
Math Modeling, Week 2 
 
Full RL problem 
Learning to predict reward 
Multiple actions 
State dynamics 

Multiple actions 
Decision-making 
Prediction for each action, P(A) 
Action-selection rules 
Max selection: a = argmaxA {P(A)} 
Exploration/exploitation dilemma 
 Use predictions, but give all actions a chance 
Luce choice: Pr[a=A] µ P(A) 
Problem: negative values, interval scale 
Monotonic transform: Pr[a=A] µ f(P(A)) 
Softmax: Pr[a=A] µ eP(A)/T 

Input always positive 
Only differences matter, P(A) – P(A') 
Temperature parameter T 

State dynamics 
Stimuli predict future stimuli, not just immediate rewards 
Conditioned reinforcement 
Evaluate outcomes based on what they predict 
 S1 followed by S2 ® V(S1) = R(S1) + V(S2) 
 Circular; well-defined? 
Episodic tasks 

Tree example 
V anchored on terminal states 

Continuing tasks: (effectively) infinite reward sequence 
Return: R = St Rt×gt 
Temporal discounting 
 Exponential – strong psychological assumption 
 Horizon parameter g Î [0,1] 
Value function: V(S) = E[R|s0 = S] 
Recursion: V(st) = Rt + g×V(st+1) 
Markov process 
State space, transition matrix 
 T(S,S') = Pr[st+1 = S' | st = S] 
Also: reward function R(S) 
Bellman equation: V(S) = R(S) + g×SS'T(S,S')V(S') 
Direct solution 
 V = R + gTV ® V = (I - gT)-1R 

Exists if g < 1 (eigenvalue argument) 
Gridworld MP batch demo 



Learning from prediction error 
 Prediction is V(st) 
 Outcome is Rt, st+1 ® Rt + gV(st+1) 
 DV(st) = e[Rt + gV(st+1) – V(st)] 
Gridworld MP incremental demo 
Markov Decision Process 
Action selection + State dynamics 
 Reward R(S,A) 
 Transitions T(S,A,S') = Pr[st+1 = S' | st = S, at = A] 
Tree example, with actions  
 Value of state is value of best action 
State-action values 
 Q(S,A) = E[R|s0 = S, a0 = A] 
Reciprocal recursive equations 
 Q(S,A) = R(S,A) + SS' g×SS'T(S,A,S')V(S') 
 V(S) = maxA Q(S,A) 
 Values assuming optimal action in future 
Q-learning 
 Prediction Q(st,at) 
 Outcome Rt, st+1 ® Rt + g×maxA Q(st+1,A) 
 DQ(st,at) = e[Rt + g×maxA Q(st+1,A) – Q(st,at)] 
 Converges to optimal action values 
Gridworld MDP simulation 
 
Exercises 
1. Show that probability matching is a special case of Luce choice. That is, consider a task with 
two actions, A and B, exactly one of which is correct on each trial. Probability matching means 
making a prediction P(A) for the probability that A will be correct, and choosing actions with 
probabilities Pr[a = A] = P(A) and Pr[a = B] = 1 – P(A). (This is what the simulation from last 
week did.) Assuming a reward of 1 for being correct and 0 for being incorrect, work out the 
expected rewards for both actions according to P(A), and then derive the action probabilities 
given by the Luce choice rule. If you’re enjoying this, work out the action probabilities for 
softmax, and for Luce and softmax under different reward values for right/wrong (instead of 
1/0). 
 
2. Special cases of state-value learning (DV(st) = e[Rt + gV(st+1) – V(st)]) 
(a) What happens when g = 0? How does the model compare to the simpler model from last 
week? 
(b) What happens when there’s only one state? Write a simplified version of the learning rule for 
that case. What does the value converge to, i.e. when is it in equilibrium? 
(c) For the one-state case, define a new variable W = (1-g)V. How does W behave? 
 
3. Think of some ways to make the Q-learner smarter in the Gridworld task. If you can, 
implement one and try it out. 
 


