositions as in (1a) to (1b), we do not
find this revised sequent to be valid, but this is only because we
no longer find the proposition “If the weather is fine, John runs
for a mile” (= P — Q) to be true when we reevaluate the infer-
ence. In contrast, if we force ourselves to assume that all the
three premise propositions P, P — Q, R are true in a model of
interpretation, then in that model, we have to conclude Q.
Some might find it difficult to think of such an interpretation
model, because common-sense knowledge tells us that a

person normally does not run with a broken leg, but we may
sometimes make a claim such as, “If the weather is fine, John
(always) runs for a mile. It does not matter if he gets injured.
He always runs for a mile.” Thus, it is not impossible to force our-
selves to think of models in which the proposition, “If the weather
is fine, John runs for a mile” is true despite the fact that John has
broken his leg. In such models, whenever P is true, Q is also true:
that is, the inference goes through.

As is clear from the foregoing discussion, typical interpretation
data that allegedly show that monotonic logic cannot capture our
propositional inferences include a change of models in which we
evaluate the propositional sequents. The valid inference in (1)
can be re-stated as “In each model in which P and P — Q are
both true, Q is also true.” The cancellation of the truth of Q
arises because in the new model in which we “re-evaluate” the
sequent, the premise P — Q is no longer true (or we find it
more difficult to think of a model in which both P — Q and R
are true). Because the initial valid inference in (la) concludes
R as a true proposition only on condition that P — Q and P are
both true, this revision does not really involve the cancellation
of the validity of the initial inference.

Given that specification of models in which logical formulas/
sequents are evaluated is not part of either the syntax or the
semantics of propositional logic languages, it is not clear that
alleged non-monotonicity of reasoning, which arises because of
the revision of models, requires formalising logical inference as
non-monotonic or probabilistic. No doubt people hold beliefs
with varying degrees of strength, and a result of reasoning is
that these degrees of strength are changed. But one can agree
with O&C on this point without thinking that the formal infer-
ence system itself is probabilistic.

Space here does not permit discussion of how some prop-
ositions are accepted and others rejected, but we are sympathetic
to O&C’s claim that heuristics that are sensitive to information
gain must be involved, with the caveat that it cannot simply be
information that is sought, but information that is important to
the reasoner at a reasonable processing cost. This recalls discus-
sion of relevance in Gricean pragmatics and Sperber and
Wilson’s relevance theory.

As Oakford & Chater note, for one’s belief in the conditional in
(2) it matters whether one discovers, for example, an unstarted
car or is told that a car did not start.

(2)  If the key is turned the car will start.

A pragmatic explanation in terms of the tendency of speakers to
produce utterances relevant to their audience is natural.
Effects of the order in which information is presented (see BR,
pp. 1571f) also require such an explanation, we believe.

This raises a methodological point. To understand human
reasoning, both classical logic and O&C’s probabilistic account
of conditionals and of inference must be supplemented by
accounts of processing, and of the pragmatics of utterance
interpretation. Thus, it is not obvious that the probabilistic
account is more parsimonious.

Identifying the optimal response is not a
necessary step toward explaining function
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Abstract: Oaksford & Chater (O&C) argue that a rational analysis is

required to explain why a functional process model is successful, and
that, when a rational analysis is intractable, the prospects for
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understanding cognition from a functional perspective are gloomy. We
discuss how functional explanations can be arrived at without secking
the optimal response function demanded by a rational analysis, and
argue that explaining function does not require optimality.

Oaksford & Chater (O&C) argue in Bayesian Rationality (Oaks-
ford & Chater 2007, henceforth BR) that a rational analysis is an
essential step toward understanding process models from a func-
tional perspective and that “[d]oing this requires developing an
account of the optimal behaviour” (p. 268). We argue that rela-
tive uses of rational principles of inductive inference can be
used to explain function without knowing the optimal response
function, and propose that multiple forms of functional analysis
are required to understand the cognitive system from a func-
tional perspective.

Rational principles of inductive inference such as Bayesian and
simplicity principles are perhaps most frequently used as criteria
in relative statements of the form “P is a better response than Q
for problem X” For instance, the use of rational principles as
model selection criteria (Kearns et al. 1997; Pitt et al. 2002). In
contrast, step four of Anderson’s (1991a) rational analysis excludes
anything but statements of the form “P is the optimal response to
task X.” Because rational principles can be used to compare the
behavior of process models without knowing the optimal response,
rational analysis is an instance of a broader class of methodologies
adopting rational principles to understand function (e.g., Gigeren-
zer et al. 1999). Given this, does knowledge of the optimal
response offer any intrinsic advantage when explaining why a
process is successful; and what price do we pay by demanding
knowledge of the optimal response function?

Knowledge of the optimal solution is one way of establishing
that a particular process or organism is successful; but explaining
why the process is successful is not implied by this finding. For
example, knowing the optimality conditions of the naive Bayes
classifier does not by itself tell us why it is successful. One expla-
nation for why naive Bayes is successful might be that the inde-
pendence assumption results in fewer parameters. In certain
contexts which violate this independence assumption, the
assumption nevertheless causes a reduction in the variance com-
ponent of error relative to a learning algorithm that assumes that
the features are dependent (Domingos & Pazzani 1997). This
causal explanation for why naive Bayes is successful does not
require knowledge of the optimal response. It can be established
using relative uses of rational principles when the optimal
response is incalculable. Furthermore, for realistic contexts of
sparse exposure the optimality conditions for naive Bayes,
despite its simplicity, are not fully known (Kuncheva 2006).
Although typically unavailable, knowing the optimality conditions
for an algorithm would undoubtedly provide a good starting point
to understand its function; but optimality conditions are neither a
required starting point, nor do they by themselves offer a causal
explanation for why the algorithm is functional.

Functional explanations arising from Bayesian rational analyses
also aim to tell us why a pattern of behavior is rationally justified
given that the environment has a certain probabilistic structure.
The optimal response function provides a reference point against
which to measure behavior without committing to how that beha-
vior is achieved. Because relative uses of rational principles are
order relations over theories, or models, of problem solving, they
cannot be used in this way. However, abstracting from the
process level limits what causal explanation one can offer for why
the organism does what it does. One can say that it is successful,
but whether or not such a finding provides a satisfactory causal
explanation for why it is successful is not so clear (Danks 2008).

Problems arising from the intractability of reliably identifying
the optimal response can also make it less desirable. O&C con-
template the possibility that when a rational analysis is intract-
able, cognitive science may also be intractable (BR, p. 283).
Alternatively, this makes complementary forms of functional
analysis all the more necessary. The distinction between relative
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and absolute uses of rational principles mirrors the distinction
between, and relative difficulty of, verification and search pro-
blems in complexity theory. For example, for an instance of the
traveling salesperson problem, the comparative statement
“Tour P is shorter than tour Q” is trivial to verify, but the absolute
statement “Tour P is the shortest tour” will often be intractable to
establish. Many problems take this form and are NP complete
(Nondeterministic Polynomial time), including the computation
of optimal Bayesian responses and approximations in many set-
tings (e.g., Cooper 1990).

Functional analyses based on rational principles of induction
rest on several idealizations: (a) Although different rational prin-
ciples of induction point to a coherent theoretical picture of what
makes a good inference, their practical implementations are
often inconsistent, and point to different conclusions (Kearns
1997); (b) functional models will not capture all forms of uncer-
tainty impacting on the problem, some of which may change the
character of a functional response (Bookstaber & Langsam
1985); (c) functional models always consider local goals, which
only partially inherit the properties of the global goal being exam-
ined; (d) rational principles of inductive inference are approxi-
mate models of function, which do not consider functional
pressures arising from, for example, processing (Brighton &
Gigerenzer 2008; Todd & Gigerenzer 2003). These are unavoid-
able realities of modeling, and apply to both relative and absolute
uses of rational principles of induction.

An explanation requiring an optimal response function must also
consider that: (e) for problems of inductive inference, the optimal
response is often analytically intractable to determine with exact
methods, and will not be unique; (f) behavioral responses are typi-
cally approximately optimal, revealing a tendency rather than a
correspondence; (g) successfully optimizing a local goal does not
necessarily take us toward the global optimal when other depen-
dencies are known to be only approximately fulfilled (Lipsey &
Lancaster 1956). These additional factors lead to increased flexi-
bility in what behaviors we choose to label optimal. Our point is
that these further assumptions are a choice rather than a necessity,
and are only required to support certain forms of explanation. We
agree with (O&C) on the importance of understanding the ecologi-
cal function of cognitive processes. We also agree that rational
analysis represents a powerful move in this direction. But func-
tional analysis can also proceed without seeking to establish optim-
ality with respect to the organism.

Explaining norms and norms explained
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Abstract: Oaksford & Chater (O&C) aim to provide teleological
explanations of behavior by giving an appropriate normative standard:
Bayesian inference. We argue that there is no uncontroversial
independent justification for the normativity of Bayesian inference, and
that O&C fail to satisfy a necessary condition for teleological
explanations: demonstration that the normative prescription played a
causal role in the behavior’s existence.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR) we understand Oaksford & Chater (O&C) as providing the
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following argument for Bayesian models as teleological expla-
nations in psychology:

1. Normative Justification: The normativity of Bayesian infer-
ence can be established independently of empirical observations.
(p. 31 of their book)

2. Normative Force: Appropriate normative principles lead to
behavior conforming to those principles. (p. 33)

3. Default Assumption: People are pretty good at achieving
their goals (i.e., they are “everyday rational”). (p. 19) Therefore,
people’s behavior is a guide to the appropriate normative prin-
ciples. (p. 30)

4. Empirical Results: People’s behavior conforms to the pre-
scriptions of Bayesian models. (Chs. 6 & 7)

Conclusion: Therefore, Bayesian models explain why that
behavior occurs. (Ch. 8)

The first three premises are formal claims that are instances of
necessary parts of proper teleological explanations. Without inde-
pendent justification (Premise 1), there is no normative power
behind Bayesian inference. Without influence on behavior
(Premise 2), normative principles provide no explanation. And
if the normative prescription cannot be reasonably interpreted
in terms of desirable human goals (Premise 3), then the expla-
nation is implausible. We suggest, however, that neither
Premise 1 nor Premise 2 is supported by O&C’s arguments.

Premise 1 is usually grounded in two standard arguments.
Dynamic Dutch book arguments aim to establish Bayesian infer-
ence as the unique belief change procedure that avoids irrational,
between-time inconsistencies, understood as acceptance of bets
(potential, not actual) over time that result in guaranteed loss
(Teller 1973). Standard forms of these arguments, however,
also imply absurd prescriptions, including: reasoners should not
protect themselves against predictable irrationalities (Maher
1992); reasoners should not retrospect on their past beliefs
(Levi 1988); and reasoners should never change their conditional
commitments (Levi 1988; 2002). If these arguments are wea-
kened to avoid these unwanted implications, then Bayesian infer-
ence is only one of infinitely many ways to avoid dynamic Dutch
book; it has no particularly special status.

The second standard argument is long-run convergence:
Roughly, any non-zero degree of belief in the truth will converge
to 1 (using Bayesian inference) as one collects more evidence
(Savage 1972), and no other reliable method always converges
to the truth faster (Schulte 1999). However, the convergence
arguments have the unreasonable requirement that the Bayesian
reasoner be logically omniscient. There are also problems that
can be solved by a naive falsificationist, but which the Bayesian
can solve only if she can “compute” uncomputable functions
(Juhl 1993; Osherson et al. 1988). Long-run convergence thus
cannot provide a conceptual justification for the normativity of
Bayesian inference.

There might be other arguments for Premise 1, but we have not
seen them, nor do O&C provide them. We agree with O&C that the
normative principles underlying rationality may vary between situ-
ations. But independent justification of normativity must be pro-
vided for whatever principles are appropriate, else one cannot
have an adequate teleological explanation. The dependence of
the normative principle on the situation is inversely correlated
with the explanatory power provided by the normative principle.
A situation-independent justification of Premise 1 (or some
similar premise) is necessary for teleological explanations.

Our second worry is that, even if Premise 1 holds, O&C
require only an empirical match between behavior and normative
prescription. Their argument thus neglects the requirement for a
teleological explanation that the normative principle must have
played a causal role —ontogenetic, phylogenetic, or both — in
the behavior’s existence or persistence. “Origin stories” are
required for teleological explanation, but are never provided by
O&C. Behavior B could be optimal for task T even though beha-
vior B results from considerations that are independent of task T;
B’s optimality might be coincidental. In this case, the claim

“Behavior B because it is optimal for task T” is an incorrect expla-
nation, even though B conforms (empirically) to the normative
prescription.

O&C seem to have two lines of response. First, if there is
widespread alignment between the normative prescription
and people’s behavior, then it is arguably improbable that
the behavior is only coincidentally optimal. Consequently,
research confirming correspondence in a wide range of con-
ditions is evidence in favor of the normative principle. This
response fails, however, because widespread alignment is actu-
ally to be expected for Bayesian models, given the many “free
parameters” in such models: hypothesis space, prior probabil-
ities, utilities, likelihood functions, and various plausible com-
putational approximations. In particular, for any evidence and
any behavior (represented as a probability distribution over
possible choices), there exists a prior probability distribution
such that the predicted posterior distribution after inference
on the evidence matches the observed behavior.! That is, for
(almost) any psychological experiment, we know a priori that
a Bayesian model will be capable of fitting the observed beha-
vior, whatever it might be. Repeatedly developing sui generis
Bayesian models for each task does not compensate for a
lack of “origin stories,” even if the models successfully predict.

O&C’s second line of response is more promising: successful
model predictions for experiments that vary features of one par-
ticular task make it plausible that the normative constraints
played a causal role in shaping the observed behavior. We
support this line of response to the lack of “origin stories,” but
are doubtful about how much support the evidence provides
for the normativity of Bayesian inference. O&C here primarily
cite manipulations of the base-rate (BR, pp. 146ff, 178ff), and
as they recognize, there are several competing models with
similar normative appeal. Moreover, there is substantial contro-
versy about which model provides the best fit of the data.
There is a potential response, but it is currently only potential.

O&C admirably search for teleological explanations of human
behavior. We are in complete agreement with them that such
explanations are desirable, but we believe that their enterprise
requires a stronger foundation. They have neither properly
established Bayesian inference as a normative principle, nor
shown — directly or indirectly — that the optimality of Bayesian
inference (if it is optimal in some respect!) is actually a cause
of people approximating those prescriptions. They offer only an
existence proof — “Behavior could be caused by a potentially nor-
mative principle” — and such accounts are too weak to provide
teleological explanations.
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1. There are other technical assumptions (e.g., nonextremal likeli-
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Abstract: Oaksford & Chater (O&C) rely on a data fitting approach to

show that a Bayesian model captures the core reasoning data better
than its logicist rivals. The problem is that O&C’s modeling has focused
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exclusively on response output data. T argue that this exclusive focus is
biasing their conclusions. Recent studies that focused on the processes
that resulted in the response selection are more positive for the role of
logic.

It is well established that in a wide range of reasoning tasks
people fail to select the response that standard logic dictates.
Oaksford & Chater (O&C) in Bayesian Rationality (Oaksford
& Chater 2007) nicely demonstrate that a Bayesian model fits
the available response selection data better than its logicist
rivals. However, it is crucial to stress that O&C’s modeling has
not moved beyond this mere response output data. Other
measures such as basic latencies or brain-imaging data that can
help to examine the processes that led to the outputs are not
being considered. This limitation is bound to bias their con-
clusion. It is clear that people’s final response selection does
not tell us how they arrived at this response. The fact that
people do not select the predicted logical response does not
suffice to discard the logicist view. It is always possible that
people attempt to reason in line with standard logic but fail to
do so because of specific processing difficulties. Addressing this
issue requires that one digs bellow the output surface.

In O&C’s defense, it may be noted that the fixation on
response output is characteristic for the whole psychology of
reasoning (e.g., Hoffrage 2000). In the vast majority of classic
reasoning studies, response accuracy has been the sole depen-
dent variable of interest. From a pragmatic point of view, one
might argue that O&C were simply focusing on the most promi-
nent data and might move to more process-related measures in
the future. However, the key point is that in the meantime
caution is needed when drawing any strong conclusions about
the role of logic in reasoning. I will illustrate the point with
some examples from recent brain-imaging and latency studies.
This processing data suggests that although people very often
fail to select the predicted logical response, they are nevertheless
trying to adhere to the logical norm.

Houdé et al. (2000), for example, scanned people’s brain acti-
vation while they were trying to solve the selection task. Partici-
pants were scanned before and after they received training aimed
at increasing their inhibitory control capacities. Although the
training did not instruct people about the standard logical
response (i.e., P and not-Q card selection), it did boost the selec-
tion rate of this pattern and resulted in an increased activation of
prefrontal brain areas believed to be involved in inhibitory pro-
cessing. This suggests that the initial low selection rate of the pre-
dicted logical response does not result from a lack of logical
knowledge, but from a failure to inhibit the intuitive appealing
matching response. If people did not know what the logical
response was or considered it to be irrelevant, merely training
their inhibitory capacities should not affect its selection rate.
Likewise, numerous studies on belief bias in syllogistic reasoning
have shown that people typically fail to respond logically to
reasoning problems in which intuitive beliefs conflict with the
logical response. Nevertheless, latency and eye-tracking studies
indicate that these problems take longer to respond to and are
more thoroughly inspected compared to problems in which
beliefs and logic do not conflict (e.g., Ball et al. 2006). If
people were not trying to adhere to the logical norm, violating
it should not affect their reasoning behavior. Furthermore, con-
sistent with the latency findings, De Neys and Franssens (2007)
observed that after solving syllogisms in which beliefs and logic
conflicted, reasoners showed an impaired access to words that
were associated with the cued beliefs. Such an impaired
memory access is a key marker of inhibitory processing. Even
people who were always biased by their beliefs showed a
minimal impairment, indicating that they had attempted to
inhibit the intuitive beliefs, but failed to complete the process.
If people were not trying to adhere to the logical norm, there
would be no reason for them to block the conflicting intuitive
response. Bluntly put, although people did not manage to
select the logical response, they were at least trying to do so.
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Interestingly, brain-imaging of classic tasks from the judgment
and decision-making literature is pointing towards a similar con-
clusion. As O&C note, people hardly ever reason in line with
classic probabilistic norms in these tasks. People typically select
responses that are cued by intuitive heuristics. Nevertheless, a
recent IMRI study showed that a specific brain-area, the anterior
cingulate cortex, involved in the detection of conflict between
competing responses, is activated when people select the heuris-
tic response and violate the norm (De Neys et al. 2008). This
indicates that people detect that their heuristic response conflicts
with the classic normative response. If people were not taking the
norm into account, they would not experience such a conflict (see
also De Neys & Glumicic 2008).

The general point is that although people’s response selections
in all these cases deviate from the predicted classic normative
pattern, additional process data indicates that people are never-
theless trying to adhere to the norm. This should give pause for
thought before discarding the logical perspective. O&C have
modeled but a small, superficial subset of relevant data. If one
moves beyond the static response output, it becomes clear that
people can be more logical than their answers suggest.
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Abstract: T agree with Oaksford & Chater (O&C) that human beings
resemble Bayesian reasoners much more closely than ones engaging
standard logic. However, I have many problems with their “rational
analysis” framework, which appears to be rooted in normative rather
than ecological rationality. The authors also overstate everyday
rationality and neglect to account for much relevant psychological work
on reasoning.

There is much that I can admire in Bayesian Rationality (Oaks-
ford & Chater 2007, henceforth BR) and the lengthy research
programme that it describes. There is also much that I agree
with: for example, that human beings resemble Bayesian reason-
ers much more closely than ones engaging standard logic. I also
share part of the authors’ research programme, in that I have
argued against logicism and excessive use of the deduction para-
digm in the psychology of reasoning (Evans 2002), as well as pro-
posed that ordinary conditionals are much better modelled by
probability logic than by standard propositional logic (Evans &
Over 2004). So why is it that when I read the Socratic dialogue
presented in Chapter 8 of BR, my sympathy is constantly with
the sceptic?

The problems for me lie with “rational analysis” and the
manner in which Oaksford & Chater (O&C) go about doing
their science. Rarely do we see anything approaching a descrip-
tive or algorithmic account of reasoning (the model of syllogistic
reasoning being the closest) or even — in spite of their philoso-
phy — a genuinely computational one. What we typically get is
an alternative norms account. Thus, choices on the Wason selec-
tion task look erroneous from the viewpoint of standard logic, but
can be seen as rational attempts to maximise information gain
(given a misreading of the task instructions that makes it about
categories instead of four individual cards). Similarly, we can
predict people’s conditional inference rates on the assumption
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that they are somehow reflecting the probability of the con-
clusion given the minor premise (despite the oddity that uncer-
tainty resides exclusively in the major premise), and so on. The
object of the exercise seems to be to show that there is some nor-
mative account of behaviour that can be offered. As a cognitive
psychologist, I find this unsatisfying, because I want to know
what people are actually doing and how.

The basic philosophy of the authors is set out in Chapter 2, on
which I will focus. They start out by describing essentially the
same paradox as the one that inspired our earlier book on ration-
ality (Evans & Over 1996a). Why is it that people’s reasoning and
decision making seems essentially rational, intelligent, and adap-
tive in the real world, but results in numerous violations of logic
and other standard normative systems when they are tested in the
laboratory? We suggested that while people have some limited
capacity for explicitly following normative rules (rationality2),
they could often achieve everyday goals by implicit processes
such as associative learning (rationalityl). O&C (BR, p. 29)
object, however, to any form of rationality that cannot be justified
by a normative system. But elsewhere in the book, they seem to
be describing something very similar to rationalityl. For
example, they describe some examples of “rational” behaviour
with the comment: “Such behaviour may be built in by evolution
or acquired via a long process of learning — but need not require
on-line computation of the optimal solution” (BR, p. 36).
Examples discussed here include Gigerenzer’s research pro-
gramme on fast and frugal heuristics (Gigerenzer 2004). But
Gigerenzer appeals to ecological and not normative rationality,
so the link between the two programmes is unclear.

