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1 Introduction
There are two longstanding theoretical approaches to learning and concept representation, one based on
features and one based on similarity.

The feature approach has its roots in associative learning (e.g., Pavlov, 1927) and the idea that learning
involves acquiring associations from individual cues to consequential outcomes or responses. Formal models
of this learning process assume that any stimulus is decomposable into a set of features, and that learning
involves adjusting the associative strength of each feature (Estes, 1950; Rosenblatt, 1958). More modern
versions of these models posit learning rules whereby features compete to make predictions (Rescorla & Wag-
ner, 1972), a mechanism that famously explains blocking (Kamin, 1968) and other forms of cue competition
in category learning (Gluck & Bower, 1988).

The similarity approach makes a radically different assumption, that learning is centered on whole stimuli
rather than on substituent features. This view has its roots in experimental work on stimulus generalization
(Guttman & Kalish, 1956) and the idea that learning can be characterized by the degree to which knowledge
acquired about one stimulus is transferred or generalized to another. Formal models of similarity-based
learning assume that responses to new stimuli are determined by direct generalization from previously en-
countered stimuli (Nosofsky, 1986; Shepard, 1987). Learning per se is based on acquisition of new exemplars
(Nosofsky, 1986) or on learning configural associations from whole stimuli to outcomes (Kruschke, 1992;
Pearce, 1987, 1994). Similarity-based models have shown great success in predicting transfer performance
on novel stimuli (Nosofsky, 1992), particularly in cases where behavior is not well captured by an additive
function of stimulus features (Medin & Schaffer, 1978; Pearce & Bouton, 2001).

The debate between feature- and similarity-based learning has a long history in both animal conditioning,
as a debate between elemental and configural models, and in human category learning, as a debate between
examplar models and prototype or connectionist models. The debate seems to get at fundamental questions
regarding the nature of knowledge and psychological representation. Are conceptual and causual knowledge
encoded in associations among individual features (cues), or in memory for specific instances (exemplars)?
Is a stimulus fundamentally represented in an analytic fashion, in terms of its values on various features, or
holistically, in terms of its similarity to other stimuli? It seems natural to believe that one of these views must
be more correct than the other, and that clever experimental and computation research should eventually
be able to determine which set of principles governs the brain’s operation.

However, recent theoretical developments in machine learning suggest that the difference between feature
and similarity models is not as fundamental as psychologists have believed. Instead, the principles of these
two approaches turn out to be compatible, via a deep mathematical connection. This connection is embodied
in the kernel framework, a mathematical system that has been used to formulate a variety of powerful
machine-learning algorithms for classification and prediction (Schölkopf & Smola, 2002). Under the kernel
framework, simple linear algorithms, such as linear regression or the support vector machine, are made much
more flexible by first projecting the stimulus set into a high (usually infinite) dimensional vector space, and
then applying the algorithm in that new space (Shawe-Taylor & Christianini, 2004). The vector space is
called a reproducing-kernel Hilbert space (RKHS), and it is generated by a kernel function that assigns a
real number to every pair of stimuli in the original space. In principle, learning and optimization are done
in the RKHS, which is what gives kernel methods their great flexibility. However, in practice all necessary
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calculations can be re-expressed in terms of the kernel function in the original (simpler) stimulus space. This
equivalence, known as the kernel trick, allows for learning algorithms that are simultaneously flexible and
computationally efficient, as well as having good convergence properties.

The proposal explored in the present paper is that the brain exploits the computational power of the
kernel trick, to achieve the advantages of similarity and feature strategies simultaneously. In psychological
terms, the kernel and the RKHS can be thought of as separate similarity- and feature-based representations
of the same stimuli. That is, the kernel can be interpreted as a similarity function, sim (x, x′), and the the
RKHS can be equated with a (possibly infinite) set of feature dimensions, F . For every stimulus x in the
original space, there is a corresponding vector x = (xi)i∈F in the RKHS, and the similarity between any two
stimuli equals the inner product (or dot product) between their feature representations:

sim (x, x′) =
∑
i∈F

xix
′
i. (1)

Fundamental mathematical results from functional analysis show that for any similarity function obeying
certain criteria (given below), there always exists a feature representation satisfying Equation 1, and vice
versa (Mercer, 1909).

The fact that similarity and feature representations can be constructed satisfying Equation 1 has been
shown to imply equivalence between psychological models of learning that had been previously considered
antithetical. Jäkel, Schölkopf, and Wichmann (2007) showed that exemplar models of categorization are
equivalent to prototype models, if sim defines the exemplar similarity function and prototypes are defined with
respect to the features in F . Likewise, Jäkel, Schölkopf, and Wichmann (2009) showed that exemplar models
are equivalent to perceptrons (i.e., one-layer neural networks) when the perceptron encodes stimuli by their
values on the features in F . Ghirlanda (2015) proved analogous results in the domain of conditioning, namely
that elemental models of conditioning, which learn associations from individual features (e.g., Rescorla &
Wagner, 1972), are equivalent to configural models, which learn associations from whole exemplars and
generalize according to similarity (e.g., Pearce, 1987, 1994). Again, the equivalence holds if sim defines the
configural model’s similarity function and F defines the features for the elemental model.

It is important to recognize that, in these cases of equivalent models, the feature representation usually is
entirely different from the representation used to derive the similarity function. That is, most similarity-based
models assume that the similarity function arises from some underlying stimulus representation together with
some theory of similarity, rather than directly positing the similarity function as a primitive. For example,
Shepard’s (1957, 1987) influential model of similarity and generalization holds that stimuli are represented
in a multidimensional Cartesian space, x = (x1, . . . , xm) and that similarity is an exponential function
of distance in that space: sim (x, y) = exp (−

∑
|xj − yj |). Likewise, Tversky’s (1977) contrast model of

similarity holds that stimuli are represented by binary attributes, x = (x1, . . . , xm) with xj ∈ {0, 1}, and
similarity is determined by the shared and distinctive attributes of two stimuli. In both cases, the dimensions
or attributes j ∈ {1, . . . ,m} that underlie the similarity representation (x) are entirely different from the
features i ∈ F that constitute the feature representation (x) in Equation 1. The important point here is
that, regardless of where a model’s similarity function comes from, if that function is related to some feature
set F according to Equation 1, then the set of concepts or behaviors learnable by the similarity model is
identical to that learnable by the feature model.

The equivalence between similarity and feature models is an example of the classic tradeoff in psychological
modeling between representation and process. In this case, similarity processing on one representation is
equivalent to feature processing on a different representation. This finding might be taken as a major problem
for psychological learning theory, in particular as a problem of model unidentifiability. The equivalence
means that one cannot determine—even in principle—whether the brain learns by feature associations or
similarity-based generalization from exemplars. However, we suggest that this is the wrong question. In
fact, the equivalence between similarity and feature models implies the question of which is more correct
is meaningless. Instead, we propose a view of duality, whereby feature and similarity models are viewed
as two descriptions of the same system. We recall that models are just that: formal (mathematical or
computational) systems that researchers create as a means to describe and understand the modeled system
(the mind or brain). When two models are formally equivalent, they can still differ in the insights they afford,
much like viewing some complex geometrical or architectural structure from different angles. Following this
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viewpoint, we refer to Equation 1 as the kernel duality, and we show in this paper how it can yield a deeper
understanding of human and animal learning than can feature or similarity models taken separately.

The kernel trick is celebrated in machine learning because it enables one to obtain the best of both
worlds: the intuitiveness and optimality properties of linear (feature) methods, and the computational
efficiency and flexibility of nonlinear (similarity) methods. Here we advocate an analogous approach in
cognitive modeling. Research founded on feature and similarity models has produced a variety of theoretical
principles, concerning how each of these learning strategies can explain complex empirical phenomena as well
as how they can confer advantages from a normative standpoint. Furthermore, within both of these model
classes there are competing models that differ in the details of how knowledge is updated after each learning
event, and in the contributions of other mechanisms such as attention. In the present paper we follow the
model translation approach of Jones and Dzhafarov (2014), in which the insights, principles, and specific
hypotheses from one modeling framework are reinterpreted in another, by exploiting their formal equivalence.
We argue that the translation approach enables recognition of deeper connections than possible within one
framework alone, integration of ideas that previously appeared incommensurable, and development of more
powerful and encompassing theories. Thus we aim to move past the feature-similarity debate to a new view
in which these two perspectives mutually inform each other.

The remainder of this paper is organized as follows. Section 2gives formal definitions of the kernel
framework and of similarity and feature-based learning models. In Section 2, we formally define feature and
similarity models of associative learning and show how, when their representations are related by Equation 1,
the set of concepts or output functions they can learn is identical. We then introduce the mathematical
framework of kernel methods from machine learning and explain how the equivalence between similarity and
feature models fits within that framework, and show how the mathematical tools from the kernel framework
can be used to construct feature models that are dual to similarity models and vice versa. In Section 3, we
develop the dual-representation model in detail. We start with a similarity model with similarity defined by
a generalization gradient in a multidimensional stimulus space, and we derive a dual feature representation
based on an infinite family of features all defined by a shared shape of receptive field but at various scales
(resolutions) and locations throughout the stimulus space. We then demonstrate connections between this
continuous-features model and neural population coding, theories of separable versus integral dimensions,
and Bayesian models of concept learning. In Section 4, we apply the idea of the kernel duality to theories
of attention in learning. We show how two fundamentally different theories of attention, one grounded
in feature processing and the other in similarity, can be seen to implement exactly the same mechanism
but applied to different (dual) representations. We then use the kernel duality to translate each theory of
attention into the opposite modeling language, expressing feature-based attention as a change in similarity
and similarity-based attention as a change in features, and show how this translation yields new insights
into the implications of these theories. Finally, Section 5 discusses other potential applications of the duality
approach, including translation of learning rules between similarity and feature models, and modeling of
asymmetric similarity using recent results extending the RKHS construction from Hilbert space to the more
general Banach space (Zhang & Zhang, 2012). To some extent, the results reported in this paper represent
the low-hanging fruit offered by the kernel duality. There is much more work to be done to develop a
complete theory that integrates the similarity and feature approaches. Our primary aim with this initial
work is to demonstrate the potential of the duality perspective, both in learning theory and elsewhere in
cognitive science.

