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1 Binary Decision Tasks
This chapter considers tasks in which an experimental subject must make a
binary decision, such as a perceptual discrimination or a semantic or mnemonic
judgment. For some examples, a character could be presented on a monitor and
the subject must decide whether it is red or green, or a letter or a number; or a
string of letters is presented and the subject must decide whether it is a word or
not; or a word is presented and the subject must decide whether it was part of
a previously studied list or not. We are interested in both the probability that
the subject will give the correct answer and the response time (RT) of whatever
answer the subject gives.

Our aim is to develop formal, mathematical models of this type of task
that make predictions for response probability and RT. This chapter will begin
by following the historical progression of models developed in the literature,
from signal-detection models to random walk models to diffusion models, before
presenting some new variations and results regarding the last of these.

All of the models considered here are based on the idea of evidence sam-
pling. The assumption is that the subject, in perceiving the stimulus, observes
or calculates some sort of information that bears on the correct answer. In
a color discrimination task, this information would presumably concern the
wavelength of the light coming from the stimulus, originating in the subject’s
photoreceptors and further processed in visual cortex, for example in red-green
opponent-process cells. In a recognition memory task, the information would
come from comparing the stimulus to memory, perhaps retrieving an explicit
memory of the item from the study phase, or perhaps generating a continuous-
valued familiarity signal. For present purposes, we will not be concerned with
the specific nature of this information or how it is computed. Instead, the focus
will be on how the observations, once obtained, are used to generate a response
in the binary decision task.

Under this view, the problem facing the subject is to determine the relative
support that the observed information lends to the two responses. The models
considered here take a normative approach to this problem, treating it as one of
statistical inference. Under this approach, each stimulus category (i.e., correct
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response) is associated with a hypothesis. For example, hypothesis H1 could be
the that the stimulus is red (Category 1), and hypothesis H2 could be that the
stimulus is green (Category 2). The subject’s goal is to use the observations
to infer which hypothesis is probably correct and to select the corresponding
response. More specifically, the models here take a Bayesian approach, using
the likelihood of the observations under each hypothesis to determine a posterior
belief in which hypothesis is correct, which in turn drives decision making.

2 Signal Detection Model
Consider first the simplest version of the model framework outlined above, where
the subject observes a single sample and uses it to make a decision. This is
referred to as a signal detection model, because historically it was developed for
psychophysical tasks in which the subject’s goal was to detect when a signal
(e.g., an auditory tone) was presented, versus just background noise.

Define X as the space of all possible observation values that could be ob-
served, and x ∈ X as the value the subject actually observes. For each hy-
pothesis, there exists a probability distribution over the value of x when that
hypothesis is true (i.e., when a stimulus from that category is presented). For
example in a recognition memory task, if the observation takes the form of some
familiarity signal, then we can define the distribution of familiarity values across
all trials on which the stimulus is new (i.e., not on the studied list), as well as
the distribution of familiarity values across all trials on which the stimulus was
old. Formally, we write these two distributions as

P1 (x) = Pr [x|H1] (1a)

and
P2 (x) = Pr [x|H2] . (1b)

The notation Pr [x|Hi] indicates conditional probability, meaning the probability
that x will be observed given that Hi is true.

Note that we need make no assumptions about the structure of the space X .
It could be a one-dimensional continuum (a subset of the real line), as in the case
of a recognition familiarity signal or net activation of red-green opponent cells.
In richer perceptual tasks the space of observations could be multidimensional
(a subset of Rn), and in higher cognitive tasks like lexical decision, it could be
some complex structured space of orthographic and semantic representations.
The models considered here require only the functions P1 and P2.1

Considered as a function of the hypotheses, Pi (x) (i.e., P1 (x) vs. P2 (x))
is referred to as likelihood, and it determines the relative support that the ob-
servation lends to the hypotheses. The intuition is that, if x is more probable

1The definitions in (1) are written assuming X is a discrete space. X could also be taken
as a continuous space, with P1 and P2 representing probability density (with respect to some
measure on X ) rather than probability mass. Everything that follows applies equally well to
the continuous case as to the discrete case.
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under Category 1 than Category 2, then observing x should increase the sub-
ject’s belief that H1 is the correct hypothesis. Assuming that the subject knows
the functions Pi (x) (or that these are the functions the subject believes, regard-
less of whether they are objectively accurate), then (s)he can use Bayes’ rule to
calculate the relative probabilities of the two hypotheses given the observation:

Pr [H1|x]
Pr [H2|x]

=
Pr [H1]

Pr [H2]
· Pr [x|H1]

Pr [x|H2]

=
Pr [H1]

Pr [H2]
· P1 (x)

P2 (x)
. (2)

The expression Pr [Hi|x] is called the posterior probability for Hi given x. This
is the probability that the subject should assign to Category i after observing
x (assuming inference is done optimally). The relation in (2) shows that the
posterior probabilities of the two hypotheses depend on two things: the like-
lihoods and the prior probabilities Pr [Hi]. The prior probabilities reflect the
subject’s beliefs about which response will be correct prior to observing the
stimulus (i.e., before the start of the trial), for example due to learning of base
rates or of sequential patterns in the trial sequence.

If the subject’s goal is to maximize the probability of choosing the correct
answer, then the optimal decision rule is to select response R1 if Pr [H1|x] >
Pr [H2|x], that is if Pr [H1|x] /Pr [H2|x] > 1, and to select response R2 other-
wise (the choice is arbitrary in case of equality). In the simplest case where the
priors are equal, Pr [H1] = Pr [H2] =

1
2 , this decision rule reduces to comparing

P1 (x) and P2 (x) and choosing whichever hypothesis has the greater likelihood.
One can imagine dividing the space X into two regions, according to whether
P1 (x) > P2 (x) or vice versa (again, cases of equality are assigned arbitrarily)
and associating each region to the corresponding response. This partitioning
might be done in advance, so that the decision-making process reduces to deter-
mining which region the observation lies in and selecting the associated response.