The authors overstate everyday rationality when they ask (BR,
p- 30), “why do the cognitive processes underlying everyday
rationality consistently work?” Well, they don’t, and to say other-
wise is to ignore a massive body of psychological literature. For
example, in the study of judgement and decision making, many
cognitive biases have been shown to occur reliably in everyday
contexts and with expert judges: phenomena such as
outcome bias, hindsight bias, overconfidence, and the planning
fallacy, to name just a few (for evidence, see papers from two
recent collections on these topics: Gilovich et al. 2002; Koehler
& Harvey 2004). There is also a massive accumulation of evi-
dence for dual-process accounts of reasoning and decision
making (Evans 2007; 2008), something which plays no visible
role at all in the account of human reasoning offered by O&C.
Nor do O&C feel moved to explain why the achievement of stan-
dard normative solutions to the task for which they provide
alternative normative accounts is associated with those of high
general intelligence (Stanovich 1999). It is particularly disap-
pointing that they make no reply to Stanovich’s carefully con-
structed challenge to their position.

A final issue is whether their methodology provides compu-
tational or normative accounts of behaviour, because these are
not the same thing (Elqayam 2008). The authors try to
combine them as follows: “Formal rational principles spell out
the optimal solution for the information processing problem
that the agent faces. The assumption is that a well-adapted
agent will approximate this solution to some degree” (BR,
p- 38). But the adaptive mechanisms of nature — evolution and
learning — do not optimise. If evolution had an optimal solution,
we would not have billions of different species of every conceiva-
ble form and function. If learning was optimised, animals would
not, for example, generally match the probability of their foraging
to that of food sources. But O&C are quite explicit (BR, pp. 30—
31) that they are not worried about the performance of a priori
normative theories in providing such quasi-computational
accounts. On the contrary, they are looking for empirical ration-
ality, which means in essence: observe some behaviour, assume
that it is rational, find a normative theory that deems it to be
so, and then ... nothing else, apparently.

I can understand the benefits of rational analysis when it is
rooted in ecological rationality, so that by assuming that

behaviour is adapted to the environment, we can look to the
structure of that environment for cues as to how our cognitive
mechanisms are designed. However, I really don’t understand
why O&C feel the need to fit a normatively rational model to
human reasoning, and still less why that should put an end to
the inquiry, with no algorithmic account to follow. Nevertheless,
I agree strongly with them that the Bayesian model is a far more
appropriate reference for real world reasoning than one based on
truth-functional logic, and that it is a standard much more likely
to be approximated in the inferences that people actually make.

The strengths of — and some of the challenges
for — Bayesian models of cognition
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Abstract: Bayesian Rationality (Oaksford & Chater 2007) illustrates the
strengths of Bayesian models of cognition: the systematicity of rational
explanations, transparent assumptions about human learners, and
combining structured symbolic representation with statistics. However,
the book also highlights some of the challenges this approach faces: of
providing psychological mechanisms, explaining the origins of the
knowledge that guides human learning, and accounting for how people
make genuinely new discoveries.

Oaksford & Chater’s (O&C’s) book Bayesian Rationality (Oaks-
ford & Chater 2007, henceforth BR) is at heart a review of the
authors™ research program exploring probabilistic models of
human deductive reasoning. However, the review is nested
within a set of chapters that make clear the ambitious goal of
this research program: not just to explain how people reason,
but to provide us with a new functional notion of rationality.
This work, together with that of Anderson (1990) and Shepard
(1987; 1995) was one of the early successes of rational analysis
and Bayesian models of cognition (see also, Chater & Oaksford
1999a). As such, BR illustrates the strengths of rational analysis,
and helps to highlight the challenges that Bayesian models face.

One of the strengths of rational analysis is producing models
that explain human behavior as an adaptive response to problems
posed by the environment. Establishing how the notion of ration-
ality appealed to by these explanations relates to traditional nor-
mative analyses in psychology and economics is one of the
themes of the early chapters of the book, building on previous
discussion by Anderson (1990). Loosely speaking, the thesis is
that rationality can be a methodological assumption that guides
us to explanations of behavior: Rather than deciding that
people solve a problem poorly, we should consider the possibility
that they are solving another problem well, and try to determine
what that problem might be. This analysis can be more satisfying
than traditional uses of normative models, in that it produces a
systematic picture of the assumptions guiding human inferences
rather than a list of deviations. This approach is perhaps best
exemplified in BR by the Wason selection task, in which the tra-
ditional normative account is a combination of falsificationism
and deductive logic, and the alternative construes the problem
as one of confirmation and induction.

Rational accounts of cognition have virtues that go beyond
mere systematicity. One of the most important is the explicit
treatment of the assumptions of learners that results from
explaining behavior as an adaptive response to computational
problems. Computational models of cognition typically focus
on the processes that govern behavior. Their content and
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parameters concern the properties of hypothetical cognitive
mechanisms — similarity, strength of association, and learning
rates. The content and parameters of rational models are
expressed in a different language, being about the problems lear-
ners solve and the assumptions they make. As a consequence,
these models are more abstract, but more explicit about their
commitments, providing a transparent account of what learners
should find easy or hard to learn (their “inductive biases”) and
what factors should influence behavior (such as the rarity of prop-
erties in the Wason task). Developing models formulated in these
terms can be valuable, because many questions in cognitive
science are posed at the same level of abstraction, concerning
the constraints that guide human learning.

The treatment of human reasoning presented in BR illustrates
another strength of Bayesian models: the capacity to combine
symbolic representations with statistical inference. As O&C
discuss, logic and probability have often been viewed as distinct.
Researchers in philosophy and artificial intelligence have touted
the expressive power of deductive logic, whereas probability
theory is typically applied to simpler representations such as
sequences of coin flips. The models developed in the book
begin to combine the expressive power of logic with the inferen-
tial capacity of probability, following a trend towards probabilistic
logics that is now a hot topic in artificial intelligence (e.g., Fried-
man et al. 1999; Milch et al. 2004). More generally, the idea of
combining structured representations with statistical inference
brings together two traditions in cognitive science, where sym-
bolic models employ structured representations and connection-
ism demonstrates power of statistical learning. As discussed in
the book, the potential of the resulting synthesis is great, with
structured statistical models being useful when both represen-
tation and learning are key, such as inferring the existence of
causal relationships (e.g., Griffiths & Tenenbaum 2005) and
learning and using language (e.g., Chater & Manning 2006).

While the examples presented in BR illustrate the strengths of
rational analysis and Bayesian models of cognition, they also
highlight some of the challenges that this approach faces. One
significant challenge is connecting rational models to more con-
ventional psychological explanations — identifying mechanisms
that can support the sophisticated probabilistic inferences
required by structured statistical models. Another challenge is
understanding where the knowledge that guides these inferences
comes from — the source of the priors and hypothesis spaces for
Bayesian inference. And finally, the parallels between induction
and scientific reasoning drawn in the book raise another compel-
ling question. Following Reichenbach (1938), philosophers of
science distinguish between discovery — developing genuinely
new hypotheses — and justification — explaining why one hypoth-
esis should be preferred to another. Bayesian inference, at least
in the form presented in most Bayesian models, is a logic of jus-
tification, with all possible hypotheses being evaluated. So, how
might Bayesian models account for discovery, something that
would seem to require going beyond the hypotheses available?

These are significant challenges, but they might be overcome by
drawing on work in other disciplines that use Bayesian models.
Probabilistic inference is not just hard for people, it is difficult
for computers too. The resulting work on approximate inference
in computer science and statistics provides a potential source of
psychological mechanisms (e.g., Sanborn et al. 2006; Shi et al.
2008). Hierarchical Bayesian models, originally developed in stat-
istics to capture both individual and population effects, provide a
way for learners to start out with vague priors and to refine their
beliefs over time to develop more informative expectations
(Tenenbaum et al. 2006). Finally, nonparametric Bayesian
models use stochastic processes to define priors over infinite,
structured hypothesis spaces, allowing new observations to be
explained through new hypotheses (e.g., Sanborn et al. 2006; Grif-
fiths & Ghahramani 2006), and perhaps paving the way towards a
deeper understanding of discovery. Set in this broader context, BR
is a significant step towards a genuinely interdisciplinary science of
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induction, connecting human minds with algorithms from compu-
ter science and the abstract principles of statistics.
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Abstract: One of the most striking features of “Bayesian rationality” is the
detail with which behavior on logical reasoning tasks can now be
predicted and explained. This detail is surprising, given the state of the
field 10 to 15 years ago, and it has been brought about by a theoretical
program that largely ignores consideration of cognitive processes, that
is, any kind of internal behavior that generates overt responding. It
seems that an increase in explanatory power can be achieved by
restricting a psychological theory.

It is undoubtable that over the last decade, Oaksford & Chater
(O&Q) have revolutionized the psychology of human reasoning.
What were previously viewed as “logical reasoning” tasks, such
as Wason’s card selection task, were given a probabilistic re-
interpretation. At the same time, their work has formed a
corner-stone in the wider probabilistic revolution that has
taken place over the last 10 to 15 years: Finding evidence for
human sensitivity to probabilities in as unlikely a corner as
“logical” reasoning tasks, lends support to the wider claim that
human cognition is fundamentally about probabilities.

Given the current popularity of Bayesian approaches to cogni-
tion (see e.g., Chater et al. 2006; Chater & Oaksford 2008, for
overviews), it is worth trying to remind oneself just how much
has changed in cognitive science in that period. At the beginning
of the 1990s, logic was taught extensively in philosophy and cog-
nitive science courses, but little or no mention was given to prob-
ability theory; now core topics such as epistemology are
incomprehensible without a basic understanding of probability.
Cognitive science as a field was still in the throws of the symbolic
versus connectionist debate (e.g., Fodor & Pylyshyn 1988; Smo-
lensky 1990) and both Nick Chater and Mike Oaksford were
involved in the connectionist project (e.g., Bullinaria & Chater
1995; Oaksford & Brown 1994). Arguably, the rise of connection-
ism was a major factor in cognitive science’s statistical “turn”
(e.g., Chater 1995), but connectionism’s emphasis was firmly
on “mechanism” and its (potentially) “brainstyle” processing.

However, since then, the connectionist project has stagnated
by comparison to what has been achieved in other areas, such
as the psychology of reasoning. Crucial to this latter success, it
seems, was the step back, or better, “upwards,” in terms of the
degrees of abstraction, and levels of description at which expla-
nation were sought.

Retreating from considerations of implementation, or, by and
large, even algorithms, O&C have stuck resolutely to compu-
tational level descriptions, and, in so doing, have become key
exponents of Anderson’s project of rational analysis (Anderson
1990; Chater & Oaksford 2008; Oaksford & Chater 1998b). To
this day, computational level descriptions provoke suspicion in
mainstream experimental psychology. “But what is it that
people are actually doing?”, “what is going on in the head?” are
standard questions to researchers focused on the computational
level, as is exemplified in the dialogue between Sceptic and Advo-
cate in the final chapter of O&C’s new book, Bayesian Ration-
ality (Oaksford & Chater 2007, henceforth BR).
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All are agreed that the project of understanding human beha-
vior is not over until processes and their implementation have
also been specified, but the thing that comes across most strikingly
in O&C’s book is the level of explanatory specificity that has now
been achieved in the psychology of reasoning. Before O&C’s
seminal paper on the selection task (Oaksford & Chater 1994),
data in the psychology of logical reasoning were a (in many ways
somewhat haphazard) collection of qualitative phenomena
(“context effects,” “supression effects,” etc.). Reading O&C’s
summary of the state of affairs 14 years on, the psychology of
reasoning has become an arena in which detailed quantitative pre-
dictions are evaluated. This is not only true of their own probabil-
istic approach; O&C have also forced the hand of rival approaches
which have since taken on board quantitative model evaluation
(Klauer et al. 2007; Oberauer 2006; Schroyens & Shaeken 2003).

It is worth pausing to consider how remarkable this is. The
reasoning tasks in question are firmly “high-level cognition” of
the kind that is characteristic of what Fodor (1983) considered
to be “central processing,” and hence an aspect of human cogni-
tion for which we would never have detailed theories and predic-
tions due to the inherent open-endedness of high-level thought.
That the field can capture subtle changes in behavior in response
to changes in the content of high-level, verbal experimental
materials in such detail is truly a success. Moreover, this speci-
ficity has been spreading through other aspects of human reason-
ing, as well (e.g., Tenenbaum et al. 2007).

That greater predictive power with regard to human behavior
might be achieved by taking a step backwards to a higher level of
abstraction that disregards processes might seem counterintui-
tive, but it seems to be exactly what has happened in the psychol-
ogy of reasoning.

One further aspect of O&C’s work deserves mention in this
context. While it has, in one way, considered “less” than has
other research in the psychology of reasoning, there is also a way
in which it has consistently considered “more”: Apparent through-
out O&C’s book is the multi-disciplinarity of their project which
has drawn support from both philosophy and Artificial Intelligence
(AI). We disregard developments in adjacent disciplines at our
peril: The problems of associating natural language if. . .then state-
ments with the material conditional were long known in philos-
ophy, but ignored by psychologists of reasoning (see Edgington
1995; Evans & Over 2004). Likewise, developments in AI spoke
to the feasibility of the “logicist” program. Yet interdisciplinarity
continues to be less of an asset and more of a stumbling block for
publication in many of the core psychology journals that have
housed the psychology of reasoning. At the same time, cognitive
science as a discipline seems, if anything, to have lost in appeal
over the last decade. Certainly in the United Kingdom, the
number of degree courses in cognitive science has gone
down — a trend that contrasts with the booming interest in cogni-
tive neuroscience. Cognitive neuroscience, of course, seems first
and foremost concerned with processes and their implementation.
Although it undoubtedly will lead to results that are new and excit-
ing in their own right, it seems worth pointing out that this trend is a
move in the opposite direction to that taken so successfully by
O&QC; this should give pause for thought to those interested in
high-level cognition.

Complexity provides a better explanation than
probability for confidence in syllogistic
inferences
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Abstract: Bayesian rationality is an important contribution to syllogistic
inference, but it has limitations. The claim that confidence in a
conclusion is a function of informativeness of the max-premise is
anomalous because this is the least probable premise. A more plausible
account is that confidence is inversely related to complexity. Bayesian
rationality should be supplemented with principles based on cognitive
complexity.

The Bayesian account of reasoning proposed by Oaksford &
Chater (O&C) in Bayesian Rationality (Oaksford & Chater
2007, henceforth BR) extends the historic trend away from
regarding logic as the science of thought, and toward seeing
reasoning as adaptation to the environment. Piaget, who is
cited on page 4 of the book as wholeheartedly adopting a logicist
conception of the mind, was in fact part of this trend, and he
expressly repudiated logicism (Piaget 1957, p. 1). The Bayesian
account arguably has potential to revolutionise our understand-
ing of reasoning, but it has limitations. I want to draw attention
to some issues that are additional to those that have been ident-
ified in the literature.

The heuristics proposed by the Probability Heuristics Model
(PHM), that is, min, max, and attachment, operate on an implicit
ranking of the informativeness of the four premise moods (All,
Some, Some not, None). According to the min-heuristic, individ-
uals tend to draw conclusions that match the mood of the least
informative premise, which by information theory is also the
most probable proposition in a set of premises. The validity of
the min-heuristic is that it reflects constraints between the
mood of the min-premise and the mood of the valid conclusion
(see Tables 7.2 and 7.3 in BR). Thus, PHM implies that reasoning
depends on knowledge of constraints contained in world knowl-
edge. PHM accounts for approximately the same proportion of
variance in problem forms as Mental Models theory and Rela-
tional Complexity theory (Halford et al. 2007). PHM goes
beyond these theories in dealing with premises “Most” and
“Few,” but it only predicts mood of the conclusion, not actual
conclusions, and it depends on estimated parameters.

There is also a significant anomaly. The max-heuristic deter-
mines confidence in the conclusion in proportion to the informa-
tiveness of the max-premise, but the most informative premise is
the least probable. There does not appear to be an explicit expla-
nation for confidence being inversely related to probability,
whereas selection of conclusions, by the min-heuristic, is directly
related to probability. An alternative hypothesis is that high confi-
dence is associated with lowest complexity, because the least prob-
able forms according to PHM are also the least complex according
to complexity metrics, including number of mental models, and
the relational complexity metric. The simplest syllogisms accord-
ing to the Relational Complexity metric (Halford et al. 2007),
those based on binary or ternary relations, have at least one
A (All) premise, or at least one I (Some) premise. A (All) premises
are the most informative (least probable) and I (Some) premises
are second most informative in PHM. Thus, the most informative,
and least probable, syllogisms are of low complexity, which is a
more plausible basis for confidence than low probability. There-
fore, PHM might work better if it incorporated other principles
that have been established in cognitive science, including those
that define cognitive complexity of reasoning tasks.
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Abstract: Oaksford & Chater (O&C) would need to define
rationality if they want to argue that stomachs are not rational.
The question of rationality, anyhow, is orthogonal to the debate
concerning whether humans use classical deductive logic or
probabilistic reasoning.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR), the authors offer a definitive answer to what seems
obvious to them: Although our stomachs can be “optimally effi-
cient” in digesting the food in our environment, we still would
not describe them as rational (BR, p. 38). For Oaksford &
Chater (O&C), the question of rationality of stomachs does not
even arise: Stomachs are not information-processing devices,
have no beliefs/desires/knowledge, and make no decisions/
inferences. O&C use the stomach example in the context of
pressing their distinction between rationality and optimization:
Optimization is about a “local” end (such as digestion), whereas
rationality “requires not just optimizing something but optimiz-
ing something reasonable” (p. 37). What is ironic about O&C’s
“rationality analysis” approach, borrowed from Anderson
(1990), is that their instrumental approach prohibits them from
offering such an answer about stomachs. In fact, in the same
context, they explicitly state that they would not offer an
answer to the “ultimate question of what rationality is” (BR,
p- 38). That is, if they have no definition of rationality, how
could they answer at the abstract level that organs (such as
stomachs) can be efficient, but not rational, while human organ-
isms can be rational?

To be clear, O&C recognize that humans exhibit rationality in
everyday activity that allows us to discern between good and bad
reasoning. O&C, therefore, want to avoid the empirical approach
that elevates everyday behavior to the entry point of theorizing,
as the literature expounding the Allais paradox attempts to do.
O&C correctly note that the empirical approach leads to chaos:
If everyday activity is taken as the entry point, there would be
no ground to distinguish between good reasoning from bad
reasoning.

On the other hand, O&C want to avoid a definition of ration-
ality. They do not want to invite what I call here the “specter of
Plato”: O&C are afraid of invoking the pitfalls of the logical
approach that postulates deductive logic without being
informed by everyday, empirical activity. The logical approach,
O&C argue, invites the questions of why humans should follow
deductive logic and from where such logic arises. Of more
importance to the authors’ project, experimental results have
shown that humans perform poorly in classical logical tasks
such as conditionals, Wason selection task, and syllogisms.
O&C instead argue that humans reason in a world full of uncer-
tainties and, hence, humans use natural language conditionals
and probability assessment of premises when they make infer-
ences. Humans do not use meaningless logical conditionals
and deductive reasoning with premises that stand with absolute
certainty.

Let us agree with O&C that the probabilistic approach to
human reasoning explains why humans, in laboratory settings,
are bad at solving tasks formulated by classical logic. But, still,
why does the advocacy of a probabilistic approach prevent one
from providing a definition of rationality — a definition that is
necessary if one wants to argue that stomachs are not rational?

It seems that the issue of defining rationality is orthogonal to
the debate between the logical approach and the probabilistic
approach to human reasoning. Both approaches are about resol-
ving the issue of how people can arrive at true beliefs — whether
the truth is defined in absolute certainty or in degrees of belief.
But the issue of rationality is not about how reasoning can
arrive at truth. Rather, rationality is about the use of resources
in the most efficient way (Becker 1976, Ch. 1). Organisms are
not mainly concerned with becoming professional scientists,
where costs of the truth are disregarded. Rather, organisms are
mostly interested in harnessing food/energy from their environ-
ment in the most effective way in order to enhance their well-
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being or, what is the same thing, to expand the quantity/
quality of offspring. So, the main goal of organisms, with the
exception of professional scientists, is not reasoning in order to
arrive at true beliefs — even when truth is recognized as
degrees of belief. Rather, the main goal of organisms is reasoning
that enhances well-being (or fitness). Such a goal entails that
organisms may settle for inaccurate hypotheses or beliefs given
that more accurate ones can be unjustifiably costly. That is, if
the processing of new data — which may upset an older hypoth-
esis or belief — is too costly, given the expected benefit of a new
hypothesis of belief, then humans would be better off with the
old, incorrect hypothesis.

This elementary definition of rationality stands (or falls)
orthogonally to the issue of whether agents use classical logical
methods or probabilistic methods. And O&C can adopt a defi-
nition of rationality without adopting the classical logical
method or invoking the specter of Plato. To wit, their insistence,
on more than one occasion, that stomachs are not rational implies
that they uphold a definition of rationality. O&C must implicitly
view rationality as characteristic of the actor, and not merely,
appealing to the work of Marr (1982), as an “explanatory tool”
(BR, p. 35). The idea that rationality is merely a tool, called gen-
erally instrumentalism and advocated by van Fraassen (1980,
Ch. 2; see also Friedman 1953), is critical of realism, which in
this case means that rationality is characteristic of the decision-
maker.