2 Similarity, Features, and the Kernel Framework

2.1 Equivalence of Similarity and Feature Models
The psychological models falling under the scope of this paper all involve learning to estimate values for stim-
uli. These values could represent outcome probabilities in a classical conditioning task, category-membership
probabilities in a categorization task, or action tendencies or expected rewards in an operant conditioning
(reinforcement learning) task. In tasks with multiple possible outcomes or actions, such as categorization
with multiple categories, a response rule is also needed to convert the estimated values for the different
options into choice probabilities, such as the Luce choice (Luce, 1963) or softmax rule (Sutton & Barto,
1998). However, we set the question of response rules aside for now, because it is independent of the learning
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model per se (i.e., any learning model can be combined with any response rule). Thus for present purposes
we can restrict to a single outcome and think of any learning model as working to learn a mapping, v, from
the space of possible stimuli to the space of real numbers (R).

Similarity models calculate their output values from weighted similarity to stored exemplars. The model
assumes a similarity function with sim (x, x′) ∈ R for every pair of stimuli x and x′ (including x = x′).
The model maintains a set of exemplars,

{
x1, . . . , xn

}
, either determined in advance or able to grow with

experience, and learning involves updating a weight for each exemplar,
{
c1, . . . , cn

}
.1 In tasks with multiple

outcomes or actions, there would be a separate set of exemplar weights for each option, but we omit this from
our notation for simplicity. For example, in the generalized context model of categorization (GCM; Nosofsky,
1986), each exemplar has a weight of 1 if it was observed in the category in question, and 0 otherwise. In
the attention-learning covering map (ALCOVE; Kruschke, 1992), the weights are continuous-valued and are
updated by gradient descent after each trial. In Pearce’s (1987, 1994) configural models of conditioning, the
weights are continuous but after each trial only the weight for the presented stimulus is updated. Despite
these differences in learning rules, the set of value functions these models can in principle represent is the
same.2 At any point in learning, any similarity model has some finite set of exemplars and associated weights.
Thus the model’s output for any possible stimulus x on the next trial is equal to

vs (x) =
n∑

i=1

ci · sim
(
xi, x

)
. (2)

Therefore the set of value functions (vs) learnable in principle by a similarity model is the set of all functions
of the form in Equation 2, for any natural number n, any set of stimuli

{
x1, . . . , xn

}
as the exemplars, and

any real numbers
{
c1, . . . , cn

}
as the weights.

Feature models represent each stimulus as a vector of feature values, x. The model learns a weight vector,
w, consisting of a weight for each feature. At any point in learning the model’s output for a stimulus x is
equal to the inner product of that stimulus with the current weight vector:

vf (x) =
∑
i∈F

wixi. (3)

As with similarity models, feature models vary in their rules for updating the feature weights (e.g., Kruschke,
2001; Mackintosh, 1975; Rescorla & Wagner, 1972). Setting aside those differences for now, the set of value
functions (vf) learnable in principle by a feature model is the set of all functions of the form in Equation 3,
for any real values of the weights.

Assume now that Equation 1 holds for all pairs of stimuli. This equation entails a strong relationship
between the similarity function of the similarity model and the feature representation of the feature model.
Assume also that the stimulus vectors x in the feature model span the feature space, meaning the features
are all linearly independent so there is no degeneracy in the feature representation (otherwise, we could
simply remove any redundant features). Under these conditions, the set of learnable value functions for the
two models is exactly the same (see Ghirlanda, 2015, for a similar result). To see this, first consider any
value function predicted by the similarity model, as given in Equation 2. If we define the feature model’s
weight vector by

w =

n∑
i=1

ci · xi, (4)

1We use superscript to indicate different stimuli, and subscript to indicate different features of a stimulus. Dummy variables
such as i and j are used to index stimuli or to index features; we always indicate which is being indexed if it is not clear from
context.

2The GCM might appear more limited than the other two, because of its discrete weights. However, because exemplars can
be encountered multiple times in different categories, and because response rules normalize the output values across categories,
the GCM’s exemplar weights can effectively take on any rational values.
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then the feature model’s output is

vf (x) =
∑
j∈F

n∑
i=1

cixi
jxj

=

n∑
i=1

cisim
(
xi, x

)
= vs (x) . (5)

Conversely, for any choice of feature weight vector w, the assumption that the stimuli span the feature space
implies there exist coefficients

{
c1, . . . , cn

}
and stimuli

{
x1, . . . ,xn

}
that satisfy Equation 4. Adopting these

coefficients and the corresponding exemplars
{
x1, . . . , xn

}
for the similarity model, we see once again that

vf (x) = vs (x) by the same reasoning as in Equation 5.
Thus, any similarity model is equivalent to a feature model, and any feature model is equivalent to a

similarity model, provided there exists a representation for the other model (i.e., a feature set or a similarity
function) satisfying Equation 1. This equivalence is in terms of value functions that the models can in
principle produce; we address the question of specific learning rules later in this paper. The demonstrated
here is a fairly elementary result from a mathematical perspective, and it has been observed previously in
the psychological literature (Ghirlanda, 2015; Jäkel et al., 2007, 2009). Nevertheless, we believe it has not
received the appreciation it merits. The proposal advanced here is that the equivalence points to a deeper
mathematical understanding of biological learning than is possible from either class of models alone. To
provide the groundwork for that deeper understanding, we turn now to a summary of the kernel framework
from machine learning.

2.2 The Kernel Framework
The kernel framework is a mathematical system defined by a dual pair of representations on some input set
(i.e., means of imposing structure on that set). The first representation is a kernel: a two-place, real-valued
function on the inputs. The second representation is the RKHS: a space of real-valued (one-place) functions
on the inputs.3 The representations are dual in that the inner product in the RKHS reproduces the kernel.
In this and the following two subsections, we summarize the essential properties of the kernel framework
that have been established in the machine-learning literature and offer psychological interpretations of these
properties. The interested reader is referred to Aronzajn (1950) and Schölkopf and Smola (2002) for a more
thorough treatment of the mathematical details.

Let X be an arbitrary set, which we can think of as comprising all potential stimuli relevant to some
psychological task. Assume we have a function that assigns a real number to every pair of elements of X .
This is the kernel function, which we can think of as a measure of similarity:

k : X × X → R.

(R represents the real numbers.) Given a kernel, we can also define the evaluation function for each stimulus
x ∈ X , which represents the similarity of x to all other stimuli:

k (x, ·) : X → R.

Assume also that we have a space H of one-place functions, each of which assigns a real number to every
member of X :

∀f ∈ H, f : X → R.

We can think of each f ∈ H as a possible value function that a learning model might be capable of repre-
senting. Now assume that H has the structure of a Hilbert space, which generalizes Euclidean space (Rm)
to also include spaces with infinite dimensionality. Formally, a Hilbert space is defined as a real vector space
with an inner product, meaning that it is closed under addition (if f ∈ H and g ∈ H, then f + g ∈ H) and

3The framework naturally extends to the case where the kernel and the functions in the RKHS map to the complex numbers,
but for present purposes we specialize to the real case.
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scalar multiplication (if f ∈ H and c ∈ R then cf ∈ H), and it has an inner product that we denote by 〈·, ·〉
(〈f, g〉 ∈ R for all f, g ∈ H). The inner product generalizes the notion of dot product to vector spaces of
possibly infinite dimensionality. We can loosely think of the inner product of two functions f : X → R and
g : X → R as a measure of their correlation or degree of agreement across the stimulus space.

Given a kernel and Hilbert space as just defined, we say that k is a reproducing kernel for H (or H is
a RKHS for k) if the evaluation functions k (x, ·) are elements of H for all x ∈ X, and furthermore for all
x ∈ X and f ∈ H:

〈f, k (x, ·)〉 = f (x) . (6)

An immediate consequence of this condition is that the inner product reproduces the kernel:

〈k (x, ·) , k (x′, ·)〉 = k (x, x′) . (7)

The relationship in Equation 6 is commonly referred to as the reproducing property, and it links each
evaluation function k (x, ·) with the corresponding function-evaluation operator f∗

x : f 7→ f (x) (which is a
map from H to R). The reproducing property is the defining characteristic of a RKHS, and it is equivalent to
the kernel duality as defined in Equation 1. Indeed, given a kernel and Hilbert space satisfying Equation 6,
we can choose any orthonormal basis F for H and treat it as a set of feature dimensions. The feature set then
provides provides a coordinate system for H, and in particular the evaluation functions can be expressed as

k (x, ·) =
∑
i

〈fi, k (x, ·)〉 fi

=
∑
i

fi (x) fi (8)

If we define the feature representation for each stimulus x as the vector of its values on the features in F ,
x = (fi (x))i∈F , then the kernel duality follows:

∑
i

xi · x′
i =

〈∑
i

fi (x) fi,
∑
j

fj (x
′) fj

〉
= 〈k (x, ·) , k (x′, ·)〉
= k (x, x′) . (9)

Conversely, if a kernel k and feature set F satisfy the kernel duality, then the evaluation functions satisfy
k (x, ·) =

∑
i fi (x) fi. If we define H as the Hilbert space generated by the feature functions in F (i.e., with

F as an orthonormal basis), then any element of H can be written as f =
∑

i wifi and the reproducing
property follows:

〈f, k (x, ·)〉 =

〈∑
i

wifi,
∑
j

fj (x) fj

〉
=
∑
i

wifi (x)

= f (x) . (10)

Psychologically, we interpret the kernel and Hilbert space as constituting dual representations, one in
terms of similarity and the other in terms of features. The bridge between these representations is the
evaluation function, k (x, ·), which encodes the similarity of x to all other stimuli and is also an element of
the vector space H (which we have also written above as x to emphasize the vector interpretation). Thus
the inner product of any two stimuli in their vector representations equals their similarity.

