Math Modeling, Week 1
A simple learning model
RL, prediction error, error correction
6=R-P
P'=P+¢d or AP=¢9
P is expectation (prediction), R is outcome (reward),  is prediction error, € is learning rate (internal parameter)

Examples
continuous outcomes: time (travel), reward (amount of food), punishment (pain, temperature)
discrete (binary) outcomes: event or no (food, shock), category A/B

— prediction as probability

Mathematical expression of a verbal theory

What can we do with it?

e Formal derivation: predictions

e Elaborate it: incorporate other theoretical principles
o Models aren’t atomic!

Simulate

Evaluate fit to data

e Estimate parameters

Formulate and test variants embodying competing hypotheses

e Use as measurement device

e Test experimental effects on parameter values

Formal predictions
Constant outcome (R)

AP = &-(R—P)
Equilibrium: no change if P = R
Rate of approach: Z = P-R (deviation). AZ = AP =-¢Z 7'=(l-¢)Z

— converges to correct value (R) exponentially, with rate parameter 1-¢
Binary outcome, IID Bernoulli
Outcome as {0,1}
Rewarded (1) trials: AP = g(1-P)
Z=P-1,7'=(1-¢)Z — convergence to Z=0, P=1
Non-rewarded (0) trials: AP = -gP
P'=(1-¢)P, convergence to P=0
Mixture, Pr[R=1] = a
<AP>=oa-g(1-P) + (1-a)-(0-P) = ¢g[a-1 + (1-a)-0 — P] = g[ax - P]
<AP>=g<0>=g[<R>— P] =¢[a. — P]
equilibrium, <AP>=0, at P = <R> = a
same exponential convergence, in the mean, but also local sequential effects
tangent on annealing

Elaborate
RL is model of learning process
Add variable stimuli, and a model of representation
Feature decomposition, with additive association weights
S =[SL,...,S,]
P=Sw=Y,Sw
Aw; = €3S, (gradient descent: update each w; in proportion to its contribution)
Rescorla-Wagner (1972): RL U additive feature associations U gradient descent

Simulation
Core matlab code
for t=1:n %]loop through trials
p(t) = s(t,))*w(:,t); %expected outcome
delta = r(t) - p(t); %prediction error
w(,t+1) = w(:,t) + e*delta*s(t,:)’; %learning update
end

2 cues, binary outcome



Probability matching for response rule: Pr[r= 1] =P

Plot of weight dynamics and response probability for a few cue designs:
¢ Blocking
e Two partially predictive cues
¢ One relevant and one irrelevant cue

Fit to data
Likelihood of data, according to model
Gives a number to quantify model fit (other methods too, e.g. SSE)

Pr[R | model] = [ [; Pr[R; | model]

In Pr[R | model] = X; In Pr[R; | model]

Compare model predictions to hypothetical data (graph).
How good? Hard to interpret in vacuum.

Estimate parameters
Plot learning rate vs loglikelihood
Peak is best-fitting model
Can get CI or standard error too
(1) distribution for difference in 2-loglikelihood

Test variants
Separate learning rates
Aw; = €08,
More free parameters (one per cue)
Necessarily fits better; significantly so?

Measurement

Psychological interpretation of parameters

Parameter estimate treated as a measurement—data transformation
Analogy: d'

Effects on parameter values
Comparing conditions or populations
Alternative to comparisons of raw behavior (%correct etc)
Compare estimated € between groups
Often more valid
Less noise, process-pure
Standard statistics (t-test etc) on parameter estimates (2-step analysis)
Or hierarchical analysis: Takes likelihoods of model into account (accurate error theory)

Exercises

1. Play with the code

a) Execute the 4 blocks of code in order and look at the graphical results.

b) Change the paradigm (1, 2, or 3), and the learning rate, and explore how things change.

c¢) Test the model on a different paradigm (i.e., cue-outcome schedule), or try something else creative.

2. A pathology with high learning rates

a) What happens if € > /2? Why? (Hint: simulate the model and then look at the values of p.)

b) That was for 2 cues. In general, with k£ cues, how large can € be before the same pathology appears? How could the model be
modified to avoid this problem?

3. Separate learning rates

a) Modify the code to allow a separate learning rate for each cue.

b) Generate data by simulating the common-¢ model, then fit it using both the common-¢ and the separate-€ models. The latter will
involve a joint search over g; for all i (I suggest limiting to 2 cues). How much better does the separate-e model fit?

¢) Write a loop around steps 3a and 3b, to generate a sampling distribution of the difference in loglikelihood between the two models.
What can you observe about this distribution?