On the view of rationality as efficiency, we only need to
assume, at least initially, that preferences are consistent (Kreps
1990), and that agents change their actions in response to a
change in the environment (constraints). There is no need to
suppose that the actor or entity has a cognitive ability informed
by beliefs /desires/knowledge. As long as an entity changes beha-
vior in response to the environment in order to economize on
effort expenditure, it is rational. Behavioral ecologists, etholo-
gists, and philosophers have recently started to realize that organ-
isms do process information and respond to the environment in
ways that qualify them as rational (e.g., Griffin 1992; Hurley &
Nudds 2006; Raby et al. 2007; Vermeij 2004). Some of these
organisms have no brains, such as plants and single-cell organ-
isms. The same reasoning can be applied to organs (including
stomachs) insofar as organs change pace of function, such as
secretions or size, in response to changes in the environment
(constraints). There is no need, therefore, to distinguish effi-
ciency from rationality — when rationality is about optimizing
“something reasonable.” Digestion seems also a reasonable
goal. In fact, the efficiency/rationality distinction would beg the
question of how to distinguish a reasonable from an unreasonable
goal, that is, it would invite circularity of argument, as O&C
clearly admit (BR, p. 37).

Is the second-step conditionalization
unnecessary?
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Abstract: Because the addition of the conditional premise tends to
increase modus ponens (MP) inferences, Oaksford & Chater argue that
the additional knowledge is assimilated to world knowledge before the
Ramsey test is carried out to evaluate P(glp), so that the process of
applying the Ramsey test could become indistinguishable from the
process of applying the second-step conditionalization.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR), Oaksford & Chater (O&C) argue that the second-step
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conditionalization is unnecessary in the MP (modus ponens)
argument. However, based on experimental findings, I show
that the second-step conditionalization in the MP argument is
sometimes necessary and sometimes unnecessary. I further
argue that the second-step conditionalization is unnecessary
because the conditional probability hypothesis holds. The con-
ditional probability hypothesis, which is implied by the Ramsey
test (see Over et al. 2007), states that the subjective probability
of a natural language conditional is the subjective conditional
probability. T will show that the conditional probability hypoth-
esis holds only when reasoners explicitly evaluate the probability
of conditionals, but that it may not hold in the context of making
MP inferences.

The second-step conditionalization is experimentally isolated
from the first-step conditionalization by adding the reduced
problem to the complete problem. The reduced MP problem is
of the form: Given p, how probable is ¢? The complete MP
problem is the original MP problem of the form: If p then ¢;
given p, how probable is ¢? Thus, reduced MP problems
measure the result of the first-step conditionalization, whereas
complete MP problems measure the result of performing both
steps in succession.

To argue that the second-step conditionalization is unnecess-
ary is tantamount to arguing that complete MP problems can
be replaced by reduced MP problems. In other words, the
major premise does not play its role in a complete MP
problem. Thus, only studies that administered both reduced
and complete problems in the same experiments can provide evi-
dence of whether the major premise does play a role in complete
MP problems. There are several studies — for example, those of
Chou (2007), Liu (2003), Liu and Chou (2008), Liu et al. (1996),
and Wang (1999) — that manipulated several variables to study
their effect on reduced and complete MP problems in the
same experiments.

Three variables are known to affect reduced MP problems dif-
ferently from complete MP problems. The first variable, per-
ceived sufficiency, affects complete problems only by affecting
the reduced problems. Because of a ceiling effect, reasoners’
responses in solving the reduced and complete MP problems
are generally identical in the high sufficiency condition. The
second variable, problem content, affects the complete MP
problem without affecting the reduced MP problems. The
third one, age differences, is a quasi-variable: Primary school
children raised in a rural area of Taiwan, when tested several
years ago, exhibit identical responses in solving reduced and
complete MP problems, because they are still unable to
perform the second-step conditionalization.

O&C realize that adding the conditional premise tends to
increase endorsement of the inferences. However, to account
for the Ramsey test (1931/1990a), they argued that the additional
knowledge the conditional premise provides is assimilated
to world knowledge before the Ramsey test is carried out to
evaluate P(q|p).

The Ramsey test (1931/1990a) is compatible with recent
experimental findings that tend to support the conditional prob-
ability hypothesis (Evans et al. 2003; Oberauer & Wilhelm 2003;
Over et al. 2007). On the surface, however, the conditional prob-
ability hypothesis is incompatible with the vast literature on MP
findings. In particular, the MP is nearly perfectly endorsed when
the conditional statement involves abstract content (e.g., Evans
1977; Taplin 1971; Taplin & Staudenmayer 1973).

More specifically, Evans (1977) used the following conditional
to generate MP problems: If the letter is G, then the number is
9. The conditional probability of the number 9, given the letter G,
would be extremely low. Since Evans found that his participants
perfectly endorsed MP problems generated by this type of
abstract conditional, the conditional probability interpretation
of a conditional statement becomes questionable. Working with
conditionals phrased in terms of thematic materials, such as “If
Mary has an essay to write, she will stay late in the library,”

Byrme et al. (1999) also observed a mean of 95%
endorsement of simple MP inferences in their experiment.
Again, the conditional probability of Mary staying late in the
library, given that she has an essay to write, would generally be
small.

Faced with this complex array of empirical findings, O&C
argue that the conditional-statement premise provides additional
evidence that ¢ and p are related, thus increasing the assessment
of P(glp). They then argue that this additional knowledge is
assimilated to world knowledge before the Ramsey test is
carried out to evaluate P(qlp). Empirically, there is an increase
in P(¢glp) in conditionalizing the result of the first-step conditio-
nalization on the conditional-statement premise when reasoners
are able to detach it from reality (Liu 2003). In other words,
although P(qlp) observed from the reduced MP problems of
abstract and thematic contents could be the same, the response
level observed from the complete MP problems is generally
higher for abstract than for thematic content. On the basis of
this empirical finding, it is impossible to know whether the
process of applying the Ramsey test (1931/1990a) is the same
as the process of applying the second-step conditionalization.

The fact that reasoners might consider the antecedent as suffi-
cient for the consequent in reading the conditional-statement
premise (e.g., Byrne et al. 1999; Evans 1977) may not contradict
the conditional probability hypothesis. This is because the former
finding is observable in the context of MP inferences, whereas
the conditional probability hypothesis receives its support
through the reasoners’ direct evaluation of the conditional
statement.
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Abstract: Oaksford & Chater’s (O&C’s) account of deductive
reasoning is parsimonious at a local level (because a rational model is
used to explain a wide range of behavior) and at a global level (because
their Bayesian approach connects to other areas of research). Their
emphasis on environmental structure is especially important, and the
power of their approach is seen at both the computational and
algorithmic levels.

Oaksford & Chater (O&C) are to be commended for their com-
prehensive account of deductive reasoning in Bayesian Ration-
ality (Oaksford & Chater 2007, henceforth BR). They don't just
explain Wason’s selection task, or conditional reasoning, or syllo-
gistic reasoning, but all of these. Furthermore, the fact that their
account is Bayesian is important for several reasons. First, an
inductive account of deductive behavior is interesting and
novel. Second, because the pattern of data which they explain
consists largely of deductive errors, they are providing an alterna-
tive rational view of these “errors.” Third, because their account
is both rational and explains behavior in these tasks, there is an
important sense in which readers (such as myself) gain an under-
standing of why people respond as they do in these tasks. The
explanation is, essentially, a teleological one. Finally, the
approach connects deductive reasoning to other areas of psycho-
logical research that are otherwise disconnected, such as vision,
categorization, and language, all of which are influenced by
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Bayesian approaches. In short, O&C offer an account that is par-
simonious both locally, in the sense that it is a rational framework
that can explain a wide range of deductive behavior, and globally,
in that it ties in with a much broader collection of diverse
research topics.

Especially important is the environmental aspect of the
“rational analysis” that they pursue (Anderson 1990). Research-
ers tend to point to the many examples of purportedly irrational
behavior as evidence against a rational approach (e.g., Gilovich
et al. 2002; Kahneman et al. 1982; Kahneman & Tversky 2000).
Often overlooked by researchers, though, is that people make
strong and reasonable assumptions about the structure of their
environment. Unaware of these assumptions, researchers can
draw misleading conclusions about behavior. For example,
O&C point out that people appear to make the “rarity assump-
tion,” that is, that named categories tend to be small (see also
McKenzie & Amin 2002; McKenzie & Mikkelsen 2000; 2007;
McKenzie et al. 2001). Without the rarity assumption, some
behavior can appear irrational and even nonsensical, but with
it, behavior is not only reasonable, it is consistent with a Bayesian
approach.

Similarly, McKenzie and Mikkelsen (2007) recently argued
that the rarity assumption explains why people, when assessing
the correlation between two variables that can be either present
or absent, are especially influenced by observing the joint pre-
sence of the variables. Traditionally, the large influence of joint
presence observations has been seen as an error, but it makes
sense from a Bayesian perspective combined with the rarity
assumption. A completely different example of the importance
of environmental structure comes from framing effects, which
refer to situations in which listeners respond differently to logi-
cally equivalent utterances (or frames). Framing effects have
been considered irrational, but it has been pointed out that
speakers do not choose randomly among frames. Instead,
speakers choose frames systematically, and listeners know this.
Thus, although many frames are logically equivalent, they are
not information equivalent, and responding differently to
them is not irrational (McKenzie 2004; McKenzie & Nelson
2003; Sher & McKenzie 2006; 2008). Understanding the struc-
ture of the environment, and what makes sense in light of this
structure, goes a long way toward understanding people’s
behavior.

The power of rational analysis is apparent at the compu-
tational level (using Marr’s [1982] terminology), where the
aim is to understand what problem the organism is trying to
solve. O&C’s accounts of Wason’s selection task and conditional
reasoning are essentially computational. But when O&C discuss
syllogistic reasoning and their probability heuristics model, they
also show what rational analysis can do at the algorithmic level,
which is concerned with the processes used by the organism to
solve the problems it faces. The rational model remains the
same, but it becomes clear that behavior, at this level, diverges
from the model. Relative to the rational model, people use sim-
plified processes (i.e., heuristics) that lead to systematic errors
(biases; e.g., Kahneman et al. 1982). One must be careful
here because, as others have pointed out, the “heuristics and
biases” paradigm in judgment and decision making has left
that field with a “laundry list” of heuristics and biases rather
than an overarching theory (Gigerenzer 1996; Krueger &
Funder 2004). However, rational analysis severely constrains
the set of potential heuristics that people might use, which, to
a large extent, would guard against the explosion of heuristics
that has plagued the judgment and decision making literature.
Furthermore, because this constrained set of plausible heuris-
tics would come from a rational analysis, the adaptiveness of
heuristics would be less likely to be a contentious topic, as it
often is in the field of judgment and decision making. It
would be fascinating (and a little ironic) if rational analysis
were to pave the way for the next step in the heuristics and
biases paradigm.
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Abstract: Is human cognition best described by optimal models, or by
adaptive but suboptimal heuristic strategies? It is frequently hard to
identify which theoretical model is normatively best justified. In the
context of information search, naive subjects’ heuristic strategies are
better motivated than some “optimal” models.

Bayesian Rationality (Oaksford & Chater 2007) nicely synthesizes
the growing body of research. This approach offers promise to
give principled explanation not only of human higher cognitive
processes, but also much of perception and animal cognition. Is
cognition best described by optimal models, or by adaptive but
suboptimal heuristic strategies? Oaksford & Chater (O&C)
explain that heuristic strategies approximate human syllogistic
reasoning better than optimal Bayesian models. This commen-
tary illustrates, in the context of information search, that it is fre-
quently possible to be mistaken about what model is best
motivated; and that naive heuristic strategies can perform
better than “optimal” models!

Consider the task of deciding which of two medical tests
to order, assuming cost constraints only allow one test, to best
diagnose a patient’s disease. We assume here that the patient
either has Disease 1 or Disease 2, with equal (50 %) prior
probability, and that Test 1 and Test 2 are each either positive
or negative. How should a diagnostician decide which test to
order?

A great deal of cognitive psychological and statistical thinking
(since I. J. Good’s [1950; 1975] work) claims that the optimal
strategy is to conduct the test with highest expected Bayesian
diagnosticity (expected weight of evidence) or expected log diag-
nosticity. [T1 = p denotes that Test 1 is positive, T1 = n that Test
1 is negative, D = d1 that the patient has disease 1, etc.] As
shown in Figure 1, the expected Bayesian diagnosticity for Test
1 (i.e., its expected utility, as measured with Bayesian diagnosti-
city) is:

ey, (T1)=

P(ri=p) » mas{ FEZL D00 ETZ0  DoeR)

.

P(ri=n) « mar{ ST Do BUTT=a T Bdt)
Figure 1.

and, as shown in Figure 2, its expected log diagnosticity is:
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However, many subjects follow the feature difference strategy
(Nelson 2005; Skov & Sherman 1986; Slowiaczek et al. 1992).
This strategy involves calculating the absolute difference in
feature likelihoods for each test; for example, as shown in Figure 3:
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IDiff (T1y = | PlTi=p | D=dl| — PITI=p | D=d2) |

Figure 3.

and ordering the test with the highest fDiff.

Thus, Skov and Sherman and Slowiaczek et al. concluded that
many subjects use a suboptimal heuristic strategy that is highly
correlated with the optimal strategy. Remarkably, however,
both the claims (1) that Bayesian diagnosticity (and/or log diag-
nosticity) are theoretically optimal, and (2) that the feature differ-
ence strategy only imperfectly approximates optimal behavior,
are in disrepute.

Both expected Bayesian diagnosticity and expected log dia-
gnosticity are poorly behaved as optimal models. To illustrate,
suppose that Test 1 were positive in 99% of people with Disease
1, and in 100% of the people with Disease 2. Suppose further
that Test 2 were positive in 1% of people with Disease 1, and
99% of people with Disease 2. Test 1 leads, on average, to
50.5% probability of identifying the correct disease; Test 2
leads, on average, to 99% probability of correctly identifying the
true disease. Clearly, Test 2 would be more helpful than Test 1
to differentiate between the diseases. Yet diagnosticity and log
diagnosticity maintain that Test 1 is infinitely more useful
than Test 2! Both diagnosticity measures hold that any test
that offers greater-than-zero probability of obtaining 100% cer-
tainty of the true disease is infinitely useful. This bizarre claim is
not a desirable property of an “optimal” model. (In Nelson
[2005; 2008] I discuss these and other theoretical flaws with the
diagnosticity measures, and how redefining a single point cannot
fix them.)

Better-motivated theoretical models of the value of information,
such as information gain-KL distance (Lindley 1956; Oaksford &
Chater 1994), probability gain (error reduction; cf. Baron’s 1981
talk at the Psychonomic Society Meeting, as cited in Baron
1985), and impact (Klayman & Ha 1987, pp. 219-20; Nelson
2008; Nickerson 1996; Wells & Lindsay 1980) behave reasonably
in this medical diagnosis scenario, and do not suffer from the diag-
nosticity measures” aforementioned theoretical flaws.

Does the feature difference strategy also approximate these
better-motivated theoretical models? In fact, it exactly corre-
sponds to impact! The highest fDiff feature also has the highest
impact, irrespective of the prior probabilities of the diseases
and the specific feature probabilities (Nelson 2005, footnote 2).

Closer analysis of the supposedly optimal theoretical models
used by some experimenters, and the supposedly suboptimal
heuristics used by some subjects, showed that the subjects” heur-
istic strategy corresponds to a normative model (impact) that is
theoretically superior to the normative model that the exper-
imenters had in mind! Put in the context of Marr’s (1982)
levels of analysis, consideration of subjects’ behavior at the algo-
rithmic level can inform thinking about the kinds of compu-
tational-level models (normative theories) that are most
appropriate (also see Chater et al. 2003; Cohen 1981).

Do all subjects use the feature difference strategy? No. As O&C
discuss, the means with which information is presented is import-
ant. Different people use a variety of strategies, especially when
environmental probabilities are presented in the standard prob-
ability format, with explicit prior probabilities and likelihoods.
The standard probability format is not the most meaningful to sub-
jects; frequency formats better facilitate Bayesian reasoning (Cos-
mides & Tooby 1996; Gigerenzer & Hoffrage 1995). Personal
experience of environmental probabilities may be even more effec-
tive. When environmental probabilities are learned through per-
sonal experience, the vast majority of subjects maximize the
probability of a correct guess (probability gain), rather than
impact or information gain (Nelson et al., submitted). Note that
impact (which the feature difference strategy implements) more
reliably approximates probability gain than do Bayesian

diagnosticity or log diagnosticity (Nelson 2005), and impact is
easily calculated when the standard probability format is used.

Is cognition optimal? Adaptation can be impressive. Insects’
flight length distributions appear well-calibrated to natural
environments (Viswanathan et al. 1999). But the modern world
is evolutionarily novel. For instance, sugar, fat, and salt are avail-
able in unprecedented abundance. Similarly, modern media may
exaggerate the incidence of plane crashes versus car crashes, or
terrorism versus heart disease. The increasing rate of human
genetic evolution (Hawks et al. 2007) may facilitate adaptation
to some modern environments, over phylogenetic time.

Among topics of interest in Bayesian and rational analysis, such
as perception (e.g., Hoffman, in press), memory, information
search, and category formation, the correct function to optimize
is seldom clear. Baron (2004) noted that utilities are formed on
the basis of reflection, and are constantly being modified. As a
pragmatic matter, cognitive science would be wise to treat candi-
date normative models in similar fashion (also see McKenzie
2003). When there are clear and robust discrepancies between
human behavior and a particular theoretical model, the norma-
tive status of the theoretical model should be reconsidered, as
well as the rationality or adaptiveness of the human behavior.
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Abstract: Oaksford & Chater (O&C) subscribe to the view that a
conditional expresses a high conditional probability of the consequent,
given the antecedent, but they model conditionals as expressing a
dependency between antecedent and consequent. Therefore, their
model is inconsistent with their theoretical commitment. The model is
also inconsistent with some findings on how people interpret
conditionals and how they reason from them.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth BR)
the authors present a strong theoretical case for the “probabilistic
turn” in the psychology of reasoning. I agree with much of the
general thesis of the book: People often reason from uncertain
information, and they do so by drawing on probabilistic infor-
mation. Conditionals, which form the backbone of much of our
knowledge, express conditional probabilities. I disagree with Oaks-
ford & Chater (O&C), however, in details of their models of how
people reason, and I am less sanguine about the evidence support-
ing these models. I focus on reasoning with conditionals.

0O&C’s model of reasoning from conditionals is based on a con-
tingency table of the antecedent (A) and the consequent (C). One
axiom of their model is that the marginal probabilities, P(A) and
P(C), must be constant when the degree of belief in the con-
ditional changes. This is an unfortunate assumption, for two
reasons. First, it is implausible. Assume a new drug X is tested,
and it turns out that it causes headaches. Thus, we increase our
belief in “If a person takes X then they get a headache.”
To accommodate the increase in P(headache|X) in one’s subjec-
tive contingency table, one can either revise P(headache| = X)
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down to hold P(headache) constant, or else revise P(headache)
up while holding P(headache|—=X) constant. The latter appears
more reasonable — as drug X is taken by more people, the
overall rate of headaches will increase, but the probability of
headaches in those who refrain from taking X will not change.
Revising P(headache|—=X) down would lead to the absurd con-
clusion that, when many people take X, those who don’t will
benefit because they get fewer headaches.

Second, holding P(C) constant links the conditional to the
probabilistic contrast, that is, the difference between P(C|A)
and P(C|—A). With P(C) held constant, every increase in belief
in the conditional, that is, every increase in P(C|A), must be
accompanied by a decrease in P(C|—A), resulting in an increased
probabilistic contrast. As a consequence, there is an ambiguity in
O&C’s model on what a conditional means. Initially, O&C
endorse “the Equation,” that is, the probability of “If A then C”
equals P(C|A), and is independent of P(C|—A). But later, O&C
seem to endorse the view that a conditional is believable to the
degree that the probabilistic contrast is high. For instance, they
argue that “it is possible to believe a rule strongly that has
many exceptions” (BR, p. 190), as long as the probabilistic con-
trast is high, such as “If a child walks home from school, it is
abducted.” In line with this reasoning, O&C introduce the “inde-
pendence model” as the alternative to a conditional hypothesis.
The independence model means that P(C|A) = P(C), which
implies that the probabilistic contrast is zero. Since the indepen-
dence model is meant to be the alternative to the conditional,
they cannot both have high probability. If the conditional is
defined by the Equation, however, P(C|A) can be high and at
the same time be equal to P(C). For example, the probability
of arriving safely on a flight, given one has a window seat, is
very high, but not different from the unconditional probability
of arriving safely. It follows that the independence model
cannot, in general, be the alternative hypothesis to a conditional
when the latter is defined by the Equation.

My colleagues and I tested whether people interpret condi-
tionals as simply expressing a high P(C|A) or as expressing a
high probabilistic contrast. We found that people’s degree of
belief in a conditional depended only on P(C|A), not on
P(C|—A), in agreement with the Equation but not with the prob-
abilistic contrast model (Oberauer et al. 2007). This finding
demands a revision of O&C’s argument in defence of the MP-
MT asymmetry (i.e., the finding that people endorse modus
ponens more readily than modus tollens) and their explanation
of the Wason selection task, which both assume that the indepen-
dence model is the alternative to the conditional hypothesis.