Under the kernel duality, the kernel and the Hilbert space determine each other uniquely. These properties
of unique determination in turn provide two means of constructing RKHS systems: One can define a kernel
(satisfying certain necessary and sufficient conditions) and construct the corresponding Hilbert space, or
one can define a Hilbert space (again satisfying certain necessary and sufficient conditions) and derive the
corresponding kernel. These two methods, which correspond to deriving a feature model equivalent to any
similarity model, and deriving a similarity model equivalent to any feature model, are described next.
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2.3 From Similarity to Features
Consider first a finite stimulus set X =

{
x1, . . . , xn

}
. Any function k : X × X → R can be written as a

similarity matrix K with Kij = k
(
xi, xj

)
. The function is said to be an admissible kernel if the similarity

matrix is symmetric (meaning k
(
xi, xj

)
= k

(
xj , xi

)
) and positive semidefinite (meaning vTKv ≥ 0 for any

column vector v, where T indicates transposition). Under these conditions, a standard result from linear
algebra implies that the similarity matrix can be decomposed as

K = FTF. (11)

The matrix F can be thought of as a feature matrix, with Fij indicating the value of stimulus j on feature
i. This matrix is not unique, but one way to construct it is to set the rows of F (i.e., the features) equal
to the eigenvectors of K, scaled such that

∑
j F

2
ij is equal to the corresponding eigenvalue. Given such a

decomposition of the similarity matrix, we can idenfity each stimulus xi with the vector of its feature values
xi = F·i. Equation 11 can then be rewritten as

k
(
xi, xj

)
=
〈
xi,xj

〉
, (12)

where
〈
xi,xj

〉
= xi · xj is the inner product (or dot product) between the vectors. Thus the feature

representation F and the similarity function k satisfy the kernel duality (cf. Ghirlanda, 2015).
This result generalizes to the case of an infinite stimulus set. Let X now be a multidimensional space, for

example a region in Rm for some integer m. A similarity function k : X ×X → R is an admissible kernel if it
is continuous and symmetric and if the similarity matrix for any finite set of stimuli is positive-semidefinite.
Most symmetric similarity functions used in psychological models (e.g., exponential or Gaussian functions of
distance) satisfy this property. A classical result in functional analysis known as Mercer’s theorem (Mercer,
1909) implies that for any admissible kernel function, there exists a (possibly infinite) set F of feature
functions fi : X → R such that

k (x, x′) =
∑
i

fi (x) fi (x
′) (13)

for any stimuli x and x′. We can thus identify each stimulus x with its vector of feature values, x = (fi (x))i,
and the kernel duality is satisfied for this case of an infinite stimulus set (and typically infinite feature set).

Given the set of features that is dual to a given kernel, one can also define a Hilbert space H comprising
all functions of the form v =

∑
i wifi. These constitute all the value functions that can be expressed as

linear combinations of the features (Equation 3).4 The inner product is defined by 〈fi, fi〉 = 1 for all i and
〈fi, fj〉 = 0 for all i 6= j, so that the features form an orthonormal basis (or axis system) for H. From
Equation 13, the evaluation function for any stimulus can be written as an element of H with the coefficients
given by its feature values:

k (x, ·) =
∑
i

fi (x) fi (14)

Therefore the evaluation functions satisfy the reproducing property (Equation 6) asderived above in Equa-
tion 10. Thus the kernel duality is achieved by identifying each stimulus with its evaluation function (concep-
tualized as a vector in the Hilbert space H). Notice that identifying a stimulus x with its vector of features
values, (fi (x))i, is essentially the same as identifying it with its evaluation function, k (x, ·) =

∑
i fi (x) fi,

because the features fi are a coordinate system (i.e., orthonormal basis) for H. To illustrate in the two-
dimensional case, where the feature space is a Cartesian plane, the difference is just that between the pair of
numbers (x1,x2) and the point in the plane with coordinates (x1,x2). The former emphasizes the analytic
represention of a stimulus as a sequence of feature values, and the latter emphasizes the stimulus’s relation
to all other stimuli via the inner product over all features.

As an alternative to constructing the RKHS from the features guaranteed by Mercer’s theorem, one can
define it directly from the kernel’s evaluation functions, k (x, ·). Specifically, given any stimulus set X (finite
or infinite) and a symmetric and positive-semidefinite kernel k, we can define H as the space of all functions of

4In the case of an infinite feature set, the coefficients are constrained to satisfy
∑

i w
2
i < ∞, which ensures that the inner

product in H is always finite.
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the form
∑n

i=1 c
ik
(
xi, ·

)
for any finite set of stimuli

{
x1, . . . , xn

}
and real coefficients

{
c1, . . . , cn

}
.5 Thus H

comprises all value functions vs that can be learned based on similarity (Equation 2). Under this conception
of H, the inner product can be directly defined by the reproducing property (Equation 7). Therefore by
linearity of the inner product, the inner product of any two elements of H is given by〈

n∑
i=1

cik
(
xi, ·

)
,

m∑
j=1

djk
(
yj , ·

)〉
=
∑
i,j

cidjk
(
xi, yj

)
. (15)

This operation is well-defined because, if f =
∑n

i=1 c
ik
(
xi, ·

)
, then for any g ∈ H:

〈f, g〉 =
∑
i

cig
(
xi
)
. (16)

Therefore the value of 〈f, g〉 is independent of how g is written as a sum of evaluation functions (if multiple
such sums exist). The same argument applies to f . The operator 〈·, ·〉 is linear in both arguments (Equa-
tion 16 shows this for the second argument), and it is symmetric because k is. The positive-semidefiniteness
of k can be shown to imply that 〈f, f〉 > 0 for any nonzero f ∈ H. These properties imply 〈·, ·〉 is an inner
product.

As explained below in Section 2.5, any admissible kernel has a unique RKHS satisfying Equation 6.
Therefore the construction of H based on Mercer’s theorem (or the finite version in Equation 11) and the
construction based on the evaluation functions yield one and the same Hilbert space. In particular, the set
of features F = {fi} guaranteed by Mercer’s theorem always forms a basis for H, implying the evaluation
functions can always be written according to Equation 14 and thus that any stimulus x can always be
identified with its feature values (fi (x))i. Furthermore, the two equivalent constructions of H show that it
is both the space of all value functions learnable from similarity (Equation 2) and the space of all functions
learnable as linear combinations of features (Equation 3).

2.4 From Features to Similarity
Assume we are given a set F of features, each of which can be thought of as a function from the stimulus space
to the real numbers: fi : X → R. Every stimulus x can be identified with its feature values, x = (fi (x))i.
If there are finitely many features, then it is straightforward to define a kernel or similarity function as the
inner product of these feature vectors:

k (x, x′) = 〈x,x′〉 =
∑
i

fi (x) fi (x
′) . (17)

This definition immediately implies that k is symmetric and positive-semidefinite. The definition works
just as well if F is infinite, provided the features satisfy what can be called an l2 constraint, namely that∑

i fi (x)
2
< ∞ for all stimuli x. In other words, every stimulus’s feature vector x must have a finite

Euclidean norm within the feature space. If this constraint is satisfied, then the inner product and hence the
kernel is guaranteed to be finite for all stimulus pairs, by the Cauchy-Schwarz inequality. Psychologically,
the l2 constraint is a reasonable restriction to assume for infinite-dimensional feature models, because if it
is violated then it can be shown that standard updating rules based on error correction (e.g., Rescorla &
Wagner, 1972) will lead the model to predict infinite outcome values—effectively, the model learns an infinite
amount in a single trial. Conversely, if l2 is satisfied then a feature learning model will be well-behaved even
with an infinite number of features.

Given such a feature set, one can also define a Hilbert space H comprising all functions of the form∑
i wifi for real coefficients satisfying

∑
i w

2
i < ∞. Then the evaluation functions k (x, ·) =

∑
i fi (x) fi lie

in H, and H comprises all value functions learnable as linear combinations of features in F , and equivalently
all value functions learnable by similarity using k.

A kernel can also be constructed directly from a Hilbert space H of functions f : X → R, even without
a given set of features. For each x ∈ X , define a functional from H to R by f∗

x (f) = f (x). If f∗
x is bounded

5Technically, to obtain a true Hilbert space we must also consider all convergent (i.e., Cauchy) sequences of such functions,
and include the functions that are limits of those sequences. In mathematics, this is the process of completing the vector space.
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(meaning f (x) ≤ M whenever 〈f, f〉 ≤ 1, for some bound M), then another classic result in mathematical
analysis, the Riesz representation theorem (Frechet, 1907; Reisz, 1907), implies that f∗

x is equivalent to
taking the inner product with some element of H. In other words, there is an element fx of H satisfying

〈fx, f〉 = f∗
x (f) = f (x) (18)

for all f ∈ H. Now fx, which is a function from X to R, can be taken to be the function indicating similarity
of all stimuli to x. In other words, we can define the kernel by taking fx as its evaluation function:

k (x, ·) = fx. (19)

Equations 18and 19 together imply the reproducing property (Equation 6), and thus H is a RKHS for k.
Furthermore, if F is any orthonormal basis for H, then each evaluation function can be written as

k (x, ·) =
∑
i∈F

〈k (x, ·) , fi〉 fi

=
∑
i∈F

fi (x) fi (20)

and moreover the assumption above that each f∗
x is bounded can be shown to be equivalent to the assumption

that the feature set F satisfies the l2 constraint.

2.5 Uniqueness and Extension
The previous two subsections have shown how any similarity function has a dual feature space, and vice versa.
The essense of these constructions is that any similarity function (if it is symmetric and positive semidefinite)
can be factored into the product of a feature set with itself, in the sense of Mercer’s theorem or Equation 11,
and any feature set (if it satisfies the l2 constraint) defines an inner product that can be interpreted as
a similarity function. In this section we explain the extent to which these constructions are unique. We
first summarize the established results from machine learning that the kernel is uniquely determined for any
Hilbert space or feature set, and that for any kernel the Hilbert space is uniquely determined and the features
are determined up to rotation within the Hilbert space. We then explore some potentially psychologically
meaningful ways in which the Hilbert space and feature set can change, with a corresponding change in the
kernel.

Given a set of features F , the kernel duality (Equation 1) immediately determines the kernel. Likewise,
given a Hilbert space H for which the evaluation functionals f∗

x are bounded, the element fx provided by
the Riesz representation theorem must be unique. This is because fx is defined by its inner product with
all other elements of H (Equation 18), and if two members of a Hilbert space match everywhere in terms
of the inner product then they must be identical. Uniqueness of fx in turn implies uniqueness of the kernel
(Equation 19). Thus the kernel is uniquely determined by the inner product, as provided either by H or by
F .