Figure 1 gives an illustration of this model for a simple case where X is a
unidimensional continuum and P1 and P2 are both Gaussian distributions with
equal variance. This equal-variance signal detection model is the simplest in
the family of models to be described in this chapter, and probably the most
frequently applied in the psychological literature. In this model, there is a
decision criterion that lies midway between the two distributions, at the point
where P1 (x) = P2 (x). Optimal decision-making in this model corresponds to
selecting a response according to which side of the criterion the observation lies
on.

We can generalize this simple model in three ways. First, we can allow
arbitrary likelihood functions Pi (x) on an arbitrary space of observations X .
Second, we can allow arbitrary values for the prior probability Pr [H1] (with
Pr [H2] = 1− Pr [H1]). Third, we can introduce asymmetric reward structures,
such that the reward for being correct or the penalty for being wrong is different
for the two responses, by writing rij as the payoff for selecting response Rj when
the correct response is Ri (with r11 > r12 and r22 > r21). Under this notation,
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Figure 1: Illustration of the unbiased equal-variance signal detection model. An
observation (x) is sampled from a unidimensional continuum represented by the
horizontal line at the bottom. The probability distributions for x under the
two hypotheses (i.e., stimulus categories) are represented by the curves labeled
P1 (x) and P2 (x). Optimal decision making amounts to determining where the
observation lies relative to the decision criterion, which is the point where the
likelihoods P1 (x) and P2 (x) are equal.
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the expected payoff for selecting Rj , conditioned on the observation, is given by

E [r|x,Rj ] = r1j Pr [H1|x] + r2j Pr [H2|x]

and therefore the criterion for selecting response R1 is:

E [r|x,R1] > E [r|x,R2] ⇐⇒ Pr [H1|x]
Pr [H2|x]

>
r22 − r21
r11 − r12

. (3)

Combining this decision rule with (2) implies that R1 is optimal if and only if

r11 − r12
r22 − r21

· Pr [H1]

Pr [H2]
· P1 (x)

P2 (x)
> 1. (4)

That is, the optimal response is determined by the net contribution of the prior
belief, likelihood ratio, and ratio of reward contingency (i.e., the dependence of
the reward on the subject’s response, under each category). This is the optimal
decision rule for the general signal detection model. In the unbiased case (equal
priors and symmetric rewards), the ratios for the prior and reward contingency
in (4) equal unity, and we recover the simpler decision rule of selecting R1

whenever P1 (x) > P2 (x).
Finally, because of the multiplicative nature of the optimal decision rule,

and because it depends on the observation only through the likelihood ratio,
P1 (x) /P2 (x), it is mathematically convenient to introduce the log-likelihood
ratio:

L (x) = ln
P1 (x)

P2 (x)
. (5)

The log-likelihood ratio concisely captures the net evidence that the observation
contributes to the two hypotheses. Taking the logarithm of (2) shows that L (x)
determines how much the subject’s beliefs should change from prior to posterior,
when those beliefs are expressed on a log-odds scale:

ln
Pr [H1|x]
Pr [H2|x]

= ln
Pr [H1]

Pr [H2]
+ L (x) . (6)

Likewise, the criterion (4) for selecting R1 can be re-expressed in logarithmic
form,

ln
r11 − r12
r22 − r21

+ ln
Pr [H1]

Pr [H2]
+ L (x) > 0, (7)

showing that the log reward contingency, prior log-odds, and log-likelihood ratio
combine additively to determine the optimal response.

3 Random Walk Model
We now extend the signal detection model to assume that the subject observes
not just one sample but a series of samples. For example, a subject in a per-
ceptual discrimination task might process the stimulus multiple times in suc-
cession, or a subject in a recognition memory task might make multiple queries
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to memory. Formally, we model this observation process by assuming a series
of observations xn for n = 1, 2, 3 . . . , all jointly independent conditioned on the
stimulus category and all sampled from the same distribution, P1 or P2.

Denoting the sequence after n observations as xn = (x1, . . . , xn), we can use
the conditional independence assumption to write the likelihood as

Pr [xn|Hi] =

n∏
m=1

Pr [xn|Hi]

=

n∏
m=1

Pi (x) . (8)

Therefore the log-likelihood ratio between the two hypotheses is equal to

ln
Pr [xn|H1]

Pr [xn|H2]
=

n∑
m=1

ln
P1 (xm)

P2 (xm)

=

n∑
m=1

L (xm) . (9)

That is, the evidence provided by the sequence of observations is equal to the
sum of the evidence provided by all of the individual observations. This is
another important mathematical convenience of the log-odds representation, in
addition to the additive relations in (6) and (7). Henceforth we use the term
evidence specifically to refer to information or beliefs quantified on the log-odds
scale.

Paralleling the derivation for the signal detection model, Bayes’ rule gives
the posterior odds, conditioned on the first n observations, as

Pr [H1|xn]

Pr [H2|xn]
=

Pr [H1]

Pr [H2]
· Pr [xn|H1]

Pr [xn|H2]

=
Pr [H1]

Pr [H2]
·

n∏
m=1

P1 (xm)

P2 (xm)
. (10)

As above, this relationship can also be written in terms of log-odds:

ln
Pr [H1|xn]

Pr [H2|xn]
= ln

Pr [H1]

Pr [H2]
+

n∑
m=1

L (xm) . (11)

That is, the posterior log-odds equals the prior log-odds plus the sum of the
log-likelihood ratios of the observations.

The expression in (11) suggests an intuitive process-level psychological model
of decision making. First, define the net evidence En as the posterior log-odds
after n observations:

En = ln
Pr [H1|xn]

Pr [H2|xn]
. (12)
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Thus En represents the strength of belief that an optimal decision maker will
have in H1 versus H2 after observing x1 through xn. The expression for the
posterior log-odds in (11) then implies a recursive relationship for E,

En = En−1 + L (xn) , (13)

for all n ≥ 1. Under the convention x0 = ∅ (i.e., an empty set of observations
after zero trials), the starting point for E is the prior log-odds:

E0 = ln
Pr [H1]

Pr [H2]
. (14)

Thus the decision maker starts at an evidence level determined by prior be-
liefs (E0), and then uses the evidence provided by each successive observation
(L (xn)) to increment the cumulative evidence total (En).