The evidence for O&C’s model of reasoning with conditionals
is mixed at best. Evidence comes from three sources: (1) The
model fits endorsement rates for the four basic inference
forms. Fitting four data points with three free parameters is no
convincing accomplishment, though. A richer database is pro-
vided by the frequencies of the 16 possible patterns of endorse-
ment or rejection across the four inference forms. I applied seven
formal models of reasoning to such pattern frequencies (Ober-
auer 2006). O&C’s model (Oaksford et al. 2000) provided fits
that were worse than all competitors. (2) The model can
explain established findings such as negation and suppression
effects. Other theories, however, can also explain these effects
(Evans & Handley 1999; Markovits & Barrouillet 2002). There-
fore, these findings do not support O&C’s model over alterna-
tives. (3) Direct manipulation of probabilities is arguably the
most direct and stringent test, because no competing theory pre-
dicts the same effects as the O&C model. There are two series of
experiments using this method. One provided support for the
O&C model (Oaksford et al. 2000), whereas the other did not
(Oberauer et al. 2004). O&C dismiss the latter evidence as diffi-
cult to interpret in light of “the large number of findings showing
probabilistic effects in the conditional-inference task and in the
selection task” (BR, p. 204). At least for the inference task,
I fail to see this large number of confirmatory findings.
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One difference between the experiments of Oaksford et al.
(2000) and those of Oberauer et al. (2004) is that we used the
standard deductive instruction, asking participants to judge
whether the conclusion follows with logical necessity from the
premises, whereas Oaksford et al. simply asked whether one
can draw the conclusion. This difference points to a distinction
between goals of reasoning, which I think is not sufficiently
acknowledged by O&C. The goal of deductive reasoning is to
evaluate whether an inference is valid, and in experiments inves-
tigating deduction people are instructed accordingly. Most
experiments cited in support of probabilistic theories of reason-
ing, however, ask people to evaluate the soundness of inferences
or the truth of conclusions. The (sparse) evidence from direct
manipulations of probabilities suggests that people can ignore
probabilities when asked to judge validity, whereas they draw
on probabilities when asked to rate whether the conclusion is
true. Such a modulation of reasoning processes by goals would
be entirely rational.

To conclude, the probabilistic view on human reasoning has
high a priori plausibility, but the version fleshed out by O&C is
conceptually ambiguous and not well supported by the data.
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Abstract: Oaksford & Chater (O&C) have rejected logic in favor of
probability theory for reasons that are irrelevant to mental-logic theory,
because mental-logic theory differs from standard logic in significant
ways. Similar to O&C, mental-logic theory rejects the use of the
material conditional and deals with the completeness problem by
limiting the scope of its procedures to local sets of propositions.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR) the authors reject the conception of human reasoning that
focuses on logical inferences, arguing that probability theory
should be used instead to account for rationality. Given space
limitations, I here address only the two most prominent
reasons Oaksford & Chater (O&C) present to reject logic,
arguing that they fail to appreciate what mental-logic theory
actually proposes.

First, mental-logic theory (e.g., Braine 1990; Braine & O'Brien
1991; 1998; O’Brien 1993; 2004; O’Brien & Manfrinati, in press)
consistently has proposed that mental logic differs from standard
logic. O&C equate the logical view of conditionals with the truth
table for the material conditional (if p then q is true unless p is
true and ¢ is false). Indeed, Oaksford and Chater (2003a)
stated that the Braine and O’Brien theory includes the material
conditional for if p then g. The problem with their criticism is
that Braine and O’Brien consistently argued that the material
conditional does not capture psychological reality. Our theory
of conditionals consists instead of two schemas: one for modus
ponens (MP) and another for conditional proof. The conditional
proof schema states that to derive or evaluate if p then g, first
suppose p; when ¢ follows from the supposition of p together
with other information assumed, one may assert if p then q.
The schema is applied with a reasoning program that supposes
p and then treats g as a tentative conclusion to be evaluated.
When one evaluates a conditional if not p then not g from the
premise p or ¢, one concludes that the conditional is false,
even though this evaluation would not follow when treating if
as the material conditional (because p might be false). Thus,
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O&C’s criticisms of the logical semantics of the material con-
ditional do not apply to our mental-logic theory.

Second, O&C reject logic as a model for human rationality
because, they say, logic needs to provide a formal mechanism
that could identify all and only those “common sense inferences
that people endorse” (BR, pp. 89-90), and such a system would
be either incomplete or intractable. (See Rosser [1939] on
Gaodel’s 1931 theorems concerning incompleteness and undecid-
ability.) After rejecting logic as a psychological model because of
the incompleteness problem, O&C propose that cognitive
science should instead rely on probability theory by applying it
to particular domains (e.g., in reasoning about a game of dice),
although they acknowledge that their suggested solution does
not resolve the problem of knowledge representation identified
in logic systems, because the computations also would be intract-
able if extended beyond working out probabilities for small
problem sets. Furthermore, they fail to consider whether a
mental logic might be able to provide a similar solution to their
Bayesian solution by limiting the need to make decidability judg-
ments to small sets of propositions. Indeed, Braine and O’'Brien
(1991) described just such a mental-logic approach.

To understand how mental-logic theory deals with which infer-
ences are admissible in constructing lines of reasoning and which
are not, consider the reasoning constraints described in Braine
and O’Brien (1991). Unlike standard logic, in mental logic
nothing follows from a contradiction except the realization that
some assumption that led to the contradiction is wrong. Thus,
one cannot suppose a proposition that contradicts other prop-
ositions already being used in an argument, and one cannot
bring a proposition into an argument under a supposition that
contradicts the supposition. The nub of the question concerns
how one knows whether a supposition, or a proposition being
imported into an argument under a supposition, is creating a con-
tradiction (see Braine & O’Brien 1991, p. 184). Clearly, in
making such decisions people do not check the whole set of prop-
ositions they carry in long-term memory. Further, it is not simply
a matter of deciding whether a proposition being considered is
true, but whether it still would be true in the argument being
constructed under a supposition. O&C, on the one hand, and
Braine and O’Brien, on the other, are in agreement that
making a global judgment about the consistency of all possible
propositions being held in long-term memory is intractable.
The mental-logic proposal is to consider the matter only when
preparing to introduce a proposition into a line of reasoning, in
order to decide whether that proposition would still be true
given the supposition. The resolution of this matter does not
require one to consider all possible propositions that might be
affected by the supposition, for example, to decide the details
of the closest possible world, but rather, to consider only the rel-
evant proposition one desires to import into the argument; and
the decision criterion concerns whether the reasoner is satisfied
that the proposition still would be true under the supposition.
When two or more interlocutors are involved, the matter is up
for negotiation.

O&C come to their conclusion because they view logic in
terms of the sorts of systems that were developed by professional
logicians beginning with Hilbert, Frege, Russell, and so on, who
attempted to ground number theory in logic. A perusal of a
history of logic, such as Kneale and Kneale (1962), reveals a
more varied sense of what constitutes logic. The founder of
Stoic logic, Chrysippus, suggested that even his dog was able to
make simple logic inferences; for example, knowing that when
it followed a scent on a road and came to a fork, if the scent
did not go down one path, it must go down the other. Surely
Chrysippus’s dog did not compute all possible inferable prop-
ositions in a dog’s possible world to make this disjunction-elimin-
ation inference, nor must we infer that the dog was computing
Bayesian probabilities. Mental-logic theory assumes that the
human logical reasoning repertory developed through bio-
evolutionary history because our hunter/gatherer ancestors

gained an advantage in making simple, direct logic inferences
that did not include assessing the consistency of the set of all poss-
ible propositions they could have held. An interest in the decid-
ability of intractable sets of propositions awaited the advent of
logic as a profession and is not part of the universal logic repertory.
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Abstract: Oaksford & Chater (O&C) begin in the halfway Bayesian
house of assuming that minor premises in conditional inferences are
certain. We demonstrate that this assumption is a serious limitation.
They additionally suggest that appealing to Jeffrey’s rule could make
their approach more general. We present evidence that this rule is not
limited enough to account for actual probability judgements.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR), Oaksford & Chater (O&C) propose an important probabilis-
tic theory of conditional reasoning. They identify the probability of
a conditional, P(if p then g), with the conditional probability,
P(qlp). Following the normative literature, they call this identity
the Equation, and we will also take it for granted. There is substan-
tial direct evidence for the Equation as a description of people’s
probability judgements (Over et al. 2007). O&C take an impressive
indirect approach: They show how much they can explain in the
psychology of conditional reasoning using the Equation.
However, their main account occupies the halfway Bayesian
house of assuming that contingent minor premises are certain.

The simplest application of O&C’s main account is to Modus
Ponens (MP): inferring g from the major premise if p then g
and the minor premise p. They assume that the probability of
the minor premise is 1. They thus hold that the probability of ¢
after MP, P(q), is P(qlp), with P(p) = 1. Their assumption is
not fully Bayesian. For a full Bayesian, committed to strict coher-
ence, a contingent proposition should not have a probability of
1. That would imply that it could never be disconfirmed. O&C
also assume that the minor premise is certain in their treatment
of other conditional inferences. To illustrate the limitations of
this assumption, consider Modus Tollens (MT). This is inferring,
for example, “Global warming will not continue” (not-p) from “If
global warming continues then London will be flooded” (if p then
) as the major premise and “London will not be flooded” (not-q)
as the minor premise. (Over et al. 2007, has evidence that condi-
tionals like this satisfy the Equation.)

Looking in detail at O&C’s description of MT in temporal
reasoning, we begin (using, we hope, clearer symbols) with the
prior conditional probability, Pold(q|p), and the prior marginal
probabilities, Pold(p) and Pold(g). They derive a formula for
MT, by elementary steps in probability theory, for inferring
Pold(not-pnot-q) from those prior probabilities. They suppose
that we later “learn” the minor premise, not-¢, and so acquire a
new belief state. They take “learn” in the extremely strong
sense of meaning that Pnew(not-q) = 1. This allows them to
identify the probability of the conclusion of MT, Pnew(not-p),
with Pold(not-p|not-q). They note that we may lower our belief
in the major premise of MT when we learn not-¢ (Stevenson &
Over 1995): learning the minor premise sometimes “alters”
Pold(g|p) by lowering it. We use, they hold, this “modified”
lower probability, along with Pold(p) and Pold(g), in their
derived formula to recalculate Pold(not-p|not-q), and that is

BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1 97



Commentary/Oaksford & Chater: Précis of Bayesian Rationality

then taken as a revised Pnew(not-p). However, when the prob-
ability of the minor premise, not-q, becomes 1, the probability of
q becomes 0. The probability of the major premise, if p then g,
should consequently collapse to 0 (because the conditional prob-
ability is then 0), and not merely be “modified” to varying relatively
low values. Of course, there is no technical problem in putting
Pold(g|p)=0 into O&C’s formula to recalculate Pold(not-p|not-
q). The problem is that making Pold(g|p)=0 in every case is a
serious limitation. (There is a technical problem if the probability
of p becomes 0, since that makes the conditional probability unde-
fined. We set this possibility aside, although it is a problem for
O&C’s account of denying the antecedent.)

Stevenson and Over (2001) found that people had more confi-
dence in some minor premises than in others, depending on the
level of expertise of the person who asserted the premise. Their
results suggest that, even if people heard an expert on the
Thames Barrier assert “London will not be flooded,” they
would not assign it a probability of 1, and might not even judge
it to have a very high probability. Of course, people sometimes
claim that they are “certain” or “sure” of a contingent proposition,
but we should interpret them as saying that their confidence in it
is relatively high, and not that it can never be disconfirmed. They
might, in turn, interpret an experimenter who tells them to
assume that a minor premise is “certain” as merely indicating
that its probability is high. But what confidence do people have
in the conclusion of a conditional inference as they become
more (or less) confident of the minor premise? Rightly starting
to move on from their halfway house, O&C suggest that a way
to answer this question is to adopt Jeffrey’s rule of conditionaliza-
tion (Evans & Over 1996a; Jeffrey 1983).

The relevant form of Jeffrey’s rule for MP is:

Pnew(q) = Pold(q|p)Pnew(p) 4+ Pold(q|not — p)Pnew(not — p)

The normative status of this rule is debated (Howson & Urbach
1993), but to what extent do people generally conform to it? We
and our collaborators investigated this question using categorical
inferences (Evans et al. 2004; Hadjichristidis et al., in preparation).
An example is inferring “Falcons have the neurotransmitter Dihe-
dron” (¢) from “Robins have the neurotransmitter Dihedron” (p).
One way to look at these inferences is to see them as having an
implicit conditional (if p then q) as a major premise. We used a
plausible manipulation of Pnew(p), for example, “Scientists are
80% certain that Robins have the neurotransmitter Dihedron.”
We analysed our data with a regression that aimed to predict jud-
gements of Pnew(q) using as predictors Pold(q|p)Pnew(p) and
Pold(g|not-p)Pnew(not-p). Only Pold(g|p)Pnew(p) had a consist-
ent influence on participants” judgements about Pnew(q).

These results imply that O&C are too limited, in their main
account, in making Pnew(q) depend only on Pold(g|p). But the
results also imply that they are not limited enough in later suggesting,
more generally, that Pnew(q) will be determined by the full use of
Jeffrey’s rule. The evidence so far is that Pnew(q) will primarily
depend on Pold(g|p)Pnew(p) and so, on just the probabilities of
the major and minor premises. However, these results are only for
one kind of implicit MP inference. The descriptive adequacy of Jef-
frey’s rule should be much more extensively investigated.

Mental probability logic
doi:10.1017/50140525X09000442

Niki Pfeifer and Gernot D. Kleiter

Department of Psychology, University of Salzburg, A-5020 Salzburg, Austria.
niki.pfeifer@sbg.ac.at

http://www.users.sbg.ac.at/ ~ pfeifern/

gernot.kleiter@sbg.ac.at

http://www.users.sbg.ac.at/ ~ gdkleiter/

98 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1

Abstract: We discuss Oaksford & Chater’s (O&C’s) probabilistic
approach from a probability logical point of view. Specifically, we
comment on subjective probability, the indispensability of logic, the
Ramsey test, the consequence relation, human nonmonotonic
reasoning, intervals, generalized quantifiers, and rational analysis.

Probability logic investigates probabilistic inference and relates it
to deductive and other inferential systems. It is challenging to
relate human deductive reasoning to probability logic rather
than to logic. Oaksford & Chater (O&C) were the first who sys-
tematically investigated human deductive reasoning within a
probabilistic framework. Our approach to human reasoning is,
in many respects, related to O&C’s. However, our approach is
closer to probability logic, especially with respect to the analysis
of the experimental tasks. In commenting on Bayesian Ration-
ality (Oaksford & Chater 2007, henceforth BR), we discuss a
selection of questions arising from these different perspectives.1

Common everyday reasoning requires us to process incomplete,
uncertain, vague, and imprecise information. Artificial Intelligence
(AI) has developed many different approaches for uncertain reason-
ing. Typical examples are belief functions, possibilistic models, fuzzy
systems, probabilistic description languages, many-valued logic,
imprecise probabilities, and conditional independence models. Of
these approaches only conditional independence models are con-
sidered in the book. Why do O&C consider probability and not,
say, belief functions as a normative reference system?

The probabilities are interpreted as subjective probabilities. The
theory of subjective probability was conceived by Bruno de Finetti
(1974/1975), and further developed by Coletti and Scozzafava
(2002), Gilio (2002), and many others. A central concept of subjec-
tive probability theory is coherence. A probability assessment is
coherent if it cannot lead to sure losses. The theory does not
require event structures that are closed under negation and con-
junction. Conditional events are primitive. Conditional probabil-
ities are not defined by absolute probabilities. When we talk
about P(A|B), why should we assume that we also know P(A and
B) and P(B)? These properties make the coherence based prob-
ability logic more appropriate as a framework for psychological
research than other approaches, including the “pragmatic strategy
of using the simplest probabilistic semantics” (BR, p. 75).

O&C argue that classical logic should be replaced by prob-
ability theory as a framework for human reasoning. This position
is too radical. We should not “throw out the baby with the bath
water.” Probability theory presupposes logic for operations on
propositions. Simple logical inferences like And-Introduction or
Modus Ponens (MP) are endorsed by practically all subjects.
We do not see a dichotomy between logic and probability.

We fully support O&C’s hypothesis, that human subjects
understand the indicative “if A, then B” in the sense of a con-
ditional probability, P(BJA), and not as the probability of a
material conditional, P(A D B). Many empirical studies corrobo-
rate this hypothesis (Evans & Over 2004).

In subjective probability theory, conditional events are not truth-
functional. If the antecedent is false, then the truth value of the con-
ditional is undetermined. This corresponds to what is called a “defec-
tive truth table.” Considering P(B|A), we would not say the Ramsey
Test adds P(A)=1 to one’s stock of belief. Rather, A is assumed to be
true. Probability 1 and the truth value TRUE are not the same.
Ramsey’s idea can be explained in the way Lindley (2006) and
several others introduce conditional probability. Subjective prob-
abilities are assessed relative to a knowledge base K. The absolute
probability P(A) is shorthand for P(A|K), and P(BJA) is shorthand
for P(B|A:K). The colon separates the supposition from the knowl-
edge base. The change from supposition to fact does not change
the conditional probability, P(BJAC:K) = P(B|A:CK).

The core of O&C’s analysis of the conditional inferences
(Modus Ponens [MP], Modus Tollens [MT], Affirming the Conse-
quent [AC], and Denying the Antecedent [DA]) is “that the prob-
ability of the conclusion ... is equal to the conditional probability
of the conclusion given the categorical premise” (BR, p. 119),
P(conclusion|categorical premise). Thus, the consequence relation
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(denoted by a horizontal line and three dots in the book) is prob-
abilistic. In our approach the consequence relation is deductive.
Each premise obtains a probability. The probabilities of the pre-
mises are propagated deductively to the conclusion. Because the
MP, MT, AC, and DA arguments consist of only two premises,
only an interval probability can be inferred (Pfeifer & Kleiter
2005b; 2006). A conclusion with a point probability would
require three premises. In this case, however, the argument
does not “mimic” the logical forms of MP, MT, AC, or DA.
O&C mention probability intervals, but they do not use them.

In Chapter 4, O&C oppose nonmonotonic reasoning and prob-
abilistic reasoning, and advocate probabilities. We do not see why
both approaches are incompatible. System P (Kraus et al. 1990) is a
basic and widely accepted nonmonotonic reasoning system. Several
probabilistic semantics were developed for System P (Adams 1975;
Biazzo et al. 2005; Gilio, 2002; Hawthorne & Makinson 2007; Luka-
siewicz 2005). We observed good agreement between the predictions
of the coherence-based semantics and actual human inferences
(Pfeifer & Kleiter 2005a; in press a; in press b).

O&C were the first who realized the importance of generalized
quantifiers in psychology. Murphree (1991) and Peterson (2000)
developed logical systems for syllogisms that involve generalized
quantifiers (see also Peters & Westerstahl, 2006). On p. 219 of
BR, O&C note that “without a notion such as p-validity [not in
Adams’ sensel!], there is no way of defining the correct answers to
these generalized syllogisms.” Peterson, however, investigates syl-
logisms that involve quantifiers like “Most,” “Few,” or fractionated
quantifiers like “n/m.” The semantics of the quantifiers works by
comparisons of the cardinalities of appropriate sets and by the
use of relative frequencies. Thus, Peterson’s semantics can easily
be related to a probabilistic interpretation. Moreover, Atmosphere
or Matching are easily generalized within this framework.

O&C use Bayesian networks to model syllogisms. Each vertex in
the network corresponds to a term in the syllogism. The directed
arcs represent conditional probability distributions. We are uncer-
tain about the statement that in Bayesian networks the conditional
independence is a “standard assumption” (BR, p. 222). Moreover,
under the assumption of conditional independence (X independent
Z, given Y), there exists only one probabilistic model. Three models
(Figure 1, 3, and 4 in Fig. 7.3) are Markov equivalent; only the vee-
structure (Figure 2 in Fig. 7.3) has a different factorization. It
encodes a marginal independence (X and Z are independent).

Rational analysis puts the quest for cognitive processes and
representations in the second line. This is fine if the normative
models fit the empirical data. In this case the models are both
normative and descriptive. A good theory requires: (1) a
thorough task analysis, (2) a minimum of generality to avoid
“adhoceries,” and (3) a connection with other theoretical con-
cepts like language, memory, or attention.

ACKNOWLEDGMENTS

This work is supported by the European Science Foundation
(EUROCORES program “LogICCC”) and by the Austrian Research
Fonds (project P20209 “Mental Probability Logic”).

NOTE
1. We shall not comment on a number of misprints in formulae or
inconsistencies in notation.
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Abstract: Severity of Test (SoT) is an alternative to Popper’s logical
falsification that solves a number of problems of the logical view. It was
presented by Popper himself in 1963. SoT is a less sophisticated
probabilistic model of hypothesis testing than Oaksford & Chater’s
(O&C’s) information gain model, but it has a number of striking
similarities. Moreover, it captures the intuition of everyday hypothesis
testing.

Popper’s philosophical principle of falsification is commonly
represented as seeking and finding counter-examples to a
hypothesis, as Oaksford & Chater (O&C) show in Bayesian
Rationality (henceforth BR, Oaksford & Chater 2007, p. 167).
Indeed, general laws can be definitively falsified, but not defini-
tively confirmed, according to logic. Hence, counter-examples
give us sure knowledge that the putative hypothesis is false.
Large parts of Popper’s work are directed at uncovering the
failure of confirmation theory. However, philosophers and psy-
chologists rejected the principle of falsification as obviously
incompatible with scientific practice and everyday reasoning.
In a natural environment, inside or outside the scientific lab,
we cannot live with falsified beliefs alone. Falsified ideas are not
publishable and they give poor cues about how to cope with the
everyday environment (Poletiek 1996; Poletiek & Berndsen
2000). However, as O&C show, old theories of confirmation
have also failed to provide a rational account of hypothesis
testing. It was not before the introduction of the Bayesian
approach in confirmation theory that a coherent alternative to
the falsification method could be advanced.! O&C’s information
gain model provides such an account for hypothesis testing that
predicts test preferences in accordance with the information
they can provide for the truth and falsity of hypotheses.

There is, however, an interesting alternative version of the
idea of falsification, hesitatingly proposed by Popper himself.
It avoids the obvious problems of Popper’s logical falsification
principle, and fits in with O&C’s Bayesian approach. (Poletiek
2001). This alternative definition of falsification is putting
hypotheses to severe tests. 1 argue here that Severity of Test
(SoT) provides an intuitive statistical model for what people do
when they test hypotheses. As Figure 1 below shows, the
formal measure for SoT 2 (Popper 1963/1978; for a discussion,
see Poletiek 2001) for a piece of evidence e predicted by the
hypothesis H is:

P(e| H)

S(e,H) = o

Figure 1.