Going in the other direction, a kernel does not uniquely determine a dual feature set, but it does determine
a unique feature space. The only flexibility comes from rotating the features, which is easy to see in the
finite-dimensional case: If U is any rigid rotation matrix, then its transpose equals its inverse, and therefore
Equation 11 can be replaced by

K = FTUTUF = (UF )
T
UF. (21)

In general, flexibility in choice of F corresponds to choice of an orthonormal basis for H, which generalizes
the idea of choosing an axis system in finite-dimensional Euclidean space.

To see that H is uniquely determined by k, that is, that every kernel has a unique RKHS, consider the
construction of H in Section 2.3 based on the evaluation functions (e.g., Equation 15). This construction is
easily seen to yield the minimal Hilbert space that is dual to k, because it is the minimal Hilbert space that
contains the evaluation functions k (x, ·). Moreover, the inner product is uniquely determined on H, from
(7). Assume now that H′ is another Hilbert space satisfying the reproducing property (Equation (6)). H
nust be a subspace of H′, so for any function f that lies in H′ but not in H, we can define g as the projection
of f into H. Since k (·, x) ∈ H for any x, its inner products with f and g are the same, implying

f (x) = 〈f, k (x, ·)〉 = 〈g, k (x, ·)〉 = g (x) . (22)
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Therefore f = g and f ∈ H. This implies H′ = H and thus H is unique. This result is known as the
Moore–Aronszajn theorem (Aronzajn, 1950).

Despite this uniqueness result, in general it is possible to extend an RKHS H with kernel k to a larger
Hilbert space H+, with a new kernel k+ that differs from the original in interesting ways. To see how the
two kernels would be related, note that for any f ∈ H its inner products with the two kernels are equal:

〈f, k (x, ·)〉 = f (x) =
〈
f, k+ (x, ·)

〉
. (23)

Therefore k and k+ differ only by functions that are orthogonal to H. Thus for all x we can write

k+ (x, ·) = k (x, ·) + gx

for some unique gx in H⊥, the subspace of H+ that is orthogonal to H. Now for any g ∈ H⊥ and x ∈ X ,

g (x) =
〈
g, k+ (·, x)

〉
= 〈g, k (·, x) + gx〉
= 〈g, gx〉 . (24)

Therefore (gx)x∈X defines the reproducing kernel for H⊥, via k⊥ (x, x′) = gx (x
′). In conclusion, any exten-

sion of H must take the form H+ = H⊕H⊥ with k+ = k + k⊥. The direct sum, ⊕, essentially indicates a
Cartesian product (e.g., Rn ⊕ Rm = Rn+m), and it implies here that bases or feature sets for these Hilbert
spaces would be related according to F+ = F ∪ F⊥. Psychologically the extension from H to H+ could be
interpreted as learning new features (i.e., dimensions of the feature space), whose contribution to similar-
ity (the kernel) is simply added to the existing similarity function. Stated differently, the sum of any two
similarity functions corresponds, via the kernel duality, to the union of their corresponding feature sets.

A special case arises when the original (i.e., smaller) Hilbert space is defined by the kernel evaluation
functions on one stimlus set, and the new (larger) Hilbert space is defined by an expanded stimulus set. Let
k1 be a kernel on stimulus set X1, and H1 the corresponding RKHS. Let X = X1 ∪X2 (with X1 ∩X2 = ∅) be
an expansion of the stimulus set, with a kernel k that extends k1 (i.e., k (x, x′) = k1 (x, x

′) for any x, x′ ∈ X1),
and let H be the RKHS corresponding to k. In other words, the stimulus set has expanded but similarity
among the original stimuli is unchanged.

To understand how the two Hilbert spaces H1 and H relate, we first define a new space, H̃1, that is
a minimal extension of H1 from a space of functions on X1 to a space of functions on X . We do this by
considering the evaluation functions for all stimuli in X1 but treated as functions on X ; that is, k (x1, ·) :
X → R for all x1 ∈ X1. Let H̃1 be the Hilbert space generated by these functions, with inner product defined
by

〈k (·, x1) , k (·, x′
1)〉H̃1

= k1 (x1, x
′
1) = k (x1, x

′
1) (25)

for all x1, x
′
1 ∈ X1. Note that the inner product in H̃1 is the pullback of the inner product in H1, via

restriction from X to X1. That is, for all f, f ′ ∈ H̃1,

〈f, f ′〉H̃1
= 〈f |X1

, f ′|X1
〉H1

. (26)

Furthermore, restriction to X1 constitutes a 1-1 mapping between H̃1 and H1. This is because, if any function
f =

∑
i c

ik
(
xi, ·

)
(with xi ∈ X1) is equal to zero everywhere on X1, then

〈f, f〉H̃1
=
∑
i

cif
(
xi
)
= 0, (27)

which implies f must be zero everywhere. Therefore any two functions in H̃1 that agree on X1 must agree
everywhere on X . Consequently, H1 and H̃1 are isomorphic; that is, the RKHS on X1 can be generalized
to an identically structured RKHS on X . From the standpoint of the feature representation, the feature
set is unchanged. The only change is that the embedding of the stimulus set X1 into the feature space (via
x1 7→ k (x1, ·)) has been extended to cover the larger stimulus set X .

The definition of the inner product in H̃1 implies that 〈f, f ′〉H = 〈f, f ′〉H̃1
for all f, f ′ ∈ H̃1, and thus H

is an extension of H̃1 (i.e. H̃1 is a subspace of H). Therefore, using the results above, H can be decomposed
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as H̃1 ⊕ H̃2 with k = k̃1 + k̃2, where k̃1 and k̃2 are the reproducing kernels for H̃1 and H̃2 (and H̃1, k̃1, k̃2,
H̃2 are all defined on the full stimulus set X ). For all x1 ∈ X1, k (x1, ·) satisfies the reproducing property in
H̃1, and thus k̃1 (x, x1) = k (x, x1) for all x ∈ X and x1 ∈ X1. Therefore k̃1 and k agree everywhere except
on X2 ×X2, and thus k̃2 = 0 everywhere except X2 ×X2. By the same argument as above, H̃2 is isomorphic
to H2, the RKHS on X2 defined by the restricted kernel k2 = k̃2|X2×X2

.
In summary, given an original stimulus set (X1) and kernel (k1), and extensions thereof (X = X1 ∪ X2,

k|X1×X1 = k1), the extended RKHS (H ) is a direct sum of the original RKHS (H1) and an RKHS on the
new stimuli (H2), with the latter comprising all functions orthogonal to those generated by the original set.
Psychologically, the sequence H1 → H̃1 → H can be interpreted as follows: When a new group of stimuli
(X2) is encountered, they can initially be represented using the class of features already known for the
original stimuli (F1). The class of learnable concepts is thus far unchanged (H̃1

∼= H1). However, additional
features unique to the new stimuli (i.e., that do not vary among the original stimuli) can then expand the
representation (H = H̃1 ⊕H̃2 and F = F1 ∪F2). Under the kernel duality, incorporating these new features
corresponds to adding a new component to the similarity function (k̃2) that has no impact on the original
stimuli.

2.6 Psychological applications
In machine learning, the RKHS or feature space representation is not explicitly calculated, because the
learning algorithms used with kernel methods require calculation of only the inner products, which can be
evaluated directly using the kernel function. This is the kernel trick, which is considered a primary advantage
of the approach in that field. In psychology, however, we are often interested in models that deal directly
with feature representations, which in the kernel framework correspond to the dimensional structure of the
Hilbert space. Understanding this structure is thus of potential value for cognitive modeling. Unfortunately,
standard methods for defining RKHSs do not provide means for determining a set of features that form an
orthonormal basis for the space. Mercer’s theorem guarantees these feature functions exist (Equation 13),
but it is not constructive. The construction of the RKHS based on evaluation functions (Equation 15)
provides an explicit representation of every function in the space, but it also does not provide an orthonomal
basis. Such a basis would be important for explicitly deriving feature-based models (e.g., perceptrons) that
are dual to certain similarity-based models (e.g., exemplar models), and for understanding how the feature
representations of the former depend on mechanisms in the latter such as attention learning.

The new results of Section 2.5 offer some ideas about psychological representations and representation
change. Although these results to not provide a full basis for a RKHS, they provide some structure by showing
how it can be decomposed into subspaces defined by different classes of features or by different subsets of
stimuli. They also show that such vector-space decompositions are concomitant with additive decompositions
of the kernel, with potentially useful relationships between an original kernel and the additive components
of a new, expanded kernel.

The construction in Section 2.3 implies that the evaluation functions constitute a frame or Riesz basis
for the RKHS, meaning that every function in the space can be written as a linear combination of evaluation
functions (see also Equations 2 & 3). This property has applications for example in wavelet analysis in
vision. However, it is important to recognize that the evaluation functions are not orthogonal, except in the
degenerate case where similarity between any distinct stimuli is zero. Mistaking the evaluation functions for
an orthonormal basis encourages one to consider a perceptron-style model in which the kernel directly defines
a set of feature dimensions. That is, the kernel is viewed as embodying a receptive field, with k (x, ·) defining
an activation function for a feature “centered” at x. For example, if the stimulus space were equipped with
an m-dimensional Euclidean geometry and k were a Gaussian function of distance in that geometry, then
one could imagine a basis function centered on each stimulus (or on a lattice of stimuli) with a m-variate
Gaussian receptive field. Although we see promise in an approach that equates basis functions (i.e., feature
dimensions) with receptive fields, and that identifies each basis function with a stimulus that lies at the
center of its receptive field, the function defining the receptive field in such a model is not the same as the
kernel.

In Section 3 we develop and analyze models of this type, and derive the correct relationship between
receptive fields, feature distributions, and the kernel. Briefly, because the kernel is the inner product over
all feature dimensions, it essentially equals the self-convolution of the function defining the receptive field.
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To see this, assume X has a vector-space structure (e.g., Rm) and a set of basis functions is defined by

fx (x
′) = r (x′ − x) .