Because xn is a random variable (sampled from Pi when the stimulus comes
from Category i), so is L (xn). This makes E a stochastic process, meaning a
sequence of jointly distributed random variables. It is in fact a Markov process,
meaning that the probability distribution for the next member of the sequence
is fully determined by the value of the most recent member:

Pr [En| {E0, . . . , En−1}] = Pr [En|En−1] . (15)

This relationship follows immediately from (13) together with the conditional
independence between xn and xm for all m < n. Intuitively, a Markov process
is thought of as memoryless, because its history has no impact on its future
once its present state is known. This property makes this model appealing as
a psychological model, because it implies that an optimal decision maker needs
only to track En from one observation to the next, rather than remembering
the full sequence of past observations xn.

Geometrically, E can be conceived as a unidimensional random walk, wherein
the posterior log-odds starts at the prior log-odds and moves up or down ac-
cording to the evidence (i.e., log-likelihood ratio) provided by each successive
observation. A (stationary) random walk is a Markov process where the prob-
ability distribution for the increment En − En−1 is independent of En−1 and
is the same for all n. In this case, the distribution for the increment L (xn)
is independent of n because of the assumption that all observations are drawn
from the same distribution (P1 or P2). It is also useful to consider the expected
value of this increment, which determines how rapidly the evidence grows, on
average. This is the drift rate of the random walk. When the stimulus is from
Category 1, the drift rate is equal to

E [L (x) |H1] = EP1

[
ln

P1 (x)

P2 (x)

]
= DKL (P1‖P2) , (16a)

where EP1
indicates expected value according to the distribution P1, and DKL

denotes Kullback-Leibler (KL) divergence, a standard measure of the difference
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between two probability distributions (DKL (p‖ q) = Ep

[
ln p

q

]
). Likewise, the

drift rate when the stimulus is from Category 2 is given by

E [L (x) |H2] = EP2

[
ln

P1 (x)

P2 (x)

]
= −DKL (P2‖P1) . (16b)

These are sensible results, because they mean that the more different the two
hypotheses are (i.e., the greater the divergence between P1 and P2 or vice versa),
the faster an optimal observer will typically be able to discriminate between
them based on a sequence of samples from one or the other.

To take an example, consider the Gaussian equal-variance signal detection
model (Figure 1), generalized from one observation to a sequence of observations.
Let µ1 and µ2 be the respective means of the Gaussian distributions P1 and P2,
and let σ2 be their shared variance. For a given observation x, the log-likelihood
ratio is equal to

L (x) = ln
exp

(
− (x−µ1)

2

2σ2

)
exp

(
− (x−µ2)

2

2σ2

)
=

µ1 − µ2

σ2

(
x− µ1 + µ2

2

)
. (17)

Thus the evidence provided by an observation is a linear function of the value of
that observation, with slope proportional to the mean difference between the two
distributions and with neutral point (i.e., L (x) = 0) at the midpoint between
the distributions. Because L (x) is a linear function of a Gaussian variable, it
has a Gaussian distribution as well. From (17), the mean of L (x) is equal to

E [L (x) |Hi] =
µ1 − µ2

σ2

(
E [x|Hi]−

µ1 + µ2

2

)
= ±1

2

(
µ1 − µ2

σ

)2

(18)

(with positive sign for i = 1 and negative sign for i = 2), and its variance is
equal to

var [L (x) |Hi] =

(
µ1 − µ2

σ2

)2

var [x|Hi]

=

(
µ1 − µ2

σ

)2

. (19)

The ratio (µ1 − µ2) /σ is referred to as d′ in signal detection theory and is used
as a measure of the standardized difference between distributions under the
two hypotheses (most frequently when those distributions are assumed to be

8



Gaussian with equal variance). The derivation in (18) shows that the drift rate
of the random walk is proportional to the square of this measure, consistent
with the intuition that the mean rate of evidence accumulation is greater with
greater separation between the distributions.

The absolute value of the drift rate is equal under the two hypotheses in
the equal-variance Gaussian model, but it should be noted that this is not
true in general. This is related to the fact that KL divergence is generally
asymmetric. For example, in a model with Gaussian sampling distributions of
unequal variances (σ2

1 and σ2
2), the drift rates turn out to be

DKL (P1‖P2) =
1

2

((
µ1 − µ2

σ2

)2

− 1 +
σ2
1

σ2
2

− ln
σ2
1

σ2
2

)
(20a)

and

−DKL (P2‖P1) = −1

2

((
µ1 − µ2

σ1

)2

− 1 +
σ2
2

σ2
1

− ln
σ2
2

σ2
1

)
, (20b)

which are generally not equal in absolute value. If, say, σ1 > σ2, then the drift
rate under Category 1 will be greater in magnitude than the drift rate under
Category 2. Intuitively this is because is it easier for extreme samples from
Category 1 to provide strong evidence against H2 than vice versa.

The random-walk model can be applied as a psychological model of decision
making under two additional assumptions. First, there must be some decision
rule that specifies at every possible state of the process—that is, for any value of
the pair (n,En)—whether the subject terminates the sampling process and re-
sponds with R1 or R2, or whether the subject defers the decision and continues
with another sample. Second, a time constant ∆t must be specified, representing
the physical time elapsed between successive samples (for simplicity, we assume
samples are equally spaced). Under specifications of these assumptions, the
model’s prediction on any trial comprises the response dictated by the decision
rule together with the response time (RT). The predicted RT will equal n ·∆t,
where n is the number of samples observed, plus perhaps some nondecision time
t0 to model processes such as sensory encoding and motor execution that occur
outside of the decision process itself. Across trials, the response and RT are
jointly distributed random variables. Thus the model’s predictions constitute a
joint distribution over the response and RT, separately for each stimulus cate-
gory. Equivalently, for each stimulus category, the model yields predictions for
the probabilities of both responses together with a conditional distribution of
RT for each response (i.e., correct and incorrect).