What distinguishes SoT from logical falsification, and to
what behavior does it correspond? First, SoT is about evi-
dence that confirms the hypothesis put to the test, and not
evidence that is expected to falsify it. The severity of a test
increases as the prior probability of confirmation ¢ is low
and its likelihood under assumption of the hypothesis is
high. Minimizing the prior probability of a confirmation corre-
sponds to a falsifying strategy. Second, it can be shown that
the measure S is mathematically equivalent to the traditional
Bayesian measure for degree of confirmation, that is, the revi-
sion of belief in H, after observing e (see Poletick 2001)
(Fig. 2 below):

P(H|e)
P(H)
Figure 2.
This equivalence is probably unacceptable for a logical falsifi-

cationist, but for modeling hypothesis-testing strategies it is quite
helpful. Indeed, it implies that increasing the severity of test,
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prior to the actual test, will result in an equal amount of increased
confirmation affer ¢ has been observed. Third, the definition of
test severity shows that the probability of a predicted confir-
mation e and its severity S are inversely related. Hence, every-
thing being equal, as a confirming prediction is less expected a
priori, it will provide a better confirmation of the hypothesis.
This is in line with the information gain perspective. But, of
course, the risk of not finding that confirmation increases as
well. Furthermore, if we assume a test with two possible out-
comes (a confirmation ¢ and a falsification), the probability of
the falsifying outcome increases as P(e) decreases. This uncovers
a Popperian paradox: maximizing the probability of a falsification
necessarily minimizes its power to reject the hypothesis (Poletiek
2001).

Finally, SoT models hypothesis testing without specifying
the choices people make, because these choices are assumed to
depend on utilities regarding the values of test outcomes.
Let us suppose a hypothesis H that generates several predictions
with likelihoods 1 (P(e|H) = 1). SoT suggests that choosing a test
involves solving the trade-off between the chance of observing a
prediction and the degree of confirmation this evidence may
provide for H. Depending on considerations that are
external to the test, people may either prefer low degrees of con-
firmation and avoid the risk of getting a falsification, or go for
“risky” tests because they need to be very sure about H’s truth.
This representation of test choice has been shown to capture
the intuition of everyday hypothesis testing (Poletiek & Berndsen
2000).

As another example of this intuition, consider how SoT
would account for the following adapted selection task. A par-
ticipant is presented with four cards revealing an A, a K, a 2,
and a 7, respectively. Every card has a number on one side
and a letter on the other. She is asked to test the rule, if
there is an A on one side of a card, then there is a 2 on
the other side. In addition, she is told that the cards are
sampled from a huge number of cards having either the
letter A or the letter K on one side, and any number
between 1 and 100 on the other. Which cards would she
turn over? SoT predicts that she is interested in confirming
results only (“A and 27 cards). The K and 7 cards are not
selected. Under reasonable assumptions about the distribution
of the letters and the numbers on the cards, it can be calcu-
lated that turning the A and finding a 2 card is a more severe
test of the rule than turning the 2 and finding an A. But this
difference is felt, as well. Indeed, finding a 2 (P(e)) is much
less likely (given 100 different numbers) than finding the A,
beforehand. Only if the rule is true would we expect a 2.
Observing an A (given only two possibilities) on the 2 card,
however, may just be chance. The the SoT model not only
predicts that we should be more convinced by the first test
outcome, we actually feel we should.

In summary, O&C’s probabilistic model of hypothesis
testing, which provides a sophisticated alternative for
Popper’s problematic logical falsification theory of testing,
has an interesting precursor developed by Popper himself.
However, this alternative falsification theory got little atten-
tion, and has been somewhat played down, both by Popper
himself and by other falsificationist philosophers of science.
Probably because it turned out to resemble too much its
rival: confirmation theory.

NOTES

1. See, however, the relevance ratio proposed by Carnap (1950),
which basically expresses the Bayesian notion of revision of belief.

2. Notice that the probabilities are applied to evidence, not to the
hypothesis, as can be expected in Popper’s frequentist view on
probability.

3. The confirming value of a test result is expressed by Popper in his
concept of “degree of corroboration” (Popper 1963/1978).
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Abstract: Although we endorse the primacy of uncertainty in reasoning,
we argue that a probabilistic framework cannot model the fundamental
skill of proof administration. Furthermore, we are skeptical about the
assumption that standard probability calculus is the appropriate
formalism to represent human uncertainty. There are other models up
to this task, so let us not repeat the excesses of the past.

Although research on human reasoning has long been focused on
formal tasks, the past 15 years have seen a shift towards more rea-
listic tasks, closer to everyday life. These tasks feature uncertain
premises, incomplete information, defeasible conclusions, and
the exploitation of individual knowledge bases. Earlier theoreti-
cal approaches to deduction were not designed to function in
this new paradigm. Oaksford & Chater’s (O&C’s) Bayesian
Rationality (Oaksford & Chater 2007) provides a decisive contri-
bution to the adoption of an alternative approach to the investi-
gation of deductive reasoning, in a radical way, by eliminating
deductive logic and adopting the Bayesian view of uncertainty.
Although we welcome the paradigm shift, we take issue with
O&C’s radical solution, on at least two fronts.

O&C'’s radical probabilistic approach is silent about a funda-
mental question: Where do conclusions come from? Given a
set of premises, how do reasoners produce their own conclusion?
Whatever their shortcomings, logic-based theories such as
mental models and mental rules have answers to these questions.
For mental models, the procedure consists of reading off the
models propositions that contain new information. For mental
rules, it consists of applying strategies and executing routines
that yield a chain of inferences. O&C’s proposal does not offer
any procedure that would play this role. The probabilistic
model is apt to analyze how a proffered conclusion is evaluated,
but not how it is produced in the first place. In other words, a
purely probabilistic model lacks the power of executing one
basic human skill, the generation of proofs.

We believe with O&C that theories of human deduction
cannot be purely logical, otherwise they could not account for
the nonmonotonic nature of everyday inferences. But, as we
just argued, no account of deduction can be purely focused on
uncertainty, either, because it would miss fundamental aspects
of deductive competence. We believe that the solution to this
quandary is to be found in a mixed model, accommodating
both uncertainty and deduction.

Our second concern with O&C’s Bayesian approach revolves
around the nature of human uncertainty. Human beings have
the precious metacognitive ability of being aware of their own
uncertainty, with respect to the conjectures they entertain. If
we wish to develop models of how individuals make judgments
and inferences from uncertain information, we need, first, to
characterize their metacognitive representation of uncertainty.
We believe this question has been largely ignored, because the
answer is all too often assumed right from the start. The tempta-
tion is strong to take it for granted that standard probability cal-
culus is the only candidate to constitute a normative
psychological model of reasoning with uncertainty. Accordingly,
the debate has shifted towards the question of the extent to which
lay reasoners perform in agreement with the calculus.
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But should they? Consider the requirement of completeness.
Are we ready to take it for granted that the credibilities of any
two assertions can always be compared? Consider now comple-
mentarity. Can we take it for granted that anytime the credibility
of a conjecture increases, the credibility of its negation decreases
by the exact same amount? Finally, do we take it for granted that
credibilities in the mind map onto real numbers on the [0,1]
interval, rather than levels on an ordinal scale?

The hurried adoption of the probability calculus as a normative
model preempts the examination of these built-in assumptions.
We are concerned that such a move is putting the probabilistic
cart before the uncertainty bull. Important evidence is lacking
before the probability calculus (Bayesian or not) can be deemed
an adequate formalism for psychological modeling of reasoning
with uncertainty, be it at the normative or at the descriptive level.

We do not deny that the probabilistic framework is highly suc-
cessful in many disciplines, but this success does not warrant
electing the probability calculus as the adequate psychological
model of uncertainty, without carefully examining other
options, for there are many other options, as noted by O&C.
Intriguingly, this multiplicity is framed as a shortcoming in Baye-
sian Rationality (p. 73), where the uniqueness of the probability
calculus is favorably compared to the multiplicity of nonprobabil-
istic frameworks. But surely, every uncertainty formalism is
unique in its own right, and it seems abusive to throw in the
same “nonprobabilistic” bag alternative candidates such as, for
example, belief functions (Shafer 1976), possibility measures
(Dubois & Prade 1988), relative likelihood (Halpern 1997) and
plausibility measures (Friedman & Halpern 1995).

In Bayesian Rationality, the main argument for preferring
probability theory to all other frameworks is practical: Most psy-
chologists are only aware of probability theory as a model of
uncertainty, probability theory fares reasonably well, therefore
psychologists should not waste time getting acquainted with
other formalisms, which are not expected to fare much better.

This argument would make perfect sense in an applied setting,
but its relevance is not as clear to fundamental research on
human reasoning. First, we will not know whether probability
theory fares reasonably well until we compare its performances
to that of other uncertainty formalisms. Second, most scientists
would probably be perplexed at the thought of adopting the
first theory they encounter, without considering even briefly
the merits of competing theories. Third, there actually exists a
community of psychologists and experimental philosophers
investigating the empirical plausibility of alternative uncertainty
formalisms (e.g., Benferhat et al. 2005; Ford 2004; Pfeifer &
Kleiter 2005). In brief, we know far too little about human uncer-
tainty to definitely adopt a normative model; and this matter
should be solved empirically, rather than a priori.

In conclusion, we are worried that O&C may repeat within the
uncertainty paradigm the double move that doomed the logical
paradigm. Part of this move is to adopt an exclusive view, and
to reject indispensable concepts that belong to the other para-
digm; the other part is to adopt one well-known formalism (for-
merly the propositional calculus, and currently the probability
calculus) and to establish it too hastily as a model of competence.

On is an ought: Levels of analysis and the
descriptive versus normative analysis of
human reasoning
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Abstract: Algorithmic-level specifications carry part of the explanatory
burden in most psychological theories. It is, thus, inappropriate to limit
a comparison and evaluation of theories to the computational level.
A rational analysis considers people’s goal-directed and environmentally
adaptive rationality; it is not normative. Adaptive rationality is by
definition non-absolute; hence, neither deductive logic nor Bayesian
probability theory has absolute normative status.

In Bayesian Rationality (Oaksford & Chater 2007, henceforth
BR) Oaksford & Chater (O&C) present both positive arguments
in support of a probabilistic approach and negative arguments
against a non-probabilistic “deductive” approach to human
reasoning. The negative arguments are comparative in nature
and hinge on the presumed acceptability of a direct comparison
between the theories” computational-level descriptions, without
taking account of their algorithmic-level specifications. I argue
that this central premise is fundamentally mistaken: It is poten-
tially misguiding to compare and evaluate theories on the basis
of just their computational-level descriptions.

Cognitive psychology is about explaining what people do.
Ignoring the algorithmic level is only acceptable when there is
a “triumphant cascade” through the levels of description
(Dennett 1987, p. 227), that is, when there is a functional
match between the input-output function computed at the com-
putational level and the function computed at the algorithmic
level. In these cases, there is no added explanatory value in
going from the computational level to the algorithmic level
and, thus, no loss in explanatory value by not considering the
algorithmic level. Cognitive theories are, however, swamped
with functional mismatches between the levels (Franks 1995;
1999). It follows that when one critiques the idealized compu-
tational-level description of such theories on the basis of their
explanatory (in)adequacy, one creates a straw-man argument,
that is, a negative argument aimed at an oversimplified straw-
man version of a theory (Schroyens, in press).

One could try to justify a comparison at the computational-
level descriptions of theories by assuming that they are norma-
tive. The underlying assumption is that a theory can be norma-
tively justified on the basis of what people actually do: “the
apparent mismatch between normative theories and reasoning
behaviour suggests that the wrong normative theories may have
been chosen; or that the normative theories may have been mis-
applied” (BR, p. 30). O&C take the poor explanatory adequacy of
deductive logic to indicate it provides the wrong norm. (Of
course, when one does not consider that the normative theories
may have been misapplied, one has jumped to a conclusion).
There are several problems with the “is-ought” argumentation
in O&C'’s book.

Given that cognitive psychology is not concerned with how
people should reason, the “is-ought” analysis in BR signifies
that O&C are not engaged in cognitive psychology, but are
making an epistemological, philosophical argument. As an argu-
ment about normative rationality, the “is-ought” analysis is falla-
cious. “This fallacy consists in assuming that because something
is now the practice, it ought to be the practice. Conversely, it con-
sists in assuming that because something is not now the practice,
it ought not to be the practice” (Damer 2005, p. 127). That is, one
must be careful not to commit the “naturalistic fallacy” (to use
G. E. Moore’s term).

The “is-ought” analysis is also fallacious in its appeal to
common opinion. “This fallacy consists in urging the acceptance
of a position simply on the grounds that a large number of people
accept it or in urging rejection of a position on the ground that
very few people accept it” (Damer 2005). Virtually all people
were once ignorant about the currently accepted fact that the
earth is a round celestial object that revolves around the sun;
and even today there is a large segment of the world population
that remains unenlightened with regard to this. Does this mean
that Copernicus was wrong, and was rightly excommunicated
by the Church? One can have a personal opinion about how
people should reason, and I think one actually should have

BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1 101



Commentary/Oaksford & Chater: Précis of Bayesian Rationality

such an opinion. However, when one is considering the psychol-
ogy of human reasoning, it is irrelevant whether one can label 5%
or 95% of the participants as “rational” because their behavior
corresponds to some norm. Whether 5% or 95% of participants’
responses can be labeled “correct” is irrelevant to the task of
describing and explaining what they are actually doing. The cog-
nitive psychologist’s task is first and foremost that of developing
descriptively adequate processing models that allow us to under-
stand how people reason. All performance has to be accounted
for, whether logically correct or incorrect.

O&C give body to their “is-ought” ideology, by adopting
Anderson’s (1990) rational analysis approach. However, it is a
mistake to think that the “the essence of rational analysis [Ander-
son 1990] is to view cognitive processes as approximating some
normatively justified standard of correct performance” (Oaksford
& Chater 1998, p.18). As O&C stated more correctly elsewhere:
“Anderson [1990] argues that we must distinguish normative
from adaptive rationality” (Oaksford & Chater 1998, p. 174; see
also, Chater et al. 2003). Indeed, “rationality is being used in
two senses and that rationality in the adaptive sense, which is
used here, is not rationality in the normative sense that is used
in the studies of decision making and social judgement” (Ander-
son 1990, p. 31). There is no unconditional “should”: there are no
absolute normative standards of correct performance. This goes
against the very notion of adaptive rationality, which is relative
and “defined with respect to a specific environment” (Anderson
1990, p. 35).

O&C have fallen into the same conceptual trap many “mental
logicians™ fell into: a conceptual mistake — called “reasoning
imperialism” by Rips (2002) — for which O&C, with much
merit to their work, criticized such logicians. Bayesian Ration-
ality provides prominent and valuable contributions to the litera-
ture that echoes Anderson’s (1990) idea that deductively
irrational behavior might not be adaptively irrational. That is,
the book successfully questions the normative status of logic
within the rational analysis approach of Anderson (1990).
However, instead of adopting and following the notion of adap-
tive rationality to its full extent, by questioning the feasibility of
a single theory (whether probabilistic or logical) to have absolute
normative status, they simply replace one normative theory with
another. Adaptation is defined with respect to a specific environ-
ment and a true rational analysis accordingly takes account of this
environment. It does not concern itself with absolute normative
issues, because this denies the environmental relativity of adap-
tively rational behavior.

“Nonmonotonic” does not mean
“probabilistic”
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Abstract: Oaksford & Chater (O&C) advocate Bayesian probability as a
way to deal formally with the pervasive nonmonotonicity of common
sense reasoning. We show that some forms of nonmonotonicity cannot
be treated by Bayesian methods.

One argument that Oaksford & Chater (O&C) proffer in Baye-
sian Rationality (Oaksford & Chater 2007, henceforth BR) for
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a probabilistic approach to cognition is the pervasiveness of non-
monotonicity in reasoning: almost any conclusion can be over-
turned, if additional information is acquired. They claim that
nonmonotonic inferences fall outside the scope of logical
methods, and that probability theory must be preferred.

This judgment of the authors does not reflect the present state
of play (see, e.g., Antoniou 1997, especially Part V). There are
several good logical formalisms for nonmonotonic reasoning in
existence, some of which even have a computational complexity
that is vastly less than that of classical logic. More importantly,
even in those cases where probabilistic modeling is in principle
useful, one sometimes needs to supplement the model with a
nonmonotonic logic to account for all the data. We illustrate
this here by using an example from Chapter 5 of BR, not men-
tioned in the present Précis, but relevant throughout: the sup-
pression task (Byrne 1989). When subjects are presented with
the modus ponens material “If she has an essay she studies late
in the library. She has an essay,” they almost universally draw
the conclusion: “She studies late in the library.” When instead
they are presented with the same two premises plus the
premise: “If the library is open she studies late in the library,”
about half of them withdraw the inference. Logically speaking,
we here have an instance of nonmonotonicity: addition of a
premise leads to withdrawal of the original conclusion.

O&C argue that their probabilistic model — which represents
the conditional “if p, then ¢” as a conditional probability
P(qlp) — can account for suppression effects. To explain the
model and our criticism, we must first state the main Bayesian
mechanism for updating probabilities, “Bayesian conditionaliza-
tion™: (BaCo). The absolute subjective probability of event D
given that evidence E has been observed is equal to the con-
ditional probability P(D|E). Here E should encompass available
evidence. In this context it is important to note that Bayesian con-
ditionalization is a nonmonotonic principle: An extension of the
evidence p may invalidate a previous posterior probability for ¢
derived by (BaCo) applied to P(qlp).

Informally, the O&C model works likes this: One is given the
conditional probability P(¢|p) with value, say, 1 — e for some posi-
tive but small e. If few exceptions are salient, e is small, and, given
p, (BaCo) yields that g can be concluded with high probability
(namely, 1 — ¢). The second conditional highlights a possible
exception (the library being closed), which leads to an increase
in e, and hence to a decrease in the a posteriori probability of
g. But appealing though this picture is, it is not Bayesian (Sten-
ning & van Lambalgen 2008b). Consider two putative Bayesian
processes that can change the value of P(¢|p) when new possible
exceptions — say, not-r with probability 1 -P(r) — become
salient.

(1) The probability space is enlarged from {p, ¢} to {p, ¢, 1}
(where r stands for, say, “the library is open”), and this leads to
a new representation of P(¢|p). One may write

Plg|p) = Plphg) _ PlprgAr)  PlprgA-r) _

P(p) Plp) P(p)
_ Plpigar) Plpagar)Plpar) P Plr
STPw - PeAn P LalrAnPo)
Figure 1.

where the last equality follows under the plausible assumption
that p and r are independent. O&C assume that the subject
assigns a lower probability to P(g|p) in the enlarged represen-
tation P(q|p & r)P(r), suggesting that this is because the subject
lowers P(r) from 1 to a value smaller than 1 when becoming
aware of possible exceptions. In probability theory, P(glp & r)
P(r) would simply be a different representation of P(g|p), and
the values of these expressions must be the same. There are no
rationality principles governing changes in probabilities when
enlarging the probability space, or rather there is one such
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principle, that P(g|p) remains the same when computed on an
enlarged space. This is the only way in which one can guarantee
that enlargements of the probability space in the limit lead to a
coherent probability distribution — the starting point of Bayesian
rationality.

(2) An orthodox Bayesian alternative would be a construction
in which the probability spaces remain the same (namely, the
universal space based on all possible propositions), but the prob-
ability distributions change. In our toy world, the probability
space is in both cases {p, ¢, r}, but one could assume that the
probability distribution first assigns probability 0 to not-r, and,
upon becoming aware of the second conditional “if r then ¢,” a
nonzero probability. The trouble with such a suggestion is that
from a Bayesian point of view, the transition from the a priori
probability P(not-r)=0 to the a posteriori P(not-r) > 0 is not
allowed, because this cannot be achieved via (BaCo): conditiona-
lizing on more evidence cannot make a null probability positive.
One thus needs an additional rationality principle (beyond
[BaCo]) governing such transitions. In the absence of such a
principle, one has to assume that the probabilities of all non-
salient exceptions (such as not-r) are initially very small but
nonzero. This increases the computational complexity of prob-
abilistic reasoning enormously: One requires massive storage
and intricate computations to maintain consistency of the prob-
ability assignment.

These considerations show that in order to account for the data
on the suppression task any probabilistic model needs to be sup-
plemented with a theory about nonmonotonic and non-Bayesian,
but still somehow rational, changes in degrees of belief. One may
then question whether a probabilistic model is necessary at all;
Stenning and van Lambalgen (2005; 2008a) provide a model
cast entirely in terms of nonmonotonic logic.
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Abstract: Oaksford & Chater (O&C) focus on patterns of typical adult
reasoning from a probabilistic perspective. We discuss implications of
extending the probabilistic approach to lifespan development,
considering the role of working memory, strategy use, and expertise.
Explaining variations in human reasoning poses a challenge to Bayesian
rational analysis, as it requires integrating knowledge about cognitive
processes.

Bayesian rationality highlights the remarkable successes rather
than failures of human reasoning by recasting seemingly erro-
neous reasoning in logical tasks using a probabilistic approach.
However, in their book Bayesian Rationality (Oaksford &
Chater 2007, henceforth BR), Oaksford & Chater (O&C) draw
a rather static picture of human reasoning by focusing on
typical patterns of responses from adults. We propose a more
dynamic perspective, which considers that reasoning systemati-
cally varies within individuals over the lifespan (Howe & Rabino-
witz 1996; Markovits & Barrouillet 2002) and between
individuals with different levels of knowledge and expertise
(Ericsson et al. 2006). Although O&C acknowledge the import-
ance of considering reasoning data on individual differences
(BR, p. 288) and on information processing capacities (p. 290),

they do not adequately account for how variation influences a
Bayesian rational analysis of reasoning. Anderson (1991a) and
others have pointed out that perhaps the major potential limit-
ation, the “Achilles heel,” of rational analysis would be compu-
tational constraints that are too complex or arbitrary. We argue
that our understanding of the mechanisms of change in reasoning
can help us specify computational limitations for probabilistic
modeling and assess whether a single model can capture the
complexities of reasoning.