Here we think of r as a tuning curve and bx as an activation function for a feature centered on x with shape
determined by r.6 Then the feature representation of any stimulus x′ is given by

x′ = (fx (x
′))x∈X = (r (x′ − x))x∈X (28)

and the kernel is given by

k (x′, x′′) = 〈x′,x′′〉

=

∫
X
r (x′ − x) · r (x′′ − x) dx, (29)

where the integral is with respect to whatever measure determines the distribution of the basis functions bx
(i.e., the density of stimuli x on which the basis functions are centered). If r is a Gaussian then k is also a
Gaussian, with double the variance. However, if r is more complex, as might be the case for more structured
stimuli, then the difference between r and k could be more significant. This exposition illustrates the utility
of the kernel duality perspective as applied to psychology, as that perspective explicitly acknowledges the
two representations involved (viz., similarity and feature-based) as well as the different roles of the kernel
within these two representations.

3 Translating similarity models into continuous-features models

3.1 Feature models for continuous stimulus spaces
Many similarity-based models, especially those in the tradition of multidimensional scaling, are founded on
continuous stimulus spaces (Nosofsky, 1992; Shepard, 1962). The stimulus space is typically modeled as
X ⊆ Rm for some integer m, and similarity as a function of vectors in this space, sim (x, x′). Most often the
similarity function is translation-invariant (Shepard, 1957), meaning it can be written as

sim (x, x′) = Γ (d) , (30)

where Γ is a generalization gradient and d = x−x′ is the vector indicating the difference between two stimuli.
Here we investigate how these models can be recast as feature-based models, using the kernel duality. Thus
the goal is to translate the similarity function (treated as a kernel) into a corresponding feature space.

To avert possible confusion, we stress that the dimensional representation x ∈ Rm that determines
similarity in Equation 30 is entirely different from the feature representation x ∈ H. The goal here is to
derive the Hilbert space H, and associated basis of feature functions F , such that the two representations
satisfy the kernel duality.

As explained in Section 2.5 earlier, the Hilbert space associated with any kernel is unique. However,
interpreting a RKHS as a feature space requires selecting an orthonormal basis for that Hilbert space, with
each basis element interpreted as a feature. Because the choice of basis will not be unique, neither will
the feature representation. That is, for any feature representation that reproduces the kernel in question,
arbitrary “rotations” of that representation (e.g., replacing features f1 and f2 with sin θ · f1 + cos θ · f2 and
cos θ · f1 − sin θ · f2) will also reproduce the kernel. Therefore we must constrain the problem further.

Our approach here is to assume that all features have a shared, predetermined shape, and that they differ
only in scale and in location within the stimulus space. Specifically, we define a tuning curve, r : Rm → R,
which is taken to integrate to unity and to be symmetric, r (−d) = r (d). Then for all stimuli z ∈ Rm and
scalars s ∈ R+ (i.e., positive real numbers), we define a feature fs,z : Rm → R by

fs,z (x) =
1
sm r

(
x−z
s

)
. (31)

6One could also assume r is symmetric: r (x′ − x) = r (x− x′). This assumption is unnecessary for symmetry of k, but it
does make the self-convolution interpretation more exact.
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Figure 1: Schematic population of features using a Gaussian tuning curve. Each curve indicates the activation
function of one representative feature. Each tier in the diagram contains features with different resolutions
(separated and renormalized for visual clarity). Features at each level of resolution are uniformly distributed
throughout the stimulus space. The similarity kernel or generalization gradient generated by the model is
determined by the relative density of features at different resolutions.

Thus the feature fs,z can be thought of as having a receptive field centered on z, with activation function
instantiating the tuning curve r with scale s. (The scaling coefficient 1

sm ensures every feature’s activation
function integrates to unity, a property that will be useful later.) For example, r could be the standard m-
variate Gaussian, and then the set of features comprises Gaussian receptive fields at all scales and locations
(Figure 1). Thus the model admits a loose interpretation as a population of sensory neurons, although it
also could apply at higher stages of processing, where stimulus representations are more complex.

Because the set of features is infinite, we require a measure on that set.7 We assume the measure is
translation-invariant (i.e., independent of z), which will imply translation-invariance of the corresponding
kernel. Thus the question of the measure reduces to one of specifying the density of features at each scale
s, which we represent as a weighting function, p (s). We take the weighting function to integrate to unity,
and therefore it can be thought of as determining the proportion of features at any (range of) spatial scale.
Under this model, any stimuli x and x′ have feature representations x and x′, corresponding to their values
on all features, and the inner product of these feature representations is given by:

〈x,x′〉 =

∫ ∫
fs,z (x) fs,z (x

′) p (s) dzds. (32)

The model will be equivalent to the similarity model in Equation 30 if 〈x,x′〉 = sim (x, x′) = Γ (x− x′) for
all x and x′. In that case we will have translated the similarity model into a feature-based model, one with
an infinity of features with a regular organization. We refer to the latter as the continuous-features model,
because features are continuously distributed throughout the stimulus space.

One property of the continuous-features model is that, given a stimulus x, its similarity integrated over
all other stimuli equals unity. This follows from the assumptions that r and p (s) integrate to unity:∫

sim (x, x′) dx′ =

∫ ∫ ∫
1
sm r

(
x−z
s

)
1
sm r

(
x′−z
s

)
p (s) dzdsdx′

=

∫
p (s)

[∫
1
sm r

(
x−z
s

) [∫
1
sm r

(
x′−z
s

)
dx′
]
dz

]
ds

= 1. (33)
7A technical issue here concerns whether the feature set is countably or uncountably infinite. The present construction

implies it is uncountable, although Mercer’s theorem guarantees a countable feature set. We set aside this subtle inaccuracy
for the present exposition, because it enables more convenient derivations in terms of integrals.

13



In psychological applications, the scaling of similarity is usually arbitrary, so that c · sim is essentially the
same as sim. Therefore a given similarity function can always be rescaled to satisfy

∫
sim (x, x′) dx′ = 1

(provided the integral is finite). Note that this offers an alternative to the common convention of defining
self-similarity to equal unity, sim (x, x) = Γ (0) = 1.

In summary, we define a feature-based model with a continuous set of features, with receptive fields
all having the same shape and varying only in resolution and location. The features at a given scale are
assumed to be uniformly distributed throughout the stimulus space. The flexibility in the model lies in the
density of features at each scale. The goal of translating a similarity model like that in Equation 30 into
this feature-based framework is to determine the resolution-density function (p (s)) that will reproduce the
given kernel or generalization gradient (Γ).

3.2 Unidimensional Stimuli
Consider first a unidimensional stimulus space, isomorphic to R. Thus the tuning curve is a function
r : R → R that is symmetric about zero, and each feature fs,z has an activation function replicating r with
width s and location z. Let x and y be any two stimuli, separated by a distance d = |x− y|. The inner
product of their associated feature representations is equal to

〈x,x′〉 =

∫ ∫
1
s2 r
(
z
s

)
r
(
d−z
s

)
p (s) dzds

=

∫
1
s [r ∗ r]

(
d
s

)
p (s) ds, (34)

where r ∗ r denotes the convolution of the tuning curve with itself:

[r ∗ r] (d) =
∫

r (z) r (z − d) dz. (35)

Therefore the model yields a generalization gradient given by

Γ (d) =

∫
1
s [r ∗ r]

(
d
s

)
p (s) ds. (36)

The generalization gradient contributed by any fixed feature resolution (i.e., value of s) equals the convolution
of the tuning curve with itself, scaled by s. When resolution is variable, the overall generalization gradient,
or kernel, is a mixture of the kernels contributed by individual resolutions, with mixture distribution p (s).
This mixture property relates to work in machine learning on learning of a kernel via convex optimization
(e.g., Micchieli & Pontil, 2007). This connection will become useful later when we explore mechanisms for
attention learning, which can be characterized as learning p (s).

As a detailed example, we work through the simple case where features are all-or-none intervals. The
tuning curve is thus a boxcar distribution,

r (d) =

{
1 − 1

2 ≤ d ≤ 1
2

0 otherwise,
(37)

and its self-convolution r ∗ r is a triangular distribution,

[r ∗ r] (d) =

{
1− d −1 ≤ d ≤ 1

0 otherwise.
(38)

Thus the generalization gradient is a mixture of these triangular distributions, expressed as

Γ (d) =

∫
d
s≤1

1
s

(
1− d

s

)
p (s) ds

=

∫ ∞

s=d

s−d
s2 p (s) ds. (39)

14



By differentiating twice with respect to d, we obtain a complementary relationship giving p in terms of Γ:

Γ′ (d) =

∫ ∞

s=d

− 1
s2 ps (s) ds, (40)

Γ′′ (d) = 1
d2 ps (d) , (41)

and therefore
p (s) = s2Γ′′ (s) . (42)

Thus the density of feature resolutions can be uniquely determined for any generalization gradient, provided
it is twice-differentiable and convex.8

For example, if generalization obeys the empirically supported exponential law, Γ (d) = α
2 e

−αd (Shepard,
1987), then p (s) = α3

2 s2e−αs; that is, s ∼ Gamma (3, α). Scale-free or power-law generalization, Γ (d) ∝ d−a,
corresponds to scale-free feature density, p (s) ∝ s−a (with a truncated tail at zero or infinity, depending
on whether a ≥ 1 or a ≤ 1). If we switch from a boxcar to a Gaussian tuning curve, then numerical
calculations (available from the first author) show that s ∼ Gamma (3, α) still yields a close approximation
to an exponential generalization gradient. Thus if the continuous-features model is taken literally as a model
of neural processing, then the model together with Shepard’s (1987) theory of exponential generalization
gradients offers a precise prediction about the distribution of the sizes of tuning curves in sensory neurons.

For general choices of the tuning curve r, Equation 36 is a Fredholm integral equation (Fredholm, 1903)
for determining the function p (s) from a given generalization gradient Γ. By introducing the changes of
variables l = ln (d) and u = ln (s), and the functions Θ(l) = Γ

(
el
)
, q (u) = p (eu), β (x) = [r ∗ r] (ex), we

obtain a new Fredholm equation that admits an analytic solution:

Θ(l) = Γ (d)

=

∫
1
s [r ∗ r]

(
d
s

)
p (s) ds

=

∫
β (l − u) q (u) du

= [β ∗ q] (l) . (43)

Thus Θ is the convolution of β and q, which in many cases will enable q—and hence p (s)—to be explicitly
derived using Fourier transforms. In other words, Equation 43 provides a simple connection between the
generalization gradient (Θ, as a transform of Γ), the tuning curve (β, as a transform of r), and the resolution-
density function (q, as a function of p). This connection offers a means for developing a general theory of
continuous-features models that are dual to various similarity models under various tuning curves.