An appealing feature of this psychological model is that it corresponds to the
classic sequential probability-ratio test (SPRT), a statistical procedure wherein
a sequence of observations is used to decide between two hypotheses. A central
question in that statistical setting concerns the optimal stopping rule: when
should the observer stop sampling and make a decision, versus continuing to
draw more samples? A standard result known as the Wald-Wolfowitz theorem
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states that the optimal decision rule for the SPRT is to sample until the posterior
reaches either an upper threshold, α, or a lower threshold, β (typically β <
0 < α), and then to choose R1 or R2 accordingly. Both thresholds are fixed
across time, that is, independent of n. Figure 2 illustrates the random walk
model with this decision rule. According to the Wald-Wolfowitz theorem, this
model is optimal in the sense that any other decision rule with the same error
rates (i.e., probabilities of choosing R2 when H1 is true and of choosing R1

when H2 is true) will require at least as many samples on average. Thus it is
impossible to achieve superior accuracy with a shorter mean RT. In particular,
one can set the thresholds as α and −α in cases where it is desirable to equate
the two error rates, for example because they incur equal costs (i.e., the reward
contingency ratio in (3) equals unity). The choice of α determines the observer’s
speed-accuracy tradeoff, in that smaller α leads to faster responses but larger α
leads to fewer errors. We defer analysis of RT predictions until Section 7, but
it is easy to see that the log-odds of an error will approximately equal −α,
or equivalently the error rates will both be approximately (1 + eα)

−1. This is
because the observer is terminating the trial when the posterior probability of
the chosen response being correct is approximately α (assuming the observer
has access to the correct prior probability and likelihood functions, and so can
compute the correct posterior). This value for the error rate is nonetheless
approximate because, with a discrete sequence of samples, the random walk
will generally jump across the threshold rather than landing exactly on it. In
the continuous-time model that we consider next, the approximation becomes
exact.

4 Continuous-Time Model
We now build on the random walk model to derive a model in which evidence
accumulation occurs not in discrete steps but continuously. To achieve this, we
consider a sequence of random walk models in which the time between samples
(∆t) approaches zero, and we derive a continuous-time evidence process that is
the limit of the discrete-time random walks. Under the right assumptions about
the means and variances of the evidence increments in the discrete models,
the limiting process follows a directed Wiener diffusion (i.e., Brownian motion)
process. This limiting model, when viewed as a psychological model of decision
making, is known as the diffusion model.

Formally, assume there exists a sequence of random walk models, indexed
by k ∈ N, with limk→∞ ∆tk = 0 and with sampling distributions P k

i (i ∈ {1, 2})
and corresponding log-likelihood functions Lk (x) that satisfy

E [Lk (x) |Hi] = ξi∆tk (21)

and
var [Lk (x)|Hi] = η2∆tk. (22)

That is, both the conditional means and the conditional variance of the evidence
increments in each model are proportional to its time step. Thus the mean rate
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Figure 2: Illustration of the random walk model. Evidence (E) for deciding be-
tween two hypotheses is accumulated over time based on a series of observations
(xn). The evidence contributed by each observation is equal to its log-likelihood
ratio (L (xn)). The starting point for the evidence process (E0) is determined
by the prior probabilities of the hypotheses, specifically as the prior log-odds.
After n observations, the posterior log-odds is given by En. Each hypothesis
has a threshold, α for H1 and β for H2, and crossing this threshold will trigger
the sampling process to stop and the corresponding response to be selected.
The temporal spacing between successive observations is denoted ∆t, and the
model’s response time (RT) is equal to that spacing times the total number of
observations taken, plus a nondecision time (t0).
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of evidence accumulation, E [L (x) |Hi] /∆t, and the growth rate of the variance,
var [L (x) |Hi] /∆t, are both constant across all models in the sequence. This
property is critical for the continuous-time limit to be well-behaved, as will be
seen shortly.

It is easy to construct such a sequence of models. For example, a sequence
of equal-variance Gaussian sampling models can be defined by setting

d′k = c
√
∆tk (23)

for any constant c > 0. (Recall that d′ = (µ1 − µ2) /σ; therefore (23) could be
achieved in various ways, for example by fixing µ1 and σ and varying µ2.) Thus
this construction implies that the discriminability between P1 and P2 converges
to zero in proportion to the square-root of the time step. From (18) and (19),
the mean and variance of the evidence increments are

E [Lk (x) |Hi] = ± c

2
∆tk (24)

and
var [Lk (x) |Hi] = c∆tk. (25)

Therefore we can take any sequence of ∆tk satisfying limk→∞ ∆tk = 0, and the
random walk models defined by (23) will satisfy the scaling properties in (21)
and (22).

Given any sequence of random walk models satisfying (21) and (22), all with
the same prior log-odds, define each model’s evidence trajectory through time
as

Ek (t) = Ek
bt/∆tkc, (26)

where b·c is the floor function (i.e., bzc is the greatest integer less than or equal
to z), and Ek

n is the evidence level (i.e., posterior log-odds) of model k after n
observations as in (12). The definition in (26) formalizes the assumption that
the model’s evidence is updated after each ∆tk interval, by setting Ek (t) equal
to the value of the evidence process after the last update before time t. Note
that Ek (0) is equal to the common prior log-odds, which we denote as E (0).
For each k, the trajectory Ek (t) is a random function of t, with distribution
governed by the updating rule in (13) and by the distribution of increments
Lk (x). The question now is how the distribution of Ek (t) behaves under the
limit k → ∞.