Many important aspects of cognition change over the lifespan,
and reasoning is no exception (Baltes et al. 1999). According
to Piaget, both logical reasoning and probabilistic reasoning
emerge from adolescence to young adulthood at the highest
stage of cognitive development (Piaget & Inhelder 1975).
Subsequent research, however, has qualified these findings,
showing that younger children understand aspects of such reason-
ing (Falk & Wilkening 1998; Galotti et al. 1997). Furthermore,
reasoning continues to develop during adulthood with perform-
ance in specific domains increasing as individuals gain reasoning
knowledge and expertise (Ericsson & Lehmann 1996; Sternberg
1999). Yet, overall across the adult lifespan, abstract reasoning
(measured by intelligence tests) declines with age (Verhaeghen
& Salthouse 1997). Thus, reasoning is a dynamic aspect of cogni-
tion that varies with age and experience and results from the inter-
play of biological processes (e.g., brain maturation) and
enculturation (e.g., education) (Baltes et al. 1999).

A developmental perspective may inform Bayesian rational
analysis by specifying computational limitations of the cognitive
system. An important limitation faced by the human cognitive
system is working memory capacity — a key determinant of
reasoning performance (Kyllonen & Christal 1990). Like other
cognitive capacities, working memory systematically changes
across the lifespan by steadily increasing during childhood
(Conlin et al. 2005) and declining across adulthood (Verhaeghen
& Salthouse 1997). Working memory, therefore, poses a dynamic
constraint on the rational analysis of reasoning.

Although O&C are currently silent on the role of developmen-
tal changes in working memory and reasoning, they do note that
individuals with higher working memory capacities tend to
exhibit more logical reasoning. To illustrate, in the Wason selec-
tion task, a subgroup of individuals (ca. 10%) consistently chooses
the logically correct combination of cards, indicating that
although most seem to adopt a probabilistic model, others
clearly do not. O&C suggest that this variation in behavior pri-
marily reflects deliberative strategy use and educational (train-
ing) differences, which are “not indicative of individual
differences in the nature of the fundamental principles of
human reasoning” (BR, p. 288). This claim seems problematic
given what we know about the interplay between strategy use,
training, and basic cognitive mechanisms. Of course, cognitive
capacities can constrain the strategies that people use;
however, specific strategy use and training may shape the basic
cognitive mechanisms, as well. Differences in memory strategies
(e.g., rehearsal, chunking) can also alter basic mechanisms of
working memory capacity and its relationship to cognitive per-
formance (Cokely et al. 2006). In addition, both extensive prac-
tice with specific strategies and the acquisition of knowledge
and expertise dramatically expand working memory (Ericsson
& Kintsch 1995). Indeed, as training changes deliberative strat-
egies to automatic processes, the cortex can undergo functional
neuroanatomical reorganization (Dick et al. 2006). Thus, it is
possible that deliberative strategy use and training may influence
reasoning precisely because they alter underlying cognitive
mechanisms such as working memory. Given the complex
relationship between strategies, training, and cognitive mechan-
isms, it seems premature to dismiss individual differences in
strategy use as not fundamental to reasoning. A comprehensive
model of human reasoning must account for these differences.

Variation in human reasoning has proven difficult to capture
for probabilistic models (Shultz 2007), although recent research
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has made some progress applying probabilistic models to individ-
ual differences (e.g., category learning; Navarro et al. 2006) and
cognitive development (e.g., causal reasoning; Sobel et al. 2004).
This work represents a step in the right direction; however, we
expect that no single model can predict reasoning performance
equally well across age groups and levels of experience.
Indeed, systematic variations in peoples” behavior suggest that
several different models (or modifications of a given model)
may be required to explain developing behavior (Shultz 2007).
Nevertheless, investigating differences between the models
across age groups and skill levels may help us to understand
more exactly “what differs” between and “what develops”
within individuals.

In closing, we must emphasize O&C’s comment that probabil-
istic models are often only functional level theories that should
not be confused with algorithmic level theories (process
models). Brighton and Gigerenzer (2008) have pointed out in
their discussion of the limits of Bayesian models of cognition
that the question of why the human mind does what it does (func-
tional level) cannot be separated from the question of how the
human mind does it (algorithmic level). Therefore, it is crucial
that future Bayesian rational analyses specify how exactly their
functional level models constrain theorizing about cognitive pro-
cesses. This issue is especially relevant as the data connecting
development, expertise, working memory, and reasoning imply
that multiple strategies (and therefore processes) are at play.
Though Bayesian rationality seems to provide a functional level
account of prototypical adult reasoning, the development of cog-
nitive capacities and expertise remains underappreciated.
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Abstract: The probabilistic approach to human reasoning is exemplified
by the information gain model for the Wason card selection task.
Although the model is elegant and original, several key aspects of the
model warrant further discussion, particularly those concerning the
scope of the task and the choice process of individuals.

In the book Bayesian Rationality (Oaksford & Chater 2007, hen-
ceforth BR), Oaksford & Chater (O&C) present a summary and a
synthesis of their work on human reasoning. The authors argue
that formal logic and deduction do not explain how people
reason in everyday situations. The deficiencies of the most
simple forms of logic are obvious when one considers that they
may assign “true” to absurd statements such as “if the moon is
blue, than cows eat fish” (BR, p. 70). More importantly, the
authors propose that, in contrast to formal logic, probability cal-
culus does provide the right tools for an analysis of human
reasoning. Thus, the authors argue that people solve deductive
tasks by inductive methods. From this perspective, human
reasoning can be characterized as Bayesian or rational.
Consider the Wason card selection task discussed in Chapter
6. Participants are confronted with four cards, showing an A, a
K, a2, and a 7. Participants are told that each card has a number
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on one side and a letter on the other. They are given a rule, “if
there is an A on one side, then there is a 2 on the other side,”
and subsequently, have to select those cards that need to be
turned over to assess whether the rule holds true or not. A
moment’s thought reveals that the cards that need to be turned
over are the A card and the 7 card. Yet, the majority of participants
do not choose the 7 card, but tend to choose the 2 card instead.

O&C propose an elegant Bayesian model — the information
gain model — to account for people’s performance in the
Wason task. According to the model, people select the cards
that reduce their expected uncertainty the most. Specific
assumptions about the rarity of the information on the cards
lead to the conclusion that selection of the 2 card might be
rational after all.

The information gain model has been subjected to intense
scrutiny (e.g., Oberauer et al. 1999). For non-experts, the
details of this discussion are somewhat difficult to follow.
A useful guideline is that a model should only be abandoned
when it can be replaced with something better. And — criticisms
raised against the information gain model notwithstanding —
I have not come across a model that does a better job explaining
how people make their card selections.

Despite its simplicity and elegance, some important details of
the information gain model were not clear to me. First, O&C
argue, on page 210, that their account only holds if participants
regard the cards as a sample from a larger population. Perhaps
the authors could spell out this argument in a bit more detail.
Taking probability as a reflection of degree of belief, I did not
immediately see what calculations are in need of adjustment.
Second, the authors mention that participants who realize that
the cards are not sampled from a larger population would
always choose the A card and the 7 card. I do not know
whether this prediction has been tested empirically, but I find
it only slightly more plausible than cows eating fish. Note that
in the Wason task a substantial proportion of participants do
not even select the A card.

Another issue that warrants closer examination is the way the
model’s predictions relate to the data. In the information gain
model, each card reduces the expected uncertainty to some
extent. Why then does an individual participant not select all
four cards, but generally only selects one or two? In other
words, it was unclear to me how the model, from a consideration
of expected uncertainty reduction, can predict card selections for
an individual participant.

A fourth point concerns the role of individual differences. As the
authors discuss on page 211, a subgroup of undergraduate students
with high intelligence (about 10%) do select the A card and the 7
card. This result strengthened my initial belief that a motivated,
intelligent person would always choose the A and 7 cards, when
given sufficient time. In the spirit of falsification, I then tested
this assumption on a colleague, who of course immediately
selected the A and 2 cards. Perhaps she was not sufficiently motiv-
ated to think the problem through carefully — would incentives of
time or money increase the selection of the 7 card?

O&C are to be admired for their principled approach to quan-
titative modeling, and for their courage to take on the unassailable
dogma of human irrationality. It is unfortunate that much of the
material in the book was already available elsewhere (e.g., Oaks-
ford & Chater 2001; 2003b); therefore, it was not entirely clear
to me what the book adds to our current knowledge base.

One final comment. It strikes me as paradoxical that research-
ers who argue for a coherent, rational approach to human reason-
ing then proceed to apply an incoherent, irrational approach to
the statistical analysis of their experimental data. Throughout
the book, the authors renounce Popper’s stance on the import-
ance of falsification, arguing that this is not how science works,
nor how people reason. But then, in the very same work, the
authors measure the validity of their models by means of p-
values, and include statements such as “the model could not be
rejected.” Why?
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Abstract: Human cognition requires coping with a complex and
uncertain world. This suggests that dealing with uncertainty may
be the central challenge for human reasoning. In Bayesian
Rationality we argue that probability theory, the calculus of
uncertainty, is the right framework in which to understand
everyday reasoning. We also argue that probability theory
explains behavior, even on experimental tasks that have been
designed to probe people’s logical reasoning abilities. Most
commentators agree on the centrality of uncertainty; some
suggest that there is a residual role for logic in understanding
reasoning; and others put forward alternative formalisms for
uncertain reasoning, or raise specific technical, methodological,
or empirical challenges. In responding to these points, we aim
to clarify the scope and limits of probability and logic in
cognitive science; explore the meaning of the “rational”
explanation of cognition; and re-evaluate the empirical case for
Bayesian rationality.

R1. Introduction

Bayesian Rationality (Oaksford & Chater 2007, hence-
forth BR) proposed that human reasoning should be
understood in probabilistic, not logical, terms. In Part I,
we discussed arguments from the philosophy of science,
artificial intelligence, and cognitive psychology, which
indicate that the vast majority of cognitive problems
(outside mathematics) involve uncertain, rather than
deductively certain, reasoning. Moreover, we argued that
probability theory (the calculus for uncertain reasoning)
is a more plausible framework than logic (the calculus
for certain reasoning) for modeling both cognition in
general, and commonsense reasoning in particular. In
Part II, we considered a strong test of this approach,
asking whether the probabilistic framework can capture
human reasoning performance even on paradigmatically
“logical” tasks, such as syllogistic reasoning or conditional
inference.

The structure of this response is as follows. In section
R2, we reflect on the ubiquity of uncertainty and address
the theoretical attempts to preserve logic as a separate
and core reasoning process. In section R3, we compare
and evaluate Bayesian and logic-based approaches to
human reasoning about uncertainty. Section R4 focuses
on the methodology of rational analysis (Anderson 1990;
1991a; Oaksford & Chater 1998b) and its relationship
to more traditional algorithmic and neuroscientific
approaches. Section R5 discusses a variety of specific
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issues in the empirical data from the psychology of reason-
ing, and the modeling of that data. Finally, section R6
concludes the case for a “Bayesian turn” in the brain and
cognitive sciences in general, and for the understanding
of human reasoning in particular.

R2. The ubiquity of uncertainty: Distinctions that
might preserve logic

Many commentators suggest ways to preserve a role
for logic as a separate and core component in an account
of human reasoning, despite the challenge provided
by uncertainty (Allott & Uchida, Evans, Politzer &
Bonnefon). We argue that logic does have an important
role in modeling cognition; but we argue against the
existence of cognitive processes dedicated to logical
reasoning.

R2.1. Rationality 1 versus Rationality 2

Evans suggests that a distinction should be drawn
between two types of rationality (Evans & Over 1996a).
Rationality 1 relates to implicit, possibly associative, pro-
cesses, operating over world knowledge, which Evans
also terms “ecological rationality.” This type of rationality
arises from System 1 in Evans and Over’s (2004) Dual
Process Theory (see also Evans & Frankish, in press;
Sloman 1996; Stanovich & West 2000). Rationality 2
involves explicitly following normative rules, and is the
type of rationality achieved by Evans and Over’s (2004)
System 2. System 2 processes are logical, rule-governed,
and conscious. Moreover, Evans has argued for a crucial
asymmetry between the systems. It requires cognitive
effort to ignore System 1, and to use System 2 for logical
inference: that is, to infer only what follows from the struc-
ture of the given premises.

The fundamental problem with this Dual Process view
is that these two systems must interact —and if the
systems obey fundamentally different principles, it is not
clear how this is possible. Consider the familiar example
of inferring that Tweety flies from the general claim that
birds fly and the fact that Tweety is a bird. On the Dual
Process view, this inference could be drawn logically
from the premises given by System 2, from the assumption
that birds fly is a true universal generalization; System 1,
by contrast, might tentatively draw this conclusion by
defeasible, associative processes, drawing on general
knowledge. But a lack of synchrony between the two
systems, presumed to operate by different rational stan-
dards, threatens to cause inferential chaos. Consider, for
example, what happens if we consider the possibility that
Tweety is an ostrich. If System 2 works according to
logical principles, the clash of two rules threatens contra-
diction: we know that birds fly, but that ostriches do not.
To escape contradiction, one of the premises must be
rejected: most naturally, birds fly will be rejected as
false. But we now have two unpalatable possibilities. On
the one hand, suppose that this retraction is not trans-
ferred to general knowledge and hence is not assimilated
by System 1. Then the two systems will have contradictory
beliefs (moreover, if System 2 reasoning cannot modify
general knowledge, its purpose seems unclear). On the
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other hand, if birds fly is retracted from world
knowledge, along with other defeasible generalizations,
then almost all of general knowledge will be stripped
away (as BR notes, generalizations outside mathematics
are typically defeasible), leading System 1 into inferential
paralysis.

The centrality of logic for a putative System 2 is also
brought into doubt by considering that one of its main
functions is to consciously propose and evaluate argu-
ments. Yet, argumentation, that is, the attempt to persuade
onesell or others of a controversial proposition, is uni-
formly agreed not to be a matter of formal logic (Walton
1989), although aspects of argumentation may naturally
be modeled using probability theory (Hahn & Oaksford
2007). Thus, perhaps the core human activity for which
a logic-based System 2 is invoked may, ironically, be
better explained in probabilistic terms.

People can, of course, be trained to ignore some
aspects of linguistic input, and concentrate on
others — for example, in the extreme, they can learn to
translate natural language statements into predicate logic
(ignoring further aspects of their content) and employ
logical methods to determine what follows. But, for the
psychology of reasoning, this observation is no more
significant than the fact that people can learn the rules
of chess and ignore most of the visual features of
the pieces, the board, or indeed, their surroundings.
Conscious application of logical principles is a learned
skill built on top of non-logical machinery (and,
indeed, is highly effortful, even for logicians); it does not
involve, we suggest, tapping in to some underlying
logical “engine.”

It is this conscious application of logical concepts (and
related notions from mathematics, philosophy, and com-
puter science) that underpins, we suggest, the small but
significant correlation between “logical” performance on
some reasoning tasks (e.g., selecting the p and not-q
cards, in Wason’s selection task) and IQ (Stanovich &
West 2000). Logical reasoning is a late and cognitively
challenging cultural innovation, rather than a core
component of our mental machinery.

Evans also expresses disappointment that we do not
address individual differences (Stanovich 2008), which
have been viewed as supporting a Dual Process account.
But from the present perspective, individual differences
concerning the application of learned logical rules are
no different from individual differences in chess
playing — that is, neither are directly relevant to the ques-
tion of whether there are single or multiple reasoning
systems. Indeed, we suggest that individual differen-
ces provide no stronger evidence that cognition involves
core logical competence, than that cognition involves
core chess-playing competence.

It may turn out, indeed, that there is no real incompat-
ibility between Stanovich’s account and ours. In particular,
the distinction Stanovich draws between control processes
and other autonomous systems is a distinction common to
all theories of cognition (see Oaksford & Chater, in press).
But as Kowalski’s (1979) classic equation, “Algorithm =
Logic + Control,” reminds us, logic and control processes
are very different (see, e.g., Anderson 1983). Hence, Sta-
novich may not really be committed to anything like
Evans’ logically competent System 2. (A further compli-
cation is that a distinction between processes of logic
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and control is now reflected in Evans [2007], who moots
the possibility of a tri-process theory.)

R2.2. The split between semantics and pragmatics

Grice’s (1975) theory of conversational implicature orig-
inally attempted to split off a “stripped down” logic-
based natural language semantics, from the complex,
knowledge-rich processes of pragmatic interpretation
involved in inferring a speaker’s intentions. In this way,
he aimed to retain a logical core to semantics, despite
apparently striking and ubiquitous clashes between the
dictates of formal logic and people’s intuitions about
meaning and inference.

Within this type of framework, Allott & Uchida
attempt to preserve the truth of potentially defeasible con-
ditionals (if it’s a bird, then it flies, or, as above, birds fly)
despite the ready availability of counterexamples. They
suggest that this conditional is true in one model, but
not in the model that is considered when an additional
premise giving a counterexample is added (e.g., when we
consider the possibility that Tweety is an ostrich). But in
classical logic, only an inference that holds in all models
is deductively valid, by definition. Thus, accepting that
this inference holds only in some models implies accepting
that the inference is uncertain (contra, e.g., O’Brien).
Indeed, in BR, we argue uncertainty is ubiquitous in
human reasoning; outside mathematics, deductive reason-
ing, which guarantees the truth of a conclusion given the
premises, is, to a first approximation, never observed.

Moreover, understanding reasoning involves working
out pragmatic details about what default background
assumptions are applicable in reasoning. Thus, for
example, our accounts of specific reasoning phenomena,
across conditional reasoning, the selection task, and syllo-
gistic reasoning, involve default assumptions about the
environment, for example, what is rare and what is
common (cf. McKenzie; McKenzie et al. 2001) and
when states are likely to be independent or conditionally
independent. In this light, we agree with Stenning &
van Lambalgen’s claim that “pure” Bayesian analysis,
working from the premises alone, cannot capture suppres-
sion effects in conditional reasoning (see sect. R3.6) — we
view this as illustrating the knowledge-rich character of
reasoning, rather than challenging a Bayesian account.

The ubiquity of uncertain, knowledge-rich inference,
argues for an alternative to invoking the semantics/prag-
matics distinction to maintain a logical semantics for
natural language: namely, that natural language semantics
may be probabilistic “all the way down.” Experiments in
the psychology of reasoning, as reviewed in BR, find
little support for the existence of a level of logic-based
representation or inference. BR proposes a starting point
for a probabilistic semantics: If p then g conditionals are
assumed to express that the conditional probability
P(glp) is high (following Adams 1975; 1998; Bennett
2003; and Edgington 1995, among others); the quantifiers
Some, Few, Most, All are similarly assumed to express con-
straints on probabilities (e.g., Some A are B is rendered as
P(A, B) > 0; Most A are B claims that P(B|A) is high).
Switching from a logical to a probabilistic semantics pro-
vides, we argue, a better fit with patterns of human reason-
ing. Of course, it remains possible that a logical core



interpretation might be maintained — but it seems theor-
etically unparsimonious to do so (Edgington 1995).

A shift from a logical to a probabilistic semantics for
aspects of natural language may also allow a more inte-
grated account of semantics and pragmatics. Indeed,
McKenzie (e.g., Sher & McKenzie 2006) has powerfully
demonstrated the importance of pragmatic factors, even
within a purely probabilistic framework (but see, Hilton
et al. 2005). Nonetheless, the core insight of Grice’s
program remains: that splitting apart semantic factors
(concerning meaning) and pragmatic factors (concerning
inferences about speaker intentions) is a prerequisite for
constructing a tractable semantic theory, whether that
theory be based on logic (as Allott & Uchida argue) or
probability (as BR proposes).

R2.3. Proof and uncertainty and structure and strength

Politzer & Bonnefon argue that a key element missing
from a purely probabilistic account is how premises can
be used to construct proofs to derive conclusions. Thus,
they argue that the probabilistic account allows the evalu-
ation of the strength of the relationship between premises
and conclusion, but not how the conclusion is generated in
the first place. Note, though, that both logic and prob-
ability are theories of the nature of inferential relationships
between propositions (Harman 1986). Neither specify
how reasoning should be carried out, let alone how inter-
esting conclusions should be generated. Moreover, for
both logic and probability, a range of algorithms have
been developed which can both evaluate given con-
clusions, and generate new conclusions (e.g., logic pro-
gramming and Bayesian networks). From both
perspectives, any set of information potentially generates
an infinite set of possible conclusions; so that an immedi-
ate question is: What counts as an interesting conclusion?
A natural suggestion from the probabilistic point of view is
that conclusions with a low prior probability are, other
things being equal, more surprising and hence more inter-
esting (as employed in the account of syllogistic reasoning
described in  BR), although interesting logic-based
measures of semantic information content have also
been proposed (Johnson-Laird 1983).

More generally, the probabilistic approach is just as able
as logic-based approaches to serve as the basis for algorith-
mic models of thought. For example, Oaksford & Chater
(in press) use a constraint satisfaction neural network
implementation of the probabilistic approach. The links
in the network captures the conditional and default
assumptions about structural relations between variables
(in the causal context, involving alternative causes and
defeaters); and the strength of each link is captured by a
weight. A similar distinction between structure and
strength has been invoked in causal reasoning using
Bayesian networks (Griffiths & Tenenbaum 2005) and
applied in Hahn and Oaksford’s (2007) probabilistic

account of argumentation.

R3. Logic, probability, and the challenge of
uncertain reasoning?

In this section, we consider whether, as some commenta-
tors suggest, we have mischaracterized the scope of logic
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or chosen the wrong alternative calculus in order to
reason about uncertainty. We deal with logic and prob-
ability in turn.

R3.1. How are logic and probability related?

