
Math Modeling, Week 13 
 
1. A kernel (or similarity function) 𝑘 is said to be positive-definite if it satisfies the following condition. For any 

set of stimuli 𝑥1, … , 𝑥𝑛, we can define a matrix 𝐾 by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗). The kernel is positive-definite if 𝐾 is 

always positive-semidefinite, meaning 𝑐T𝐾𝑐 ≥ 0 for any vector 𝑐 ∈ ℝ𝑛. 

Prove that a kernel must be positive definite in order for it to be equivalent to the inner product for some 
feature representation. That is, if each stimulus 𝑥𝑖 can be written as a vector of feature values 𝑥𝑖𝑙 with 

𝑘(𝑥𝑖, 𝑥𝑗) = ∑ 𝑥𝑖𝑙𝑥𝑗𝑙𝑙 , then the matrix 𝐾 must be positive-semidefinite.  

Hint: If there are a finite number of features (say, 𝑚 features), then we can think of 𝑥1, … , 𝑥𝑛 as defining a 
𝑛 × 𝑚 stimulus-by-feature matrix 𝑋, with 𝑋𝑖𝑙 = 𝑥𝑖𝑙. Notice that 𝐾 = 𝑋𝑋T, and also that 𝑐T𝑋 = ∑ 𝑐𝑖𝑥𝑖𝑖  is a 

feature vector defined by a linear combination of the 𝑥𝑖s. Prove that 𝑐T𝐾𝑐 must be nonnegative by writing it 
in terms of 𝑐T𝑋. Extra points if you can extend this proof to the case of a (countably) infinite set of features. 
 
2. Regularization refers to a variety of methods in machine learning whereby overfitting is reduced by 
encouraging simpler solutions. This is achieved by incorporating soft constraints into the objective function. 
That is, instead of optimizing the model’s fit to the training data, we optimize that fit plus an additional term 
that penalizes complex solutions. 

One of the most common instances of regularization is ridge regression, which extends ordinary least-squares 
(OLS) linear regression with a penalty term based on the sum of squared weights: 
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The first sum in 𝐿 is the normal sum-squared-error term from OLS regression, where �̂�𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗𝑗  (with 𝑖 

indexing the 𝑛 cases and 𝑗 indexing the 𝑚 predictors). The second sum is called an L2 penalty term (essentially 
because of the exponent in 𝛽2), and its contribution is scaled by the penalty parameter 𝜆. This penalty term 
encourages smaller weight vectors that are more evenly distributed across the cues. 

As in OLS regression, the goal is to find the weight vector �̂� that minimizes 𝐿. If we write everything in matrix 
notation, then the loss function becomes 

𝐿(𝛽) = (𝑋𝛽 − 𝑌)T(𝑋𝛽 − 𝑌) + 𝜆𝛽T𝛽 
(where 𝑋 is a 𝑛 × 𝑚 matrix of cases by predictors, 𝑌 is a 𝑛 × 1 column vector of outcomes, and 𝛽 is a 𝑚 × 1 

column vector of weights). Setting the derivative 
d𝐿

d𝛽
 to zero leads to the solution 

�̂� = (𝑋T𝑋 + 𝜆𝐼)−1𝑋T𝑌. 
The term ridge regression comes from the 𝜆𝐼 term, which adds a ridge along the diagonal of the covariance 

matrix. Notice that when 𝜆 = 0, �̂� reduces to the OLS solution. As 𝜆 grows larger, �̂� generally shrinks toward 
zero. 

(a) Implement ridge regression on this dataset. Optimize the penalty parameter using cross-validation, by 
plotting the root mean squared error on the test set as a function of 𝜆. Try it for different sizes of the training 
set and compare your results. See here for a guide on how to write the code. 

(b) Ridge regression has a Bayesian interpretation, where the weights are generated as 𝛽 ∼ 𝒩(0, 𝜎𝜂
2𝐼) and 

the outcomes are generated as 𝑦𝑖 ∼ 𝒩(𝑥𝑖𝛽, 𝜎𝜀
2). Show that posterior on 𝛽 is centered on �̂� as defined above. 

What is 𝜆 in terms of 𝜎𝜂
2 and 𝜎𝜀

2? 

(c) Use ridge regression to derive a regularized variant of Rescorla-Wagner, as follows. Recall that the RW 
learning rule is based on gradient descent on squared prediction error. Add an L2 penalty term as above, and 
apply gradient descent to derive a new learning rule. 
 

http://matt.colorado.edu/teaching/mathmodeling/week13code/ridgeData.mat
http://matt.colorado.edu/teaching/mathmodeling/hw13.2a.html