For any single value of t, Ek (t) is equal to E (0) plus a sum of loglikelihood
increments from bt/∆tkc independent observations, with the conditional mean
and variance of these increments given by (21) and (22). Because the expressions
in (21) and (22) are proportional to ∆tk, the mean and variance of the sum of
the increments depends only on t and not on ∆tk, except for contributions of
rounding error in bt/∆tkc. Therefore in the limit, the distribution of Ek (t)
obeys

lim
k→∞

E [Ek (t) |Hi] = lim
k→∞

(
E (0) + ξi∆tk

⌊
t

∆tk

⌋)
= E (0) + ξit (27)
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and

lim
k→∞

var [Ek (t) |Hi] = lim
k→∞

(
η2∆tk

⌊
t

∆tk

⌋)
= η2t. (28)

Moreover, the central limit theorem implies that the limiting distribution is
Gaussian. The same considerations apply to the difference Ek (t2)−Ek (t1) for
any two time points t1 < t2, and because of the Markov property of the random
walk models these properties hold conditioned on the history of the process up
to t1, denoted Ek (t1):

lim
k→∞

E [Ek (t2)− Ek (t1) |Hi,Ek (t1)] = ξi (t2 − t1) (29)

and

lim
k→∞

var [Ek (t2)− Ek (t1) |Hi,Ek (t1)] = η2 (t2 − t1) , (30)

with a distribution that is Gaussian in the limit.
The properties in (27) through (30) imply that the processes Ek (t) (con-

ditioned on each hypothesis Hi) converge in distribution to a Wiener diffusion
process, E (t), with drift rate ξi and diffusion rate η2. This Wiener diffusion
process is defined as a stochastic process where the marginal distribution at any
point in time is Gaussian with linear growth in the mean and variance,

E (t) ∼ N
(
E (0) + ξit, η

2t
)
, (31)

and with increments that are independent of the history (a property that can
be seen to imply the Markov property):

E (t2)− E (t1) ⊥ E (t1) |Hi. (32)

More precisely, for any finite set of time points t1 < · · · < tm, the values of the
process E (t1) through E (tm) have a multivariate Gaussian distribution, with
means and variances given by (31), and with covariances given by

cov [E (ti) , E (tj)] = η2 min {ti, tj} . (33)

Figure 3 illustrates the relationship between the discrete-time random walk
model and the continuous-time diffusion model. Under the construction de-
scribed here, one can think of the time step of the random walk model being
repeatedly subdivided until (in the limit) the process evolves continuously. The
linear scaling properties in (21) and (22) imply that this subdivision operation
preserves the growth rate in both the expected value and the variance of the
process, so that these rates are well-defined in the limit. The growth rate of the
mean is referred to as the drift rate, and the growth rate of the variance the
diffusion rate.
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Figure 3: Illustration of the relationship between random walk and diffusion
models of evidence accumulation. Each plot shows a sample trajectory from a
random walk process. Proceeding from upper-left to lower-right, the time step
becomes finer and the evidence increments become smaller. If the mean and
variance of the increments are proportional to the time step, then the sequence
of random walks converges in distribution to a diffusion process.
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The diffusion process can be built into a psychological model of speeded
decision making just like the random walk model was. The model embodies the
idea that decisions are made based on a continuous stream of evidence, formally
described by white noise. Completing the model requires specifying upper and
lower thresholds, α and β, for the two responses. Because the evidence process
is continuous, these thresholds will exactly determine the log-odds of a correct
response, unlike the random walk model where the evidence jumps across the
threshold. That is, when the model selects response R1, the log-odds that
Category 1 is correct exactly equals α, and similarly with R2 and β (again,
this assumes the observer knows the correct prior E (0) and log-likelihood ratio
function L (x)). Also, the diffusion model predicts a dense set of possible RT
values, as opposed to the discrete set of possible RTs under a pure random walk
model.

5 Bayesian Diffusion Model
Although the historic development of random walk and diffusion models of deci-
sion making was founded on the framework of statistical inference in the SPRT,
current treatments of the diffusion model in the psychological literature depart
from the normative framing, casting the diffusion process at a purely mecha-
nistic level. That is, they simply posit that decision making is based on some
cognitive variable that obeys the dynamics of a diffusion process, without inter-
preting that process as the result of Bayesian inference over some input stream.
Here we show how this mechanistic diffusion model can be reformulated in the
normative framework of Section 4, and how such a reformulation offers further
insights into the properties of the model.

The starting point of the mechanistic diffusion model is to assume a stochas-
tic process, denoted here as e (t) for t ≥ 0, defined by the stochastic differential
equation

de = µidt+ σdB(t). (34)

Here i indicates the true stimulus category, and B (t) represents a standard
Brownian motion process (i.e., with zero drift and with diffusion rate equal to
unity). We assume without loss of generality that the input drift rates satisfy
µ1 > µ2, and that e (0) = 0. The general version of the mechanistic diffusion
model assumes the starting point e (0) can take on arbitrary values, as a free
parameter. This assumption is reintroduced in the next section, but it is ir-
relevant for the Bayesian derivation in the present section because the starting
point can simply be subtracted away (e.g., one could define e′ (t) = e (t)− e (0)
and do inference from e′).

The Brownian motion process can be thought of as a limit of random walks
with time step approaching zero (just as in Section 4). It has the properties that
any increment B (t2) − B (t1) is a random variable with Normal distribution,
zero mean, and variance equal to t2 − t1 (for t1 ≤ t2); and that the value of
such an increment is independent of the prior history, (B (τ))τ≤t1

. Thus e (t)
evolves according to a sum of a deterministic, linear process with slope µi and a
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stochastic process with diffusion rate σ2. To be clear, we use the term diffusion
rate to refer to σ2 (not σ), because it represents the rate at which the variance
in e grows over any interval of time:

var [e (t2)− e (t1)] = σ2
i (t2 − t1) (35)

for t1 ≤ t2. Typically the diffusion rate is assumed to be the same under both
stimulus categories, and below we give a justification for that assumption based
on the Bayesian interpretation.

Our Bayesian approach is to treat e as comprising the observations that
the subject uses to infer the correct hypothesis. This is consistent with the
mechanistic diffusion model, except that whereas that model directly applies an
arbitrary threshold to e (t), here we use e (t) to calculate posterior log-odds and
define the decision rule on the log-odds. Thus e (t) is a continuous analogue of
xn from the random walk model. More precisely, we write et = (e (τ))τ≤t as
the full trajectory up to time t, and do Bayesian inference using et in the same
way the random walk model does inference using the discrete sequence xn.