Pfeifer & Kleiter observe that probability theory already
includes classical propositional logic as a special case.
Thus, one way of understanding the approach outlined
in BR is as enriching conventional logic to give an induc-
tive logic — a system of logic that extends deduction to
less-than-certain inferences (Hawthorn 2008). To a good
approximation, modern inductive logic just is Bayesian
probability (Chater et al., in press; Earman 1992), with
some additional discussion of the measure of the confir-
mation relation (see later discussion of Poletiek and
Nelson). Since Carnap (1950), this Bayesian inductive
logic includes classical logic — if a statement has a prob-
ability of 1, then any logical consequence of that statement
also has a probability of 1. Similarly, if a statement has an
implication with a probability of 0, then that statement has
a probability of 0 (note, however, that probability theory
does not readily represent the internal structure of
atomic propositions, and has no general theory of, for
example, quantification or modality). The Bayesian induc-
tive perspective is required not because classic logic is
incorrect, but because, outside mathematics, it rarely, if
ever, applies (Oaksford & Hahn 2007) — inferential
relations between propositions are relentlessly uncertain
(Jeftrey 1967).

R3.2. Is relevance relevant?

O’Brien proposes a different enrichment of logic, drawing
on his important work with Braine on mental logics
(Braine & O’Brien 1991), which aims to capture a notion
of relevance between antecedent and consequent (i.e., so
that conditionals such as if 2 is odd, then the sky is
purple are no longer automatically true, just in virtue of
the false antecedent). Thus, Braine and O’Brien’s work
aims to go beyond the material conditional, which BR
ascribed to mental logic as a whole (e.g., Rips 1994).

Adding a condition of relevance, while potentially
important, does not help deal with the problem of uncer-
tain reasoning, however. Indeed, O’Brien’s account of
conditionals is, instead, a strictly deductive version of the
Ramsey test (like, e.g., Girdenfors 1986) — conditionals
are only asserted if the consequent, ¢, follows with cer-
tainty from the antecedent p (and background knowl-
edge). Thus, Braine and O'Brien’s (1991) logical
interpretation of the conditional suffers the same funda-
mental problem as material implication: an inability to
capture the fact that generalizations outside mathematics
are inevitably uncertain.!

Moreover, despite Braine and O’Brien’s intentions, their
system does not seem to enforce relevance between ante-
cedent and consequent, either. The introduction rule for if
p then q, used by O’Brien, and described in Braine and
O’Brien (1991), states that if p then ¢ can be inferred if ¢
follows from the supposition of p together with background
knowledge, B. If we know p is false (i.e., background
knowledge B implies not-p), then supposing p and B
implies p & not-p, which is a contradiction, from which
any conclusion follows — including ¢. So conditionals
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such as if 2 is odd, then the sky is purple can be asserted,
after all. Similarly, any conditional whose conclusion is
known to be true (ie., B implies ¢) will automatically
meet the condition that p & B implies ¢ (because this is
a monotonic logic — adding premises can never remove
conclusions). Hence, conditionals such as if the sky is
purple, then 2 is even, will also be asserted — again violat-
ing intuitions of relevance.

R3.3. Uncertain reasoning via nonmonotic logic?

Stenning & van Lambalgen argue that we misrepresent
the scope of current logical methods, noting that a range of
nonmonotonic logics, in which adding a premise may
require withdrawing a previously held conclusion, might
meet the challenge of uncertainty. As noted in BR, and
elsewhere (e.g., Oaksford & Chater 1991; 2002), there
are, however, fundamental problems for nonmonotonic
logics in the crucial case where different “lines of argu-
ment” clash. Thus, if it is sunny, John goes to the park,
and it’s sunny appears to provide a powerful argument
that John goes to the park. But adding the premise, John
is arrested by the police in a dawn raid, together with
background knowledge, appears to vield the conclusion
that John does not go to the park.

From the perspective of classical logic, this situation is
one of contradiction — and what is needed is a way of
resolving which premise should be rejected. For
example, one might claim that the conditional if it’s
sunny, John goes to the park is false, precisely because
of the possibility of, among other things, arrest. But, as
noted in section R2.1, it is then difficult to avoid the con-
clusion that all conditionals, outside mathematics, are
false, because the possibility of counterexamples always
exists. Reasoning from premises known to be false is not,
of course, justified, whether in logic, or any other standard
framework, and hence, the logical analysis of the original
argument collapses.

The strategy of nonmonotonic logic attempts to solve
this problem by treating the conditional as a default rule,
which holds, other things being equal. Indeed, outside
mathematics, almost all rules are default rules. Indeed,
the implicit rule that allows us to infer that being arrested
is incompatible with a trip to the park is itself a default
rule, of course — for example, arrest may be extremely
brief, or perhaps the police station is itself in the park.
Thus, from this viewpoint, uncertain reasoning centrally
involves resolving clashes between default rules. In BR,
we argue that resolving such clashes is not typically poss-
ible by looking only at the structural features of arguments.
Instead, it is crucial to differentiate stronger and weaker
arguments, and degrees of confidence in the premises of
those arguments. Logical methods provide no natural
methods for expressing such matters of degree; but
dealing with degrees of belief and strength of evidence is
the primary business of probability theory.

R3.4. Is logic relevant to cognition?

Several commentators suggest that the powerful machin-
ery of logic should not be jettisoned prematurely (Allott
& Uchida, De Neys, O’Brien, Politzer & Bonnefon,
Stenning & van Lambalgen). As we noted in section
R3.1, probability theory (i.e., modern inductive logic) is
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a generalization of logic, allowing degrees of uncertainty.
However, it is a generalization that is presently limited
in scope. This is because how probability interacts with
richer representations involving, for example, relations,
quantification, possibility, deontic claims, tense and
aspect, and so on, is yet to be worked out. BR has, as we
have mentioned, some preliminary suggestions about the
probabilistic representation of individual connectives
(if.. then...) and quantifiers (Most, Few, Some, etc.).
But this is very far from a full probabilistic generalization
of, for example, the predicate calculus, the workhorse of
classical logic and natural language semantics. The
formal challenges here are substantial. Nonetheless,
much progress has been made, in a number of directions,
in fusing together probabilistic and logical methods (e.g.,
see papers in Williamson & Gabbay 2003), thus advancing
Carnap’s (1950) program of building an inductive logic.
Pfeifer & Kleiter apply logic in an interesting, but
distinct, way: as providing a machinery for reasoning
about probability, rather than using probability to general-
ize logic.

According to De Neys, concentrating on the compu-
tational level means that BR underplays the role of logic
in human reasoning. De Neys argues that latency and
brain imaging studies, investigating the mental processing
involved in reasoning, rather than just the output of these
processes, consistently reveal a role for logic. Yet all the
cases that De Neys cites involve a conflict between
belief and logic such that prior belief suggests one
response, but logical reasoning from the given premises
suggests another. However, the Bayesian approach can
explain at the computational level why such conflicts
might arise and therefore why inhibitory processes might
need to be invoked (De Neys et al. 2008; Houdé et al.
2000). Oaksford and Hahn (2007) point out that probabil-
istic validity of an argument and its inductive strength can
conflict. So, for example, Modus Ponens (MP) is probabil-
istically valid. However, if the probability of the con-
ditional is low, then the inductive strength of the
argument, that is, the probability of the conclusion given
the premises, will also be low. The right computational
level analysis may, therefore, remove the need to
propose two special purpose cognitive systems operating
according to different principles. This view seems consist-
ent with the current state of imaging studies, which
provide little evidence for a dedicated logical reasoning
module (Goel 2007).

O’Brien describes Chrysippus” dog’s ability to follow a
scent down one path in a fork in the road, having elimi-
nated the other as an application of the logical law of dis-
junction elimination — and hence, suggests that logic is
cognitively ubiquitous. However, this logical law cannot
uncritically be imported into a theory of canine cognition.
For one thing, such patterns of behavior are at least as well
modeled in probabilistic (Toussaint et al. 2006), as in
logical, terms. Indeed, probabilistic methods are crucial
in planning tasks in uncertain environments, which is, of
course, the normal case, outside mathematically specified
game-playing environments. In any case, just because a
behavior can be described in logical or probabilistic
terms does not directly imply that it is governed by
logical or probabilistic processes. The issues here are
complex (see the excellent introductory chapter to
Hurley & Nudds 2006) and many possibilities would



need to be ruled out before abandoning Lloyd Morgan’s
canon: that lower-level explanations of animal behavior
should be preferred.

In short, we believe that cognitive science ignores logic
at its peril — logic provides powerful and much needed
tools, just as do other branches of mathematics. It does
not, however, readily capture patterns of human reason-
ing, or, we suggest, cognition at large, unless generalized
into a probabilistic form able directly to deal with
uncertainty.

R3.5. Why probability rather than other numerical
measures?

Danks & Eberhardt and Politzer & Bonnefon ask why
we use probability, rather than other numerical measures
of degrees of belief, such as confidence intervals,
Dempster-Shafer belief functions (Dempster 1968;
Shafer 1976), or fuzzy logic (Zadeh 1975). In BR, our
primary motivation is practical: Bayesian probabilistic
methods provide a natural way to capture human reason-
ing data; and more generally, Bayesian methods have
swept through the brain and cognitive sciences, from
understanding neural coding (Doya et al. 2007), through
vision, motor control, learning, language processing, and
categorization. Even within research on reasoning,
Bayesian methods have proved central to understanding
inductive inference (Griffiths & Tenenbaum 2005;
Tenenbaum et al. 2007), causal reasoning (Sloman 2005;
Tenenbaum & Griffiths 2001), and argumentation (e.g.,
Hahn & Oaksford 2007), as well as the primarily deductive
reasoning problems considered in BR.2 “Moreover,
probabilistic methods connect with rich literatures con-
cerning computational inference methods (e.g., based on
graphical models, Lauritzen & Spiegelhalter 1988; Pearl
1988), machine learning (e.g., Jacobs et al. 1991), and nor-
mative theories of reasoning about causality (Pearl 2000).
Finally, probability also has deep relationships to other
powerful concepts in the brain and cognitive sciences,
including information theory (e.g., Blakemore et al
1991) and simplicity, for example, as captured by Kolmo-
gorov complexity theory (e.g., Chater 1996; Chater &
Vitanyi 2002). Thus, our focus on probability is primarily
pragmatic rather than, for example, depending on a
priori justifications.

Danks & Eberhardt focus, nonetheless, on justifica-
tion, arguing that doubt can be cast on justifications such
as the Dutch Book argument and long run convergence
theorems. We see the project of rational analysis as a
user of probability, on a par with the rest of science, for
example, statistical mechanics, Bayesian image restor-
ation, or economics. We only need to be as concerned
about justification as these other endeavors. Danks &
Eberhardt’s worries are analogous to Berkeley’s objections
to Newton’s infinitesimals: of considerable conceptual
importance, but with little direct impact on the practical
conduct of science. Nonetheless, probability is at least
better justified than alternative formalisms for modeling
uncertainty.

Politzer & Bonnefon and Danks & Eberhardt raise
the possibility that the assumptions of the probabilistic
approach may be too strong. We instead believe that
they are, if anything, too weak; that is, they define
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minimal coherence conditions on beliefs, which need to
be supplemented with richer formalisms, including, as
noted in section R3.4, the ability to represent relations
and quantification, and to represent and manipulate
causal relations (e.g., Pear]l 2000).

R3.6. Are we Bayesian enough?

Other commentators (Over & Hajichristidis, Pfeifer &
Kleiter, Stenning & van Lambalgen) have the opposite
concern: that BR is not Bayesian enough. Over & Hadji-
christidis argue that in conditional inference, not only is
the conditional premise (e.g., if p then ¢) uncertain, but
so is the categorical premise, p. In BR (p. 121), we
mention this general case (implying Jeffrey’s rule [Jeffrey
1983]), but point out that this extra element of uncertainty
appears unnecessary to capture the conditional reasoning
data.

Stenning & van Lambalgen and Pfeifer & Kleiter
also argue, in different ways, that we are insufficiently
Bayesian. Stenning & van Lambalgen argue that our
account of suppression effects is not Bayesian because
coherent Bayesian revision of the probability space
assumes “rigidity”: that is, the conditional probability
P(g|p) remains the same if we learn the truth of a categori-
cal premise: p, g, not-p, or not-g (and no other infor-
mation). We agree. But this does not imply that P(q|p)
remains the same if we are told about that p, because prag-
matic factors allow us to infer a great deal of additional
information; and this information can legitimately
change P(q|p). It is this latter case that is relevant for
reasoning with verbal materials. Thus, suppose I believe
if the key is turned, the car starts; and I am told: “the
car didn’t start this morning.” This would be a pragmati-
cally pointless remark, if the key had not been turned.
I therefore infer that the key was turned, and the car
didn’t start for some other reason. Thus, I revise down
the probability of the relevant conditional P(car starts|key
turned) dramatically. So the violation of rigidity, notably in
this type of Modus Tollens (MT) inference, does not
violate Bayesian precepts, but merely applies them to
the pragmatics of utterances (see BR, pp. 126-128;
Sobel 2004; Sober 2002).

Pfeifer & Kleiter suggest that inference can proceed
locally and deductively in a mental probability logic. In
such a logic, the precise probability of a conclusion
cannot typically be deduced from the probabilities of the
premises — but a probability interval can be. We
adopted a similar approach to probabilistic validity for
syllogisms where, according to our probabilistic semantics,
quantifiers describe probability intervals. Nonetheless, in
line with Stanovich and West’s (2000) “fundamental com-
putational bias,” we believe that people spontaneously
contextualize and elaborate verbal input, by adding infor-
mation from world knowledge. Indeed, it takes substantial
cognitive effort not to do this. Consequently, we think it
unlikely that people reason deductively about probability
intervals.

R3.7. Measuring confirmation

People are not merely passive observers. They can actively
search for information to help test hypotheses, or to
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achieve specific goals. In BR, we outline “rational”
accounts for both cases. Where people test between
hypotheses, a natural objective is to search for data in
order to maximize the expected amount of information
that will be gained in the task (Shannon & Weaver
1949). This is “disinterested” inquiry. Where people gain
information to help achieve specific goals, then a natural
objective is to choose information to maximize expected
utility (balancing costs of information search with the
improved choices that may result from new information).
This is “goal-directed” inquiry. In BR, we note that differ-
ent variations of Wason’s selection task are appropriately
captured by versions of one or other model. In particular,
we showed how attending to the goal-directed case avoids
the postulation of specific machinery, such as “cheater-
detection” modules (e.g., Cosmides 1989), to explain
patterns of experimental data (e.g., BR, pp. 191-98).

Focusing on disinterested inquiry, Nelson notes that a
wide range of normative and descriptive proposals for
assessing the strength of information in a piece of data
have been proposed. In testing these models against a
wide range of psychological data (Nelson 2005), he finds
that the information-theoretic measure implicit in our
analysis stands up well against competitors, although it is
not picked out uniquely by the empirical data.

Poletiek notes a further interesting link to philosophy
of science, noting that Popper’s measure of severity of
test is equivalent to P(e|H)/P(e), for data e and hypothesis
H. And the logarithm of this quantity just is the amount of
information carried by the evidence e about H — the quan-
tity which we use in our model of disinterested inquiry in
the selection task. This quantity is also used as a measure
of the degree to which a theory is confirmed by the data in
confirmation theory (Milne 1996). This is, as Poletiek
notes, particularly interesting, given that Popper’s
measure of severity of test is part of a theoretical frame-
work which aims to entirely avoid the notion of confir-
mation (see also Milne 1995). Thus, our account of the
selection task could be recast, from a Popperian stand-
point, as a rational analysis in which people attempt to
choose data to provide the more severe possible tests for
their hypotheses.

R4. Rational analysis, algorithmic processes, and
neural implementation

BR is primarily concerned with the rational analysis of
human reasoning (e.g., Anderson 1990; 1991a; Chater &
Oaksford 2008a; Oaksford & Chater 1998b). In this
section, we consider the role of rational analysis in the
brain and cognitive science and whether this style of
explanation is fundamentally flawed.

R4.1. The power of rational analysis

Hahn notes that the shift away from considerations of
algorithms and representations, encouraged by rational
analysis, has led to a substantial increase in explanatory
power in cognitive science, in a number of domains.
Where the underlying explanation for an aspect of cogni-
tion arises from the rational structure of the problem
being solved, there focusing on specific algorithmic and
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neural mechanisms may be unhelpful. Therefore, building
specific algorithmic models (e.g., connectionist networks)
of a phenomenon may replicate the phenomenon of inter-
est (by virtue of being an adaptive solution to the “rational”
problem in hand), but may throw little light on why it
occurs.

R4.2. Normativity and rational analysis

Evans and Schroyens are concerned about the normative
aspect of rational analysis. Evans questions whether nor-
mativity is a proper part of a computational-level analysis
of human reasoning, and by implication, cognition in
general, and recommends a switch to an ecological
notion of rationality. He suggests rationality should
concern how well people are adapted to their environ-
ment, which may not require following the prescriptions
of any normative theory of reasoning (cf. Gigerenzer &
Goldstein 1996).

We suggest, however, that ecological rationality does
not replace, but rather, complements normative ration-
ality. Normative considerations are still required to
explain why a particular algorithm works, given a particu-
lar environment; indeed, this is precisely the objective of
rational analysis. Thus, for example, in arguing for the eco-
logical rationality of various fast and frugal heuristics
(Gigerenzer et al. 1999), Gigerenzer and colleagues
appeal to a Bayesian analyses to explore the type of
environmental structure for which their algorithms
succeed (e.g., Martignon & Blackmond-Laskey 1999).
Thus, rational analysis cannot be replaced by, but seeks
to explain, ecological rationality.

Note, too, that rational analysis is goal-relative: it speci-
fies how best to achieve a given goal, in a given environ-
ment, with given constraints (Anderson 1990; Oaksford
& Chater 1998b). So, if your goal is to land a rocket on
the moon, your guidance system ought to respect classical
physics; if your goal is to avoid contradictions, you ought to
reason according to standard logic; and if your goal is to
avoid accepting bets that you are bound to lose, you
ought to follow the rules of probability theory (see Ch. 2
of BR).

Ignoring the goal-relativity of rational analysis leads
Schroyens to suggest that we have fallen into Moore’s
(1903) “naturalistic fallacy” in ethics: that we have
attempted to derive an “ought” from an “is.” Moore’s
concern is that no facts about human behavior, or the
world, can justify an ethical theory. Ethics is concerned
with non-relative notions of “ought”™: the aim is to establish
universal principles of right behavior. But the goal-relativity
of rational analysis makes it very different from the domain
of ethics, because it is conditional. Rational analysis con-
siders: if you have objective O, given an environment E,
and constraints C, then the optimal action is A. Ethics, by
contrast, considers whether O is a justifiable objective.
And the nature of the solution to a well-specified optimiz-
ation problem is itself firmly in the domain of facts.

Indeed, were Schroyens concern valid, then its
consequences would be alarming, sweeping away func-
tional explanation in biology and rational choice expla-
nation in economics. Yet in all cases, rational /optimality
explanations are used to derive empirical predictions;
and, as in any scientific enterprise, the assumptions of
the rational/optimality accounts are adjusted, where



appropriate, to give a better fit with empirical predictions.
Specifically, empirical data lead to revision of empirical
assumptions in the rationality/optimality analysis — the
empirical data does not lead to a revision of the laws of
logic, probability, or any other rational theory.

Khalil raises the opposite concern: that we use rational
explanation too narrowly. He argues that the style of optim-
ality explanation that we advocate applies just as well in the
explanation of non-cognitive biological structures as it does
to cognitive processes — he argues that, in the sense of
rationality used in BR, stomachs are just as rational as
cognitive mechanisms. This concern appears purely termi-
nological; we reserve “rationality” for information proces-
sing systems. But rational analysis is, indeed, parallel to
optimality explanation in biology (Chater et al. 2003).

R4.3. Relevance of the algorithmic level

McKenzie and Griffiths note, however, that advocating
rational analysis does not make the challenges concerning
algorithmic, and indeed neural, implementation, disap-
pear. Moreover, the mapping between levels of expla-
nation need not necessarily be straightforward, so that a
successful probabilistic rational analysis of a cognitive
task does not necessarily require that the cognitive
system be carrying out probabilistic calculations — any
more than the bird is carrying out aerodynamic calcu-
lations in growing a wing perfectly adapted for flight.
Nonetheless, in many contexts, it is natural to see cogni-
tion as carrying out probabilistic calculations; and a prior
rational analysis (or, in Marr’s [1982] terms, computational
level of explanation) is extremely valuable in clarifying
what calculations need to be carried out. Without a
“rational analysis” for arithmetic calculations (i.e., a math-
ematical theory of elementary arithmetic), understanding
which algorithms might be used by a pocket calculator,
let alone how those algorithms might be implemented in
silicon, would be impossible. Griffiths outlines key chal-
lenges for creating an algorithmic-level theory of cogni-
tion, viewed from a Bayesian perspective; and this
perspective dovetails nicely with work viewing neural
machinery as carrying out Bayesian inference (e.g., Ma
et al. 2006; Rao et al. 2002), which we consider briefly
further on.

BR is largely focused on rational level explanation
(Anderson 1990; 1991a). Indeed, following Marr (1982),
we argued that understanding the rational solution to pro-
blems faced by the cognitive system crucially assists with
explanation in terms of representations and algorithms,
as stressed by Hahn and Griffiths. In BR, this is illustrated
by our model of syllogistic reasoning, which proposes a set
of “fast and frugal” heuristics (Gigerenzer & Goldstein
1996) for generating plausible conclusions, rooted in a
Bayesian rational analysis (Chater & Oaksford 1999b).
More recently, we have suggested methods for causal
and conditional reasoning, based on “mental mechanisms”
(Chater & Oaksford 2006; Ali et al., in press) directly build-
ing on rational and algorithmic models inspired by the lit-
erature on Bayesian networks (Glymour 2001; Pearl 198S;
2000). Moreover, an explicit algorithmic implementation
of our probabilistic account of conditional inference has
been constructed using a constraint satisfaction neural
network (Oaksford & Chater, in press). Moreover, there
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is a signiﬁcant movement in current cognitive science
that focuses on developing and employing Bayesian
machine learning techniques to model cognition at both
the rational and algorithmic levels (e.g., Griffiths et al.
2007; Kemp & Tenenbaum 2008).