3.3 Multidimensional Stimuli and Dimensional Separability
We now consider the case of a multidimensional stimulus space, modeled as X = Rm with m > 1. A
longstanding axiom in psychological modeling (originating with Medin & Schaffer, 1978), is that similarity
is multiplicative across dimensions:

sim (x, x′) =
∏
i

simi (xi, x
′
i) .

Within the present framework, there are two natural ways to achieve this relationship, differing in how the
features combine across dimensions. The first is a tensor-product approach (cf. Smolensky, 1990), wherein
the joint model contains a feature for every possible combination of features on the individual dimensions.
That is, we assume for each dimension i a set of pre-features Fi and define the unidimensional similarity on
that dimension as

simi (xi, x
′
i) =

∫
f∈Fi

f (xi) f (x′
i) df. (44)

8The requirement that Γ be convex follows from the fact that p (s) cannot be negative. Note, however, that other choices
of r produce different relationships between p (s) and Γ and can yield nonconvex generalization gradients. For example, if r is
Gaussian then Γ is a mixture of Gaussians at different scales, which can be nonconvex.
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For example, the elements of Fi could be distributed as in Section 3.2, and then similarity on each dimension
would be as in Equation 36. Given a set of pre-features for each dimension, we then define the set of
multidimensional features as the Cartesian product across dimensions,

F =
⊗

Fi. (45)

Thus each feature f ∈ F is defined by a set of one receptive field per dimension, f = (f1, . . . , fm), and we
define its activation function as the product of its constituents’:

(f1, . . . , fm) (x) =
∏
i

fi (xi) . (46)

Then the multiplicative similarity rule holds:

sim (x, x′) =

∫
f∈F

f (x) f (x′) df

=

∫
f1∈F1

· · ·
∫
fm∈Fm

m∏
i=1

[fi (xi) fi (x
′
i)] df1 · · · dfm

=

m∏
i=1

[∫
fi∈Fi

fi (xi) fi (x
′
i) dfi

]

=
m∏
i=1

simi (xi, yi) . (47)

Alternatively, we could assume that there are no multidimensional features but that instead similarity is
determined separately on each dimension and then directly multiplied together to determine joint similarity.
That is, the dimension-specific feature sets Fi are primary, and the relationship

sim (x, x′) =

m∏
i=1

[∫
fi∈Fi

fi (xi) fi (x
′
i) dfi

]
(48)

is computed directly rather than via joint features as defined in Equations 45 and 46.
The distinction between these two possible feature representations for multidimensional stimuli can be

taken as a theory of the psychological distinction between integral and separable dimensions (Garner, 1974;
Shepard, 1964). The tensor-product representation models the psychological representation of integral di-
mensions, because there is no explicit dimensional structure to the set of features F . Although the joint
features were mathematically constructed as m-tuples of unidimensional pre-features, psychologically we as-
sume the joint features are primary. The set of features having a particular choice of fi for dimension i (i.e.,
the set F1 × · · · ×

{
f i
}
× · · · × Fn) has no coherent psychological identity. Likewise, stimuli matching on

one dimension have nothing psychologically special in common, and thus a value xi on dimension i has no
particular meaning beyond the whole stimulus x that exhibits that value. Thus the representation affords no
basis for dimension-specific rules or dimensional selective attention. Nevertheless, the stimulus space is not
entirely unstructured. In particular, the representation provides enough structure to explain the results of
Jones and Goldstone (2013), which ruled out a purely topological model of integral dimensions (i.e., a rep-
resentation based solely on local similarity). Indeed, the distribution of features in F , as inherited from the
Cartesian product in Equation 45, defines a local geometry sufficient for learning of orthogonal constituent
dimensions of the sort implied by Jones and Goldstone’s experiments.

In contrast, the factorial representation of Equation 48 models the psychological representation of sep-
arable dimensions, because it makes the dimensional structure psychologically explicit. The features in Fi

enable recognition of stimuli matching on dimension i, in turn enabling learning of rules and other higher-
order concepts. Factorial representations for separable dimensions are also normatively defensible, because
of the geometric explosion of features that would otherwise be required under a joint-feature representation.
Maintaining joint features that simultaneously encode values on multiple dimensions makes sense only when
stimuli defined by those dimensions are better processed holistically, as is arguably the defining property of
integral dimensions.
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A primary theory of the integral/separable distinction in the literature concerns the shapes of multi-
dimensional generalization gradients (more precisely, of their isoclines), or equivelently of the difference
between Euclidean (L2) and city-block (L1) dissimilarity metrics. Integral dimensions tend to exhibit circu-
lar generalization gradients and are better modeled with L2 metrics in multidimensional scaling. Separable
dimensions tend to exhibit diamond-shaped generalization gradients and are better modeled with L1 met-
rics. The tensor-product representation automatically produces circular generalization consistent with an L2
metric—the only assumption required is the natural one that the joint tuning curve is a radial basis function
(i.e., is isotropic). Although the factorial representation does not necessarily generate L1 generalization, it
does under the additional assumption that generalization is an exponential function of dissimilarity (Shepard,
1987). In that case, we have

sim (xi, x
′
i) = αi

2 e−αi

∣∣xi−x′
i

∣∣
, (49)

where αi determines the scale of the generalization gradient along dimension i, often interpreted as an
attention parameter (see Section 4). Then overall similarity is given by

sim (x, x′) =

m∏
i=1

simi (xi, x
′
i)

= 1
Z e−

∑
i αi

∣∣xi−x′
i

∣∣
, (50)

where Z = 2m/
∏m

i=1 αi is a normalization constant. Thus similarity is a monotonic function of the L1 (i.e.,
city-block) distance ‖x− x′‖1 (with each dimension i scaled by αi), yielding diamond-shaped isoclines.9

Finally, the joint and factorial representations introduced here naturally offer an explanation of the well-
known findings that dimensional selective attention is easier with separable than with integral dimensions
(e.g., Garner, 1974). Dimensional selective attention has been modeled in the literature as a change in the
generalization gradient, becoming narrower along attended dimensions and broader along unattended dimen-
sions (Kruschke, 1992; Nosofsky, 1986). Fits of these models show this mechanism operates more effectively
with separable than with integral dimensions (Jones, Maddox, & Love, 2005; Kruschke, 1992; Nosofsky,
1987). This empirical dissociation concords nicely with the distinction proposed here between factorial and
joint-feature representations. Under a factorial representation, attention to individual dimensions is easily
achieved, because each dimension has its own bank of features that can be weighted independently of how
other dimensions are processed, enabling independent control of simi for each dimension i. As we show
below in Section 4, the principle of narrower generalization gradients for attended dimensions and broader
gradients for unattended dimensions corresponds to emphasizing fine-resolution features in the former and
coarse-resolution features in the latter (i.e., shifting the distribution p (s) toward smaller and larger values
of s, respectively). In contrast, under a joint-feature representation, the set of features has no dimensional
decomposition. Changing the weighting of fine- versus coarse-scale features would change the overall shape
and breadth of the generalization gradient, but in an isotropic manner.

3.4 Bayesian Interpretation
Shepard (1987) proposed a Bayesian model of generalization based on consequential regions (CRs) of stimuli
that reliably predict a given meaningful outcome. Generalization between stimuli x and x′ is assumed to
reflect the posterior probability that x′ belongs to the CR, given that x was sampled from the CR. We
show that this model is equivalent to a special case of the continuous-features model proposed above, where
the tuning curve r is taken to be an all-or-none (i.e., 0/1) function with shape matching that of the CR.
Furthermore, we show that this equivalence can be extended to provide a Bayesian interpretation of the
continuous-features model under any tuning curve (not just all-or-none ones).

Under the CR model, the subject assumes the shape of the CR is known (in the unidimensional case, it is
a connected interval), and its size is unknown with some given prior distribution. The location of the CR is

9The astute reader will realize that multiplicative similarity together with exponential generalization gradients always implies
an L1 metric. That is, this conclusion does not depend on the factorial representation but would also hold under the joint-
feature representation. We do not pursue this issue in detail here because it is not specific to the present model. Rather, the
issue is that the axioms of multiplicative similarity and exponential generalization taken together are at odds with the empirical
finding of circular isoclines for integral dimensions.
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uniformly distributed over the stimulus space (i.e., an improper prior distribution). The uniformity assump-
tion and the assumption that the shape of the CR is independent of its location imply the representation
is translation-invariant, just as in the continuous-features model. Shepard (1987) suggests this homogeneity
property could reflect prior learning or evolution of the stimulus space, a proposal that applies equally to
our model.

Under the Bayesian framing, each possible CR can be identified with a hypothesis hs,z, paralleling the
notation used in the continuous-features model, with the scaling defined so that the volume of the CR is
equal to sm. Denote the prior distribution on the true CR’s size by ρ (s). On observing a stimulus x paired
with the outcome in question (e.g., reward), the subject assumes that x was randomly sampled from the
true CR. Letting xR indicate that x was presented with reward, the likelihood p (xR|hs,z) for any candidate
CR equals s−m for x ∈ hs,z and zero for x /∈ hs,z. The model’s posterior probability that another stimulus
x′ lies in the true CR—that is, that it will lead to reward (R)—can then be calculated as:

Pr (R|xR, x
′) =

∫ ∫
Pr (R|hs,z, x

′) p (xR|hs,z) ρ (s) dzds∫ ∫
p (xR|hs,z) ρ (s) dzds

=

∫ ∫
x,x′∈hs,z

s−mρ (s) dzds∫ ∫
x∈hs,z

s−mρ (s) dzds

=

∫
Γs (x, x

′) ρ (s) ds (51)

where Γs (x, x
′) = s−m

∫
x,x′∈hs,z

dz is the proportion of CRs of size s containing x that also contain x′. In

particular, when m = 1, Γs is the triangular function Γs (x, x
′) = max

{
1−

∣∣x−x′∣∣
s , 0

}
. Equation 51 shows

that the CR model’s generalization gradient is a mixture of Γs for different s, with mixture weights given
by the size distribution ρ (s).