We calculate a posterior from et as follows. For any finite value of ∆t, define
a discrete sequence of observations xn as increments of e:

xn = e (n∆t)− e ((n− 1)∆t) . (36)

The properties of Brownian motion given above imply that these observations
are jointly independent for different n and distributed as

xn ∼ N
(
µi∆t, σ2∆t

)
. (37)

The log-likelihood ratio for xn can be calculated as in (17), as

L (xn) =
µ1 − µ2

σ2

(
xn − µ1 + µ2

2
∆t

)
. (38)

Therefore the log-likelihood ratio for the sequence xn = (x1, . . . , xn) equals

ln
p [xn|H1]

p [xn|H2]
=

n∑
m=1

µ1 − µ2

σ2

(
xm − µ1 + µ2

2
∆t

)
=

µ1 − µ2

σ2

(
e (n∆t)− µ1 + µ2

2
n∆t

)
. (39)

(We use p to indicate probability density, rather than Pr for probability mass,
because x and hence x are now necessarily continuous-valued.) If we fix t and
let ∆t = t/n, then this equation becomes

ln
p [xn|H1]

p [xn|H2]
=

µ1 − µ2

σ2

(
e (t)− µ1 + µ2

2
t

)
. (40)

Thus we see that inference does not depend on the step size ∆t, and by letting
∆t → 0 (i.e., n → ∞), that e (t) is a sufficient statistic for inferring the correct
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hypothesis from the full trajectory of the process, et. That is, the posterior
probability depends only on the current value of the diffusion process and not
on its history.

Therefore we have a well-defined continuous-time Bayesian evidence-accumulation
model, with input defined by the stochastic process e (t). Using the expression
for the log-likelihood ratio in (40), and the invariance across sampling densities
(i.e., ∆t), the posterior log-odds are given by

ln
Pr [H1|et]
Pr [H2|et]

= ln
Pr [H1]

Pr [H2]
+

µ1 − µ2

σ2

(
e (t)− µ1 + µ2

2
t

)
. (41)

Therefore the posterior is a linear transformation of the input, and thus follows
a diffusion process itself, with new drift and diffusion rates.

To understand the relationship between the mechanistic diffusion model
(where decisions are based directly on the input e (t)) and the Bayesian model
(where the input is first transformed according to (41)), we reparameterize the
latter as follows. First, define a drift criterion,

θ =
µ1 + µ2

2
, (42)

as the midpoint between the input drift rates for the two categories. The
drift criterion is a dynamic analogue of the equal-likelihood criterion in signal-
detection theory, in that e (t) > θt implies a positive log-likelihood ratio (i.e.,
evidence for H1), and e (t) < θt implies a negative log-likelihood ratio (i.e.,
evidence for H2). Second, define a signal-to-noise ratio,

φ =
µ1 − µ2

σ2
, (43)

as the difference in input drift rates between hypotheses divided by the diffusion
rate. The signal-to-noise ratio is analogous to the concept of d′ in signal de-
tection theory in that it gives a standardized measure of how separated are the
samping distributions under the two hypotheses. Another connection between
d′ and φ is that both parameters determine how informative the observations
are, by providing scaling factors to convert from the input to log-likelihood ratio.
From (17), the log-likelihood ratio in Gaussian equal-variance signal detection
and random walk models is L (x) = d′ · (x− θ) /σ, whereas in the Bayesian
diffusion model the log-likelihood ratio is L (e (t)) = φ · (e (t)− θt). Thus larger
values of φ imply that the posterior moves more rapidly with changes in e.

As above, let E (t) denote the evidence level (i.e., posterior log-odds) at time
t:

E (t) = ln
Pr [H1|et]
Pr [H2|et]

. (44)

Then, using the above definitions, (41) becomes

E (t) = E (0) + φ (e (t)− θt) . (45)
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Therefore optimal inference requires knowledge of three parameters: the prior
probability (E (0)), the drift criterion (θ), and the signal-to-noise ratio (φ).
These can be considered as properties of the task environment or the psycho-
logical processes generating the input signal e (t). Provided the observer knows
these three values, then calculating the posterior log-odds for the hypotheses
can be accomplished by the linear transformation in (45). The result is a new
diffusion process, with drift rates

ξi = φ (µi − θ)

= ± (µ1 − µ2)
2

2σ2
, (46)

(positive for i = 1 and negative for i = 2) and diffusion rate

η2 = φ2σ2

=
(µ1 − µ2)

2

σ2
. (47)

If the observer wants to achieve a given accuracy level Pr [correct] = ρ (equal
for the two categories), then the optimal decision rule is to terminate sampling
and choose a response as soon as |E (t)| ≥ α, using a threshold given by

α = ln
ρ

1− ρ
. (48)

As in the random walk model, the choice of threshold controls the subject’s
speed-accuracy tradeoff, with larger threshold values yielding greater accuracy
but slower RT.

6 Translation between Diffusion Models
Because the evidence E (t) itself follows a diffusion process, in practice one might
dispense with e and use E directly as the starting point for modeling. From
a mechanistic standpoint, e adds nothing to the model’s predictions, barring
some physiological theory of the input signal that would allow it to be mea-
sured. Indeed, the Bayesian diffusion model can be treated mathematically as
simply a special case of the standard, mechanistic model: It is defined by a
stochastic evidence process, E (t), with particular values for the drift rates and
diffusion rate, as well as a starting point E (0) and thresholds ±α. As seen in
(46) and (47), the drift rate of E (t) is necessarily equal to half of its diffusion
rate, and otherwise the model’s parameters (i.e., starting point, threshold, and
drift/diffusion rates) can be independently specified.