Evans’ concern that we ignore the algorithmic level is
therefore puzzling. He worries that BR recommends that
one should “observe some behaviour, assume that it is
rational, find a normative theory that deems it to be so,
and then ... nothing else, apparently.” We assume that
the ellipsis should, in Evans’ view, be fleshed out with an
algorithmic, process-based explanation, which should
then be subject to rigorous empirical test. The abovemen-
tioned list of algorithmic level proposals inspired by
Bayesian rational analysis, both in the domain of reasoning
and in cognitive science more generally, gives grounds for
reassurance. Moreover, the extensive ernpirical testing of
these models (Green & Over 1997; 2000; McKenzie &
Mikkelsen 2000; 2007; McKenzie et al. 2001; Nelson
2005; Oaksford & Moussakowski 2004; Oaksford &
Wakefield 2003; Oaksford et al. 1999; 2000; Tenenbaum
1999) should allay concerns that rational analysis provides
no testable predictions. Ironically, the only theories in
the psychology of reasoning that have been algorithmically
specified, aside from those within the Bayesian tradition,
are directly based on another rational level theory: logic
(Johnson-Laird 1992; Rips 1994). Theorists who have
instead focused primarily on heuristics for reasoning
have couched their explanations in purely verbal terms
(Evans 1989; Evans & Over 2004). This indicates, we
suggest, that rational analysis assists, rather than
impedes, algorithmic explanation.

R4.4. Relevance of neural implementation

Bayesian rational analysis is, moreover, appealing because
it appears to yield algorithms that can be implemented in
the brain. In BR (Ch. 4), we observed that the Bayesian
approach was sweeping across cognitive psychology.
We might also have added that its influence in compu-
tational neuroscience is at least as significant (Friston
2005). Although our Bayesian analyses of higher-level
reasoning do not directly imply Bayesian implementations
at the algorithmic level, it is intriguing that influential
theorists (Doya et al. 2007; Friston 2005; Ma et al. 2006)
view Bayesian inference as providing the driving compu-
tational principle for neural information processing.
Such models, using population codes (Ma et al. 2006),
which avoid treating the brain as representing probabil-
ities directly on a numerical scale, can model simple per-
ceptual decision tasks (Gold & Shadlen 2000). Such
convergence raises the possibility that Bayesian rational
analyses of reasoning may one day find rather direct
neural implementations.

De Neys specifically appeals to the implementation
level in commenting on BR. He draws attention to
imaging studies of reasoning that suggest a role for
the anterior cingulate cortex in detecting conflict and
inhibiting responses. As we have seen (sect. R3.4), such
a role is entirely consistent with Bayesian approaches.
Indeed, more broadly, imaging work on human
reasoning, pioneered by Goel (e.g., Goel 2007), is at an
exploratory stage, and currently provides few constraints
on theory. Moreover, as we have seen, where cognitive
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neuroscientists concentrate on what computations the
brain performs rather than where, the emerging answer
is Bayesian.

R4.5. Optimality and rational analysis

A range of commentators (e.g., Brighton & Olsson,
Danks & Eberhardt, Evans, and Schroyens) argue
that the methodology of rational analysis faces conceptual
problems. Our general response to these concerns is prag-
matic. As with any methodology, we see rational analysis,
using probabilistic methods or otherwise, as primarily to
be judged by its results. Anderson’s path-breaking work
(1990; 1991a), and the huge literature on Bayesian
models across the brain and cognitive sciences, of which
BR is a part, is therefore, in our view, the best argument
for the value of the approach. Parallels with closely
related work in behavioral ecology and rational choice
explanation in economics give further weight to the view
that a “rational” style of explanation can yield considerable
insights. But, like any style of explanation, rational analysis
has its limits. Just as, in biology, some behaviors or struc-
tures are products of “history” rather than adaptation
(Carroll 2005), and some economic behaviors are the
product of cognitive limitations (e.g., Ariely et al. 2003;
Thaler 2005), so in the brain and cognitive sciences, we
should expect some phenomena to arise from specific
aspects of algorithms/representations or  neural
implementation.

We are therefore happy to agree with commentators
who suggest that there are cognitive phenomena for
which purely rational considerations provide an incom-
plete, or indeed incorrect, explanation (e.g., Brighton &
Olsson, Evans). We also agree that rational analysis is
challenged where there are many, perhaps very different,
near-optimal rational solutions (Brighton & Olsson). In
such situations, rational analysis provides, at best, a
range of options — but it does not provide an explanation
of why one has been chosen. Nonetheless, these issues
often cause few problems in practice, as the results in
BR and in the wider program of rational explanation
illustrate.

We agree, moreover, with concerns that finding exactly
the optimal solution may be over-restrictive (Brighton &
Olsson, Evans). Consider the case of perceptual organiz-
ation, where the cognitive system must decide between
multiple interpretations of a stimulus (Gregory 1970; von
Helmholtz 1910/1925). Accounts based on Bayesian prob-
ability and on the closely related idea of maximizing sim-
plicity (Chater 1996; Hochberg & McAlister 1953;
Leeuwenberg & Boselie 1988) adopt the perspective of
rational analysis, but they do so comparatively. That is,
the perceptual system is presumed to choose interpret-
ation A, rather than interpretation B, if A is more likely
than B (or, in simplicity-based formulations, if it provides
a simpler encoding of the sensory input). Neither the like-
lihood nor the simplicity principles in perceptual organiz-
ation are presumed to imply that the perceptual system
can optimize likelihood/simplicity — and indeed, in the
general case, this is provably impossible (see Chater
1996, for discussion). Indeed, we suspect that rational
analysis will, in many cases, primarily be concerned with
providing a measure of the relative “goodness™ of different
cognitive processes or behaviors; and it is explanatory to
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the degree to which the “good” mechanisms are more
prevalent than the “bad.” The parallel with evolutionary
explanation seems to be exact here: Inclusive fitness pro-
vides a crucial explanatory measure in explaining the evol-
ution of biological structures, but the explanatory “bite” is
comparative (i.e., in a certain environment, a flipper yields
greater fitness than a leg). There is no assumption that bio-
logical evolution, in any context, reaches a state of comple-
tely optimized perfection; indeed, quite the reverse (Jacob
1977). Thus, Evans” emphasis on satisficing rather than
optimizing, and Brighton & Olsson’s focus on relative
rationality, seem to us entirely consistent with BR.

Note, too, that in modeling many aspects of cognition, a
full-scale rational analysis (specifying a task, environment,
and computational limitations) may not be required. For
example, conditional inference can be modeled in Baye-
sian terms, assuming only a probabilistic interpretation
of the premises, and the requirement of maintaining con-
sistent degrees of belief. The success of the probabilistic,
rather than a logical, interpretation of the premises can
be assessed by comparing the predictions of both
approaches to data on human reasoning, as well general
philosophical principles.

Brighton & Olsson also raise a different concern: that
the specific sets of probabilistic assumptions (such as the
independence assumptions embodied in naive Bayes)
may sometimes be justified not by rational analysis, but
instead in the light of their general, formal properties,
combined with empirical success in solving some exter-
nally defined task (e.g., estimating the relative sizes
of German cities, Gigerenzer & Goldstein 1996). For
example, a model such as naive Bayes, they note, may be
effective because it has few parameters and hence avoids
over-fitting. We suggest, however, that this is not a separ-
ate type of explanation of inferential success, distinct from
Bayesian rational analysis. Instead, the justification for
preferring simple models can, itself, be provided in
terms of Bayesian reasoning, and closely related formal-
isms, including minimum description length (Chater &
Oaksford 2008b; MacKay 2003; Rissanen 1989; Vitanyi
& Li 2000).

R4.6. Need rational explanation be causal?

Brighton & Olsson, together with Danks & Eberhardt,
raise the fundamental concern that rational explanation
does not provide a causal explanation of behavior. We
agree. Rational explanation is teleological (Fodor
1968) — it explains by reference to purpose, rather than
cause.

In particular, rational explanation does not require that
the rational analysis is itself represented in the mind of the
agent, and does not, therefore, imply that behavior is gov-
erned by any such representation. Aerodynamics may
provide an optimality-based explanation of the shape of
the bird’s wing; but aerodynamic calculations by the bird
(or any other agent) are not causally responsible for the
wing’s shape.

Similarly, delineating the circumstances in which
algorithms such as naive Bayes (Brighton & Olsson;
Domingos & Pazzani 1997), Take the Best (Gigerenzer
& Goldstein 1996; Martignon & Hoffrage 1999), or unit-
weighted regression (Dawes 1979) are reliable may
require highly sophisticated rational explanation. Yet a



cognitive system that employs such models may know
nothing of such rational explanations — and indeed,
these rational assumptions typically play no causal role in
determining the behavior. Thus, in behavioral ecology,
for example, the strategies animals use in foraging, mate
selection, and so on, are typically explained using optimal-
ity explanations; but animals are not assumed to carry out
optimality calculations to validate their behavioral
strategies.

Danks & Eberhardt suggest that there is a “require-
ment for a teleological explanation that the normative
principle must have played a causal role — ontogenetic,
phylogenetic, or both — in the behavior’s existence or per-
sistence. ‘Origin stories” are required for teleological expla-
nation.” We find this claim puzzling: normative principles,
and rational explanations in general, are abstract — they
are not part of the causal realm. Thus, a Bayesian rational
analysis can no more cause a particular piece of behavior
or reasoning, than the principles of arithmetic cause a cal-
culator to display a particular number. Teleological expla-
nations are distinctively non-causal, and necessarily so.

In this section, we have considered concerns about the
general project of rational analysis. We now turn to con-
sider specific issues relating to the rational models and
empirical data presented in BR.

R5. Reconsidering models and data

Even if the broad sweep of arguments from the preceding
sections is endorsed, there remain doubts about the details
of the particular models described in BR and their ability
to account for human reasoning data. Indeed, in the com-
mentaries, issues of detail emerge most often between
researchers who otherwise are in broad agreement. It is
in this light that we consider the comments of Liu,
Oberauer, Over & Hadjichristidis, and Wagenmakers.
We also consider here Halford’s comments on syllogistic
reasoning, drawn from a different framework.

R5.1. Conditional inference

Liu, Oberauer, and Over & Hadjichristidis, who have
also advocated a probabilistic approach (in particular, to con-
ditional inference), have concerns about our specific model.
We addressed, in section R3.6, Over & Hadjichristidis’s
argument that we are not Bayesian enough, and that we
should employ Jeffrey’s rule to deal with uncertainty in the
categorical premise of conditional inference. We pointed
out that we too explicitly adopted Jeffrey’s rule in BR.
They also cite some unpublished results apparently
showing that people have an imperfect understanding of Jel-
frey’srule. These results are intriguing and suggest that more
extensive empirical testing of this rule is required.
Oberauer argues that our models of conditional infer-
ence and data selection may lead to absurdity. He argues
that if the marginals, P(p) and P(g), remain fixed, which
he describes as “axiomatic” in our theory,4 then if one
increases the probability that someone gets a headache,
given they take drug X, then those who don’t take X will
get fewer headaches. This apparent absurdity stems from
a conflation in Oberauer’s description between the
factual and the epistemic/doxastic: Changing this
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conditional degree of belief does not mean that these
people actually achieve these benefits. In ignorance of
the real conditional probability, but knowing the values
of the marginals, T should revise my degree of belief that
not taking this drug leads to fewer headaches. Yet this
will only be appropriate when the marginals are known —
which is clearly inappropriate in Oberauer’s example.

Oberauer also perceives an inconsistency between our
adoption of The Equation — P(if p then q) = P(q|p) — and
our use of a contingency table to represent the conditional
hypothesis in data selection. However, by The Equation
there is only sufficient information in the premises of a
conditional inference to draw MP by Bayesian (or
Jeffrey) conditionalization (at least a point value). The
remaining inferences can only be drawn on the assump-
tion that people use the marginals to calculate the relevant
conditional probabilities, for example, P(—g|—p) for
Denying the Antecedent (DA). Once P(qlp) and the mar-
ginals are fixed, the contingency table is determined.
Knowing the meaning of a statement is often equated
with knowing the inferences that a statement licenses
(Dowty et al. 1981). According to The Equation, the con-
ditional only licenses “probabilized” MP. Probabilistically,
to draw further inferences requires more information to
be drawn from world knowledge. Hence, there is no
inconsistency. Moreover, in the selection task, people
are presented with an array of possible evidence types
that makes the marginals relevant in the same way as pre-
senting more than just MP in the conditional inference
task. The degree of belief that is modified by selecting
data is in the conditional and the marginals, which consti-
tute the dependence and independence models. Thus,
Oberauer’s concerns can be readily addressed.

Oberauer also suggests that contingency tables are
consistent with a probabilistic contrast approach, that is,
the measure of the strength of an argument, for
example, MP, is P(qlp) — P(q|—p). It is for this reason
that we believe that argument strength may indeed be
two-dimensional (Oaksford & Hahn 2007). The con-
ditional probability alone can mean that a good argument
leads to no increase in the degree of belief in the con-
clusion, for example, for MP when P(g|p) = P(g) = 1.
The probabilistic contrast (and other measures; see, e.g.,
Nelson, Poletiek, and Oaksford & Hahn 2007) captures
the change in the probability of the conclusion brought
about by an argument. Oberauer suggests that there is
no evidence for people’s use of the probabilistic contrast.
Yet Over et al. (2007) found significant sensitivity to
P(q|—p), consistent with some use of the probabilistic con-
trast or a related measure of change, and the evidence is
currently equivocal.

Oberauer also raises two concerns over evidence for
our model of conditional inference. First, fitting a model
with two free parameters to four data points “is no convin-
cing accomplishment.” Even so, as Hahn observes, the
move to detailed model fitting of quantitative data rep-
resents significant progress in the psychology of reasoning
(for early examples, see Krauth [1982] and Klauer [1999]).
Moreover, in BR (pp. 146—49) we fitted the model to the
32 data points produced in Oaksford et al.’s (2000) Exper-
iment 1 using only nine parameters, collapsing far more
degrees of freedom than the model fitting reported
in Oberauer (2006). Although Oberauer (2006) found
poorer fits for our model than alternative theories,

BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1 113



Response/Oaksford & Chater: Précis of Bayesian Rationality

Oaksford and Chater (2008) found that the revised model
presented in BR may provide better fits to Oberauer’s
data. Second, Oberauer argues that the most relevant
empirical evidence comes from studies where probabil-
ities were directly manipulated, of which he mentions
two, Oaksford et al. (2000) and Oberauer et al. (2004).
Moreover, he argues that their results are equivocal.
However, several other studies have manipulated prob-
abilities in conditional inference and found evidence in
line with a probabilistic account (George 1997; Liu 2003;
Liu et al. 1996; Stevenson & Over 1995). Oberauer also
leaves aside the many studies on data selection showing
probabilistic effects (see BR, Ch. 6).

Liu’s arguments about second-order conditionalization
point, we think, to an important factor that we have yet
to consider in reasoning, that is, the effects of context.
Liu has found that people often endorse the conclusion
that, for example, Tweety flies on being told that Tweety
is a bird in the absence of the conditional premise
(reduced problems). This occurs because they fill in this
information from world knowledge. However, Liu also
found that endorsements increase when the conditional
premise is added (complete problems). In BR, we
argued that this occurs because people take the con-
ditional premise as evidence that the conditional prob-
ability is higher (an inference that may arise from
conversational pragmatics). Liu argues that our account
implies that manipulations affecting reduced problems
should also affect complete problems and provides evi-
dence against this. Yet context, both cognitive and phys-
ical, may explain these differences in a way similar to
recent studies of decision-making (Stewart et al. 2006).
For example, suppose one is told about two swanneries,
both containing the same number of swans. In one, 90%
of swans are black (P(black|swan)=9); in the other,
90% of swans are white (P(white|swan) =.9). On being
told that Tweety is a swan, presumably one would only
endorse Tweety is white at .5. This is because conversa-
tional pragmatics and world knowledge indicate that
Tweety is in one of the just mentioned swanneries, but
the dialogue up to this point does not indicate which
one.” However, the addition of the conditional premise
if a bird is a swan it is white immediately indicates
which swannery is being talked about, that is, the one in
which P(white[swan) is high, and now endorsements
should increase to .9. Clearly, although manipulations of
the relative number of swans in each swannery might
affect the reduced problem, they should not affect the
complete problem. So if the swannery in which most
swans are black were one tenth of the size of the other
swannery, then, given natural sampling assumptions,
endorsements for the reduced problem should increase
to .83, but endorsements of the complete problem
should remain the same.

R5.2. Data selection

Wagenmakers raises a variety of concerns about our
optimal data selection model. First, why do we concede
that people should select the standard “logical” A card
and 7 card choices, if the rule only applies to the four
cards? In BR (p. 210), we argue that people rarely use con-
ditionals to describe just four objects — they assume that
the cards are drawn from a larger population.
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Consequently, we quite explicitly do not make the coun-
terintuitive prediction that Wagenmakers ascribes to us.
Second, Wagenmakers wonders why — when all cards
carry some information — do participants not select all
the cards, if they are maximizing information gain? We
assume that the pragmatics of the task suggests to partici-
pants that they should select some cards, but not others
(BR, pp. 200-201). Third, Wagenmakers suggests that
incentivized individuals with more time might make the
logical response. Work on individual differences (e.g., Sta-
novich & West 2000) is consistent with the view that
logical competence is learned, either directly (e.g., study-
ing logic or math) or indirectly (e.g., learning to program
or learning conventional, non-Bayesian statistics); such
logical competence is a prerequisite for “logical”
responses, and covaries with IQ as measured in University
populations. Wagenmakers also remarks that, as Baye-
sians, we should avoid null hypothesis testing in statisti-
cally assessing our models. This choice is purely
pragmatic: it conforms to the current demands of most
journals.

R5.3. Syllogisms and development

Halford argues that mental models theory and a relational
complexity measure fit the data as well as the probability
heuristics model (PHM), conceding, however, that only
PHM generalizes to most and few. Copeland (2006) has
also recently shown that PHM provides better fits than
mental models and mental logic for extended syllogisms
involving three quantified premises. Halford also suggests
that basing confidence in the conclusion on the least prob-
able premise, as in our max-heuristic, is counterintuitive.
He proposes that confidence should instead be based on
relational complexity, which covaries with the least prob-
able premise. But perhaps Halford’s intuition goes the
wrong way: the least probable premise is the most infor-
mative; and surely the more information you are given,
the stronger the conclusions you can draw?

De Neys and Straubinger, Cokely, & Stevens
(Straubinger et al.) both argue that there are important
classes of evidence that we do not address. De Neys argues
that attention to latency data and imaging studies provides
a greater role for logic, a claim we disputed earlier. Note,
also, that the algorithmic theory in PHM has been applied
to latency data and accounts for the data, as well as mental
models (Copeland & Radvansky 2004). Straubinger et al.
are concerned that we ignore developmental data. In par-
ticular, they view the findings on the development of
working memory as providing a particular challenge to a
Bayesian approach. They do, however, acknowledge that
in different areas (e.g., causal reasoning), Bayesian ideas
are being successfully applied to developmental data
(Navarro et al. 2006; Sobel et al. 2004). Straubinger
et al’s emphasis on working memory provides good
reason to believe that our particular approach to deductive
reasoning may extend to development. Copeland and
Radvansky (2004) explicitly related working-memory
limitations to PHM, finding that it provided as good an
explanation as mental models theory of the relationship
between working-memory capacity and reasoning per-
formance. This result provides some indication that, at
least for syllogistic reasoning, developmental trajectories
explicable by mental models may be similarly amenable
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to explanation in terms of probability heuristics. Our
approach also provides a natural way in which experience,
leading to the learning of environmental statistics, might
influence reasoning development. Exploring these possibi-
lities must await future research.

R6. The Bayesian turn

BR is part of a larger movement across the brain and cog-
nitive sciences — a movement which sees cognition as cen-
trally concerned with uncertainty; and views Bayesian
probability as the appropriate machinery for dealing with
uncertainty. Probabilistic ideas have become central to
theories of elementary neural function (Doya et al
2007), motor control (Kérding & Wolpert 2004), percep-
tion (Knill & Richards 1996), language processing
(Manning & Schiitze 1999), and high-level cognition
(Chater & Oaksford 2008a; Chater et al. 2006). They also
cut across Marr’s (1982) computational (Anderson 1990;
Pearl 2000), algorithmic (Jacobs et al. 1991), and imple-
mentational (Doya et al. 2007) levels of explanation. In
arguing that commonsense reasoning should be under-
stood in terms of probability, we are merely recasting
Laplace’s (1814/1951) classic dictum concerning the
nature of probability theory: “The theory of probabilities
is at bottom nothing but common sense reduced to
calculus.”

NOTES

1. Although Braine and O’Brien (1991) explicitly reject the use of
relevance logic (Anderson & Belnap 1975), this does provide an
interesting possible route for developing these ideas. In particular,
interpretations of the semantics of relevance logics as a ternary relation
between possible worlds, or from an information-theoretic perspective,
as a ternary relation between a source, a receiver, and a channel
(Restall 1996), may provide interesting connections with nonmonotonic
reasoning.

2. By contrast, we know of just one paper in the psychology of reason-
ing discussing Dempster-Shafer belief functions, namely, George (1997).

3. Its normative status has also been questioned for many years (see,
e.g., Field 1978).

4. This is despite the fact that they were not fixed in Oaksford and
Chater (1994).

5. Of course, different assumptions would yield different results. For
example, if the previous dialogue had been talking about the swannery,
where most swans are black, just before introducing Tweety, the assump-
tion may be that Tweety comes from that swannery and so Tweety is white
might only be endorsed at .1.
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