Shepard’s (1987) CR model can be shown to be a special case of the continuous-features model, with the
tuning curve defined by the shape of the CR. Indeed, define a tuning curve r : Rm → R as the indicator
function for a generic CR of size s = 1:

r (d) =

{
1 z + d ∈ h1,z

0 otherwise,
(52)

where z is arbitrary. Defining features fs,z according to Equation 31, these features then satisfy

fs,z (x) =

{
s−m x ∈ hs,z

0 x /∈ hs,z.
(53)

Next, let c =
∫
smρ (s) ds, and define a scale distribution for the continuous-features model by p (s) =

smρ (s) /c. We then obtain the following equivalence between the two models:

Pr (R|xR, x
′) =

∫ ∫
x,x′∈hs,z

s−mρ (s) dzds

=

∫ ∫
fs,z (x) fs,z (x

′) smρ (s) dzds

= c · sim (x, x′) . (54)

As dicussed above, the scalar c can be ignored when modeling similarity or generalization, because it can be
absorbed into whatever operational measure is used to assess these psychological quantities. In conclusion,
the CR model can be reinterpreted as a continuous-features model in which the features are all-or-none, with
receptive fields corresponding to each candidate CR. The CR model’s generalization gradient then matches
the similarity function implied by that set of features. The transformation of the scale distribution between
models, from ρ (s) to p (s), reflects the size principle (Tenenbaum & Griffiths, 2001): the fact that the
likelihood of sampling x depends inversely on the size of the CR, thus making smaller CRs relatively more
likely in the Bayesian model.
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Building on this equivalence, we can offer a Bayesian interpretation of the continuous-features model for
an arbitrary tuning curve r. Without loss of generality, we assume max r (x) = 1.10 For each feature fs,z,
define a hypothesis hs,z governing the probability of reward according to

Pr (R|hs,z, x) = smfs,z (x)

= r
(
x−z
s

)
. (55)

That is, if the environment operates according to hs,z, then every time stimulus x is encountered the prob-
ability of reward is smfs,z (x). In the special case above corresponding the to CR model, the probabiliy of
reward is always one or zero (Equation 53). Next, let the prior distribution for the hypotheses be defined by
a prior ρ(s) = cs−mp (s) on the size and an improper uniform distribution on the location. When the subject
encounters a stimulus x paired with reward, (s)he assumes that x was sampled with probability proportional
to its likelihood of generating a reward, Pr (R|x). For example, the experimenter could have generated
stimuli completely at random until one arose that produced a reward. Under this sampling process, the
likelihood of any given stimulus being the one sampled is equal to

p (xR|hs,z) =
Pr (R|x, hs,z)∫
Pr (R|y, hs,z) dy

=
smfs,z (x)∫
smfs,z (y) dy

= fs,z (x) . (56)

When the subject later encounters a test stimulus, x′, the posterior probability that it will produce a reward
conditioned on the earlier observation of xR is given by

Pr (R|xR, x
′) =

∫ ∫
Pr (R|hs,z, x

′) p (xR|hs,z) ρ (s) dzds∫ ∫
p (xR|hs,z) ρ (s) dzds

=

∫ ∫
smfs,z (x

′) fs,z (x) ρ (s) dzds∫ ∫
fs,z (x) ρ (s) dzds

= c · sim (x, x′) . (57)

In conclusion, the continuous-features model’s similarity function can be interpreted as a Bayesian posterior
probability that one stimulus will trigger reward given that another did, under a generating process wherein
reward probability follows a known tuning curve (r) with unknown scale and location (s, z).

One question raised by this extension of Shepard’s (1987) model is whether his universal law of general-
ization holds under arbitrary tuning curves. Shepard found that, for a wide variety of plausible size distri-
butions ρ (s), the generalization gradient resulting from the CR model is nearly exponential: Pr (R|xR, x

′) '
e−α‖x−y‖. This finding was for all-or-none consequential regions and hence for all-or-none tuning curves in
the continuous-features model (e.g., a boxcar for n = 1). It would be interesting to explore whether a similar
result holds for other tuning curves. If so, then Shepard’s universal law would be a robust property of the
continuous-features model as well.

Finally, we note that the continuous-features model also has a Bayesian interpretation under another
sampling procedure. Tenenbaum and Griffiths (2001) distinguished two assumptions a Bayesian model of
generalization could make regarding how the initial (training) stimulus is sampled. The first possibility is
that the stimulus was chosen to be one that produces the outcome in question. This is the assumption used
in Shepard’s (1987) model and in our analyses above, and it is the assumption under which Tenenbaum and
Griffiths’ size principle arises. The second possibility is that the training stimulus was determined fully at
random and just happened to produce the outcome. Under this latter sampling process, the probability of
observing reward following x is simply:

Pr (xR|hs,z) = Pr (R|hs,z, x) . (58)
10We can always replace r (x) by s−mr (x/s) for any chosen s, and r will still integrate to unity and the resulting feature

set {fs,z} will be unchanged. Thus the only assumption needed is that r is bounded, i.e. that the maximal activation of any
feature is finite.
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If we then define hypotheses by

Pr (R|hs,z, x) = fs,z (x) , (59)

as an alternative to (55), and we identify ρ (s) = p (s), then the posterior becomes

Pr (R|xR, x
′) =

∫ ∫
Pr (R|hs,z, x

′) p (xR|hs,z) ρ (s) dzds∫ ∫
p (xR|hs,z) ρ (s) dzds

= =

∫ ∫
fs,z (x

′) fs,z (x) ρ (s) dzds∫ ∫
fs,z (x) ρ (s) dzds

= sim (x, x′) . (60)

Thus under the second sampling assumption the model has an even more direct Bayesian interpretation:
similarity is equal to the posterior probability for generalization (with no scaling factor), the features are
the same as the hypotheses’ likelihood functions, and the scale density for the features is the same as that
for the hypotheses.

4 Attention Learning
We have thus far established that the kernel duality provides an equivalence between learning models based
on similarity and on features, and we have demonstrated with the continuous-features model how a feature
representation can be explicitly derived that is dual to a similarity model based on generalization in a
continuous stimulus space. The main thesis of this paper is that these equivalences provide a means for
translating theoretical principles between similarity and feature-based modeling frameworks, thus affording
greater insight into biological learning than is possible in either framework alone.

To demonstrate the utility of the duality and translation approach, this section presents a theoretical
analysis of attention in learning. The proposal that associative learning is moderated by concomitant learning
of attention has a long history within both similarity and feature frameworks (Mackintosh, 1975; Nosofsky,
1986). However, theories and formal models developed in these two frameworks differ fundamentally in
the psychological mechanisms by which attention acts. Feature-based models of attention learning posit
that attention affects learning rates, determining how rapidly associations can be learned for individual
cues (Mackintosh, 1975). Similarity-based models of attention posit that attention affects generalization
gradients, determining how learning about one stimulus influences responding to other stimuli (Nosofsky,
1986; Sutherland & Mackintosh, 1971). Despite these apparently fundamental differences, we show here that
the kernel duality offers an interpretation wherein both forms of attention operate in exactly the same way,
just acting on different representations. Specifically, both theories of attention learning can be interpreted as
changing the scaling of stimulus representations, with attended dimensions being stretched and unattended
dimensions shrunken. Rescaling the similarity space (X ) manifests in changes to the generalization gradient,
and rescaling the feature space (H) manifests in changes to learning rates. Moreover, we show in the
continuous-features model how similarity-based attention to a dimension of the stimulus space is equivalent
to shifting attention from the coarse to the fine-scale features associated with that dimension.

4.1 Attention in Feature Models
Consider a standard perceptron-style feature model of associative learning. The model maintains a weight
vector w and, for a given input stimulus x, generates a prediction equal to

vf (x) = 〈w,x〉 . (61)

After feedback (t) is given, a prediction error is computed as the difference between actual and predicted
outcomes,

δ = t− vf (x) , (62)
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and w is updated according to gradient descent with a learning rate ε:

∆w = −ε

2

d

dw

(
δ2
)

= εδx. (63)

Thus each weight is updated in proportion to the model’s overall prediction error and to the activation of
the corresponding feature (which determines how much that weight contributed to the prediction).

This learning rule shows why the inner product between stimuli determines the generalization function
for feature models (Ghirlanda, 2015; Jones & Sieck, 2003). Given two stimuli presented in sequence, x then
x′, consider how learning following xaffects responding to x′:

∆vf (x
′) = 〈∆w,x′〉
= 〈εδx,x′〉
= εδ 〈x,x′〉 . (64)

Therefore generalization between stimuli is proportional to their inner product, and hence proportional to
the kernel that is dual to the model’s feature representation.

The learning rule in Equation 63 was first introduced in Rescorla & Wagner’s (1972) model of associative
learning. That model also assumed the features could vary in salience, with faster learning for more salient
features. With some simplification of notation, each feature fi is associated with a different learning rate,
εi, and the update for the weight component wi is given by

∆wi =
εi
2

d

dwi

(
δ2
)

= εiδxi. (65)

Subsequent work by Mackintosh (1975) reinterpreted the εi as reflecting attention, and proposed that at-
tention itself is learnable from feedback. 11Thus once a subject learns that a given cue is relevant in a task
environment, he or she can shift attention to that cue and thus acquire new associations for that cue more
rapidly (see Le Pelley, Mitchell, Beesley, George, & Wills, in press, for a review of empirical evidence).

Although this theory of attention is traditionally interpreted in terms of learning rates, it has a formally
equivalent interpretation based purely on the stimulus representation. To see this, we can reparameterize
the model with a new stimulus representation x̃ such that

x̃i =
√
εixi. (66)

In other words, each feature (viewed as a function on the stimulus space) is scaled up by a factor of
√
εi.

Define the reparameterized weight vector, w̃, by

w̃i =
1

√
εi
wi. (67)

Then the new weight and feature vectors generate the same prediction as before:

〈w̃, x̃〉 = 〈w,x〉 = vf (x) . (68)

The learning rule under the new parameterization is

∆w̃i =
1

√
εi
∆wi

=
√
εiδxi

= δx̃i. (69)

11In Mackintosh’s model, learning is based on the prediction from each feature alone, rather than on joint prediction error.
This difference is important for understanding the relationship between associative learning in feature vs. similarity models,
but it does not affect our analysis of attention learning here.
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Thus the learning rate equals 1 for all features. Instead of modifying the learning rates, attention acts to
rescale the feature space, such that attended feature dimensions are stretched out and unattended feature
dimensions are compressed (by factors of

√
εi). In terms of the stimulus representations (i.e., feature vec-

tors), differences between stimuli on attended feature dimensions become magnified whereas differences on
unattended feature dimensions become attenuated.