Therefore we can think of the Bayesian diffusion model as a reparameter-
ization of the mechanistic one. Under this view, the value of the derivation
presented in Section 5 is that it provides a normative Bayesian foundation
for the diffusion model. To summarize, under the Bayesian diffusion model,
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the observer is assumed to have access to a continuous stream of input infor-
mation conforming to a Wiener diffusion process with unknown drift rate, or
equivalently an integral of a white-noise process with unknown mean. Optimal
Bayesian inference is applied to this input to infer the correct hypothesis via its
influence on the input drift rate. The evidence process E (t) is obtained from the
input by subtracting the drift criterion, which corresponds to neutral input that
has equal likelihood under both hypotheses; scaling by the signal-to-noise ratio,
which determines how much information the input carries, to transform to units
of log-odds; and adding the prior log-odds to reflect prior expectations. The drift
and diffusion rates of this evidence process are determined by the difference in
input rates between the two hypotheses, together with the noise (diffusion rate)
in the input. The starting point, E (0), is determined by the prior probabili-
ties of the two stimulus categories. The decision thresholds correspond to the
observer’s choice of the log-odds that each response will be correct. Provided
the observer knows the input rates µ1 and µ2 (or equivalently, θ and φ) and
the prior probabilities (e.g., the base rate), then the inference process described
above can be carried out, and any desired performance level ρ can be achieved
optimally—that is, while minimizing the mean RT. Thus the Bayesian diffusion
model also raises the question of how an experimental subject might come to
know these task parameters, which suggests rich opportunities for integrating
diffusion models of decision making with mathematical models of learning.

This normative framing offers answers to two conceptual challenges within
the diffusion framework. First, one might ask why the diffusion model assumes
the same diffusion rate under both hypotheses. After all, this is not the case
under the signal detection or random walk models, where the variance of the
input or of the evidence increment can differ between the hypotheses. Neverthe-
less, the equal-variance assumption is universal in applications of the diffusion
model, and the Bayesian framing given here offers a justification. To see this,
consider an alternative model in which the input process is defined by

de = µidt+ σidB(t), (49)

with unequal diffusion rates σ2
1 6= σ2

2 . As above, define a sequence of discrete
observations by (36). These observations now have a variance that depends on
the correct hypothesis:

xn ∼ N
(
µi∆t, σ2

i∆t
)
. (50)

The log-likelihood ratio implied by this unequal-variance model is given by

L (x) = − (x− µ1∆t)
2

2σ2
1∆t

+
(x− µ2∆t)

2

2σ2
2∆t

− ln
σ1

σ2
, (51)

and the expected value of this quantity under each stimulus category equals

E [L (x) |H1] =
(µ1 − µ2)

2

2σ2
2

∆t+
1

2

(
σ2
1

σ2
2

− 1− ln
σ2
1

σ2
2

)
(52a)
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and

E [L (x) |H2] = − (µ1 − µ2)
2

2σ2
1

∆t− 1

2

(
σ2
2

σ2
1

− 1− ln
σ2
2

σ2
1

)
, (52b)

paralleling the result for the unequal-variance discrete models in (20). Now fix
t and let ∆t = t/n. The expected posterior log-odds after time t is given by

E [E (t)|H1] = ln
Pr [H1]

Pr [H2]
+

n∑
m=1

E [L (xm) |H1]

= ln
Pr [H1]

Pr [H2]
+

(µ1 − µ2)
2

2σ2
2

t+
n

2

(
σ2
1

σ2
2

− 1− ln
σ2
1

σ2
2

)
. (53a)

and

E [E (t)|H1] = ln
Pr [H1]

Pr [H2]
+

(µ1 − µ2)
2

2σ2
1

t− n

2

(
σ2
2

σ2
1

− 1− ln
σ2
2

σ2
1

)
. (53b)

If the variances are equal then the last main summand in both (53a) and (53b)
equals zero, and the posterior log-odds follows a diffusion process with drift
rate ± (µ1 − µ2)

2
/
(
2σ2
)

as already found above. However, if the variances dif-
fer then the last term will be strictly positive in (53a) and strictly negative
in (53b). As ∆t → 0, meaning n → ∞, this term approaches infinity, imply-
ing the observer approaches perfect certainty of the correct category. This is
a property of statistical inference with diffusion processes: Observation on an
arbitrarily fine timescale provides no advantage in inferring the drift rate (be-
cause the final value of the process is a sufficient statistic for that parameter),
but it provides perfect information for inferring the diffusion rate. Therefore
any diffusion model of decision making must assume equal diffusion rates for
the two categories in order to be sensible from a Bayesian perspective. Other-
wise, an ideal observer would be able to respond with perfect accuracy, using
an arbitrarily short amount of time. This is also why we stated above that the
observer needs only to know θ, φ, and the prior probabilities of the categories:
σ does not need to be known because it can be exactly inferred from the input.

Second, the Bayesian diffusion model offers an elegant solution to a par-
ticular redundancy among the parameters in the mechanistic diffusion model.
Specifically, the mechanistic diffusion model suffers a scaling degeneracy due to
the fact that the scale of e (t) has no impact on the model’s predictions. If the
drift rate, square-root of the diffusion rate (i.e., σ), starting point, and thresh-
olds for the mechanistic model were all multiplied by any positive number, the
only consequence would be a change in the internal scaling of e (t), and the
model’s predictions for the joint distribution of response and RT would be un-
changed. In practice, many modelers have adopted a convention to fix σ at an
arbitrary value (usually 0.1), or in related models to fix the sum of the drift rates
µ1+µ2, so as to remove this degeneracy when estimating parameter values from
data. In the Bayesian diffusion model, this indeterminacy never arises, because
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the evidence process has a uniqely determined scale, defined by log-odds (and
log-likelihood ratio) of the two hypotheses. This unique scaling manifests in
the constraint noted above for the model’s parameters, that the diffusion rate
is exactly twice the drift rate. Thus the Bayesian diffusion model offers a more
principled solution to the scaling degeneracy than the arbitrary solutions just
mentioned, specifically by constraining the drift and diffusion rates to obey a
1:2 ratio. It is easy to see that, given any parameterization of the mechanistic
model, it can always be rescaled to fit this form by multiplying all parame-
ters by φ. This implies that the 1:2 constraint is not a predictive constraint at
all; that is, it does not make the Bayesian model any more restricted than the
mechanistic model. Moreover, the derivation of (45) shows that this rescaling
always puts the evidence process into units of log-odds, and therefore has the
benefit of making all model parameters more interpretable. In particular, under
the parameterization entailed by the 1:2 constraint, the model’s starting point
can be directly interpreted as the observer’s subjective prior log-odds, and the
thresholds can be directly interpreted as values chosen by the observer for the
log-odds that each response will be correct.

