
Math Modeling, Week 12	
	
Start	with	the	code	for	categorization	models	at	
http://matt.colorado.edu/teaching/mathmodeling/week12code/catlearn.m		
	
1.	Run	the	models	on	the	linearly	separable	structure	in	the	current	code.	

a)	Make	sure	you	understand	the	code	for	creating	the	stimuli	and	simulating	all	three	models,	
and	the	graph	of	predictions	for	each	model.	

b)	Notice	that	I	set	the	choice	temperature	differently	for	the	three	models	to	get	comparable	
results.	Why	did	I	need	to	do	this;	was	it	for	an	interesting	reason?	

c)	Imagine	we	changed	the	stimulus	scaling,	e.g.	by	replacing	𝑋	with		𝑋 = 2𝑋.	How	would	the	
predictions	for	each	model	change	(if	at	all)?	How	could	we	adjust	each	model’s	parameters	to	
counteract	this	change	(i.e.,	so	that	the	model’s	predictions	are	identical	to	those	of	the	
original)?	

d)	Imagine	we	used	an	unbalanced	training	set,	e.g.	setting	ntrainA = 200.	What	should	
happen	for	each	model?	Try	it	and	see.	How	does	the	exemplar	model’s	sensitivity	to	
unbalanced	training	sets	depend	on	its	similarity	parameter	(alpha),	and	why?	

e)	Notice	I	set	the	network’s	learning	rate	to	.01,	even	though	fits	to	human	data	usually	yield	
results	of	.1	to	.3.	Try	a	larger	learning	rate	and	notice	how	much	the	model	predictions	change	
from	one	simulation	to	the	next	(even	with	the	same	stimuli).	Why	is	this,	and	what	are	the	
psychological	implications?	

2.	Change	the	categories	to	be	anisotropic,	i.e.	with	more	variance	along	one	dimension	than	
another.	For	example:	Xtrain(:,1)=Xtrain(:,1)/2;Xtrain(:,2)=Xtrain(:,2)*2; 

a)	Compare	the	behavior	of	the	network	and	prototype	models,	and	explain	the	difference	in	
terms	of	the	analysis	we	did	in	class.	

b)	The	exemplar	model	should	exhibit	an	S-shaped	category	boundary	(seen	most	clearly	from	
the	test	stimuli).	Explain.	

c)	Try	to	think	of	a	way	to	change	the	exemplar	model	so	that	its	behavior	is	similar	to	the	
network’s,	i.e.	with	response	depending	more	on	the	low-variance	dimension	even	for	
peripheral	stimuli.	

3.	Create	a	category	structure	in	which	the	exemplar	model	outperforms	the	other	two.	Then	
augment	the	stimulus	representation	with	a	third	dimension	that’s	some	nonlinear	function	of	
the	other	two	(i.e.,	𝑋$ = 𝑓 𝑋&, 𝑋( )	that	will	enable	the	network	and	prototype	models	to	solve	
the	task.	

For	example,	you	could	use	the	XOR	structure,	with XtrainA=[1 1; -1 -1]	and	
	XtrainB=[-1 1;1 -1],	and	then	define X(:,3) = X(:,1).*X(:,2).	We’ve	already	
discussed	how	Rescorla-Wagner	can	solve	the	XOR	task	with	the	addition	of	this	third	stimulus	



dimension.	Try	to	think	of	some	other	nonlinear	category	structure	for	which	you	can	do	
something	similar.	If	you	need	a	suggestion,	try	this:	
 
ntrainA = 200; %number of A training stimuli 
ntrainB = 200; %number of B training stimuli 
 
%category A: circle of radius 5 
radA = sqrt(rand(ntrainA,1)*5); %random radii (scaled to be uniform wrt area) 
angleA = rand(ntrainA,1)*2*pi; %random angle 
XtrainA = radA.*[sin(angleA) cos(angleA)]; %random points in circle 
 
%category B: annulus with inner radius 5 and outer radius 10 
radB = sqrt(rand(ntrainB,1)*5+5); %random radii (scaled to be uniform wrt area) 
angleB = rand(ntrainB,1)*2*pi; %random angle 
XtrainB = radB.*[sin(angleB) cos(angleB)]; %random points in annulus 
 
Xtrain = [XtrainA;XtrainB]; %combine training stimuli 
Xall = Xtrain; %no need for test stimuli 

	

	