It is also instructive to derive the same equivalence from the opposite direction, in part because it shows
how the theory can be naturally generalized. Begin with a model with a learning rate of 1 for all features
(i.e., obeying Equation 69), and denote its stimulus representation and weight vector respectively by x̃ and
w̃. Let T be any invertible self-adjoint linear operator on the feature space, meaning that 〈Ty, z〉 = 〈y, Tz〉
and

〈
T−1y, z

〉
=
〈
y, T−1z

〉
for any feature vectors (i.e., stimulus or weight vectors) y and z. In the finite-

dimensional case, this means that T is an invertible symmetric matrix. Now define a reparameterized model
with stimulus representation x = T−1x̃, meaning

x̃ = Tx, (70)

and weight vector
w = T w̃. (71)

In the construction above (Equations 66 & 67), T is a diagonal matrix with

Tij =

{√
εi i = j

0 i 6= j.
(72)

Given these relationships between the two parameterizations, the (x,w) representation generates the
same prediction as the (x̃, w̃) representation,

〈w,x〉 = 〈T w̃,x〉
= 〈w̃, Tx〉
= 〈w̃, x̃〉 , (73)

and the learning rule for w is given by

∆w = ∆ [T (w̃)]

= T (∆w̃)

= T (δx̃)

= T 2δx. (74)

Thus we can think of T as an attention operator, with dual interpretations. Under the (x,w) representation,
T can be interpreted as directly modifying the learning process, such that the update is multiplied by
T 2 (Equation 74). That is, the learning rate along each eigenvector of T is scaled by the square of its
corresponding eigenvalue. Under the (x̃, w̃) representation, T can be interpreted as operating on the feature
representation, effecting a transformation of the feature space via Equation 70, with concomitant changes
to the metric of the space. That is, each eigenvector of T is rescaled by its eigenvalue. Under either
interpretation, T acts to emphasize (stretch) all eigenvectors having eigenvalues greater than unity, and to
de-emphasize (compress) all eigenvectors having eigenvalues less than unity. Under the classical formulation
(Equations 65 & 72), T is diagonal and the eigenvectors are the features themselves. In the general case,
the eigenvectors can be an arbitrary set of (mutually orthogonal) linear combinations of features, and T
implements attention to those linear combinations.

4.2 Attention in Similarity Models
Formal theories of attention learning in similarity models are founded in multidimensional-scaling approache
to stimulus representation (Nosofsky, 1992). Each stimulus is modeled as a point x = (x1, . . . , xm) in an
m-dimensional stimulus space X , and these coordinate representations determine similarity. (Again, we
stress that this multidimensional representation should not be confused with the feature representation
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Jones, Maddox, & Love (2005) Figure 2: Generalization gradient from a two-dimensional categorization task, in which only one dimension
is relevant to category membership. Generalization is seen to be broader along the irrelevant dimension, in
line with the generalization theory of attention (Nosofsky, 1986). Based on data from Jones, Maddox, and
Love (2005) and the sequential-effects technique for measuring generalization from Jones, Love, & Maddox
(2006).

x = (xi)i∈F that is equivalent to the similarity function under the kernel duality.) Similarity is assumed to
decrease with distance along each dimension, usually following a Gaussian or an exponential function. The
overall similarity between two stimuli is the product of the contributions from all dimensions:

sim (x, x′) =

m∏
i=1

exp
(
−αi (xi − x′

i)
p)

= exp

(
−

m∑
i=1

αi (xi − x′
i)

p

)
, (75)

where p equals 1 (exponential generalization) or 2 (Gaussian). The attention parameters, αi, determine
how much each dimension contributes to similarity, or equivalently how rapidly similarity drops off with
differences on each dimension. A large value of αi produces little generalization across dimension i, because
stimuli differing on that dimension are highly dissimilar, whereas a value of αi close to zero produces a
broad generalization gradient along that dimension. These predictions accord with empirical generalization
gradients in animals (see Honig & Urcuioli, 1981, for a review) and in humans (Jones, Maddox, & Love,
2005; Figure 2).

A common way to conceptualize this theory of attention is as a rescaling of the stimulus space (e.g.,
Kruschke, 1992). That is, similarity is thought of as a function of distance,

sim (x, x′) = e−d
(
x,x′)p

, (76)

where overall distance is either a city-block (p = 1) or Euclidean (p = 2) function of distance on the individual
dimensions:

d (x, x′) =

[
m∑
i=1

di (x, x
′)
p

]1/p
. (77)

Under this view, attention determines the metric on each dimension:

di (x, x
′) = αi |xi − x′

i| . (78)

Therefore increasing attention to a stimulus dimension amounts to stretching that dimension, and decreasing
attention amounts to shrinking it.

4.3 Translating Theories of Attention between Frameworks
The kernel duality offers two means to understand the relationship between feature- and similarity-based
theories of attention in learning. First, the two theoretical mechanisms can be viewed as operating on two
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Attention
via Similarity

Attention
via Associability

X H

𝑥 ↦ 𝑘 𝑥,⋅

Figure 3: Schematic summary of the parallel between generalization and associability theories of attention,
as revealed by the kernel duality. Attention acting on similarity or generalization is equivalent to rescaling
the similarity space (grey space at left). Under the kernel framework, the similarity space can be embedded
in the reproducing-kernel Hilbert space (blue space at right) by a nonlinear mapping that identifies each
stimulus x with its evaluation function k (x, ·). Attention acting on associability is equivalent to rescaling
of the Hilbert space, by rescaling the features that form a basis for that space. Under both mechanisms,
attended dimensions are stretched and unattended dimensions are compressed (red arrows). Thus the two
theories of attention correspond to identical operations acting on different stimulus representations.

different (yet dual) representations. Attention via associability acts on the feature representation (H and F),
and attention via generalization gradients acts on the similarity representation (X and k). As the previous
two subsections have shown, both of these mechanisms amount to rescaling their respective representations,
by stretching the attended dimensions and compressing the unattended ones. Figure 3 offers a schematic
illustration of this connection. We consider this result fairly remarkable, because on the surface these two
theories of attention seem entirely different, one concerning learning rates and other other concerning breadth
of generalization gradients.

Second, the kernel duality can be used to translate each attention mechanism into the other framework.
That is, the associability theory of attention can be recast as a change in the kernel, and the generalization
theory of attention can be recast as a change in the features.

One advantage of the reparameterization in Section 4.1, recasting the associability theory of attention
as rescaling of the feature space, is that it enables derivation of the equivalent kernel. Under the original
feature representation (i.e., before a shift of attention), the corresponding kernel is defined by

k (x, x′) = 〈x,x′〉 . (79)

Under the influence of attention, we can consider the stimulus representation to be modified according to
Equation 66, and thus the new kernel is defined by

k (x, x′) = 〈x̃, x̃′〉

=
∑
i∈F

εixix
′
i. (80)

This result can also be seen by following the reasoning above (Equation 64), to calculate the amount of
generalization from x to x′ when they are presented successively:

∆vf (x
′) = 〈∆w,x′〉

= δ
∑
i∈F

εixix
′
i. (81)

Thus the associability theory of attention is equivalent to weighting each feature (fi) by its learning rate (εi)
to determine overall similarity between stimuli.
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Figure 4: Distribution of features at different resolutions, for different levels of similarity-based attention.
Similarity is defined by an exponential generalization gradient, and features are from a continuous-features
model that is dual to the similarity model. Attention parameter is set at 1 for a neutral feature, 2 for an
attended feature, and 1

2 for an unattended feature.

Going in the other direction, we can use the continuous-features model to explore how similarity-based
changes in attention translate to changes in the dual feature space. As shown in Section 3.2, given a family of
features of a given shape (the tuning curve, r) distributed throughout the stimulus space, a unidimensional
generalization gradient can be translated into a density distribution for features at different scales. Therefore
changes in the generalization gradient can be modeled as changes in the feature density distribution. Take for
example the exponential generalization gradient of Shepard (1957, 1987), given in Equation 75 with p = 1.
From Equation 42 we saw that this similarity function is dual to a continuous-features model with a boxcar
tuning curve and feature resolutions (s) following a Gamma distribution:

s ∼ Gamma (3, α) . (82)

The rate parameter in this distribution, α, is the attention parameter in the generalization gradient. As
this parameter is increased, the distribution shifts toward finer scales, and as it is decreased the distribution
shifts towards coarser scales (Figure 4).

In a model of separable dimensions, we would assume a separate family of features for each dimension
of the stimulus space (X ), with overall similarity given by Equation 48. Increasing attention to some
dimensions and decreasing it to others would correspond to weighting the fine-scale features for the former
and the coarse-scale features for the latter. Because the continuous-features model embodies a mathematical
idealization of a continuous set of features (i.e., a feature fs,z for all z), the reweighting can be interpreted
in several ways. First, it can be viewed as changing the sampling density of features, with p (s) indicating
the number of features fs,z within any given interval of values of z. Thus attention changes the population
of features, with more features at more densely sampled resolutions and fewer features at less densely
sampled resolutions. Second, the reweighting can be viewed as keeping a fixed population of features and
rescaling their activation functions. Thus the value of each feature fs,z would be multiplied by

√
p (s) (see

Equation 32). Third, the features could be entirely unchanged, and attention could act on their learning
rates. Thus the learning rate for each feature weight ws,z would be proportional p (s). In summary all
four of these views of attention—rescaling the input dimensions to similarity, shifting the sampling density
of fine- and coarse-scale features on those dimensions, rescaling the activation values of those features, and
adapting their associative learning rates—are equivalent. Under the duality approach advocated here, they
are all different ways of modeling the same underlying biological system.
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5 Discussion
• summary of contribution

• other applications

– translation of associative learning rules [I have several results that could be summarized]

– translation of attention learning rules [several open questions here]

• extensions

– asymmmetric similarity functions

– Banach space representation and semi-inner product

– additional duality of reference vs. comparison stimulus
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