Despite the close correspondence between the Bayesian and mechanistic dif-
fusion models, there are some important differences. First, the mechanistic
model is often applied to experimental settings involving multiple stimulus sub-
types within each category, such as perceptual stimuli of varying salience or
lexical stimuli of varying corpus frequency. These cases are usually modeled
by assuming a different drift rate for each subtype. The Bayesian model can
easily incorporate this assumption, by allowing different drift rates in the input
process. It does, however, raise the question of how this additional complexity
in the input relates to the hypotheses held by the observer. One possibility is
that the input has multiple drift rates, µij , indexed by both stimulus category
(i) and subtype (j), but that the observer’s hypotheses assume a single drift
rate per category, µ̂i, perhaps equal to the frequency-weighted mean of the true
drift rates across all subtypes. Another possibility is that the hypotheses incor-
porate the subtyping of stimuli, such that Hi specifies a mixture distribution
over diffusion processes with different drift rates, µij for all possible j. The lat-
ter possibility would make the calculation of the posterior more complex than
the result in (45). Either way, the 1:2 condition offered above for resolving the
mechanistic model’s scaling degeneracy is too simple to be applicable to exper-
iment designs with multiple stimulus subtypes, but there should be extensions
of this idea that would achieve similar results.

A second set of differences lie in constraints on the parameters of the two
models. On one hand, the mechanistic model is more general than the Bayesian
model in that it can assume arbitrary drift rates for the two stimulus categories,
µ1 and µ2, whereas in the Bayesian model the drift rates must satisfy ξ2 = −ξ1.
However, if the mechanistic model assumes asymmetric drift rates (µ2 6= −µ1)
then its decision rule is non-optimal in the sense of the Wald-Wolfowitz theorem.
That is, its thresholds (which are time-invariant as criteria on e (t)) become
time-varying when translated to criteria on E (t) (i.e., on posterior log-odds).
This follows from (45) and the fact that θ 6= 0 when the mechanistic model’s drift
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rates are asymmetric. This issue is well known in the literature on the diffusion
model, and in practice it is often assumed that the drift rates are symmetric
(µ2 = −µ1), under the rationale that the subject knows the correct drift criterion
and has already adjusted for it (i.e., by transforming e (t) to e (t) − θt). On
the other hand, the Bayesian model is more general than the mechanistic one
because it has two forms of response bias, one in the prior (E (0)) and the
other in the thresholds (α and β, perhaps reflecting asymmetries in the reward
structure). These two types of bias are not separately interpretable in the
mechanistic model, where they both manifest as differences in the distances from
the starting point to the two thresholds. The mechanistic model appears to have
three free parameters for the starting point and thresholds (thus giving it two
degrees of freedom to capture response bias, in addition to the overall difference
between the two thresholds for capturing speed-accuracy tradeoff), but as with
the scaling invariance discussed above, there is a translation invariance whereby
adding a constant to e (t) (and hence to the starting point and both thresholds)
has no impact on model predictions. In other words, the evidence process in the
mechanistic model is defined only on an interval scale, whereas in the Bayesian
model it has a well-defined zero point.

Considering these differences in parameter constraints or redundancy in the
two models, full equivalance between the Bayesian and mechanistic diffusion
models is possible only under special cases of each. Specifically, we consider
now the mechanistic model with symmetric drift rates (µ2 = −µ1), and the
Bayesian model with symmetric thresholds (β = −α). Effectively, we remove
the mechanistic model’s ability to implement suboptimal decision rules, and
we limit the Bayesian model to response bias in the prior (and not in reward
structure). Under these restrictions, we can derive exact translations between
the parameters of the two models. The mechanistic parameterization we use is
the one that is most common in the literature, with drift rates ±µ, diffusion
rate σ2, starting point z, and thresholds of 0 and a (with a > 0). These four
parameters confer three degrees of freedom because of the scaling degeneracy.
For the Bayesian parameterization, we denote the drift rates as ±ξ, the diffusion
rate 2ξ, the starting point E (0), and the thresholds ±α.

The derivation of (45) assumed for simplicity a starting point of e (0) = 0
but, as noted above, in general calculation of the posterior requires subtracting
e (0) from e (t). Also, the assumption of symmetric drift rates in the mechanistic
model implies θ = 0. Therefore (45) becomes

E (t) = E (0) +
2µ

σ2
(e (t)− z) (54)

(where we have substituted the definition of φ from (43) to write everything in
terms of the basic parameters of the mechanistic model). Thus we see as in (46)
and (47) that E (t) is a diffusion process with drift rate (for Category 1) equal
to

ξ =
2µ2

σ2
(55)

and diffusion rate equal to twice this quantity. From (54), requiring the thresh-
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olds of the two models to agree implies

α = E (0) +
2µ

σ2
(a− z) (56a)

and
−α = E (0) +

2µ

σ2
(−z) . (56b)

Subtracting these two equations provides the translation between the models’
threshold parameters,

α =
µa

σ2
, (57)

and then substituting back into (56) gives the translation between starting
points:

E (0) =
2µ

σ2

(
z − a

2

)
. (58)

Finally, we can substitute back into (54) to obtain a translation between the
two diffusion processes in terms of only the mechanistic model’s parameters:

E (t) =
2µ

σ2

(
e (t)− a

2

)
. (59)

This result is sensible, because a/2 is the midpoint between thresholds and thus
represents a neutral point corresponding to E (t) = 0, and because we have
already seen that φ = 2µ/σ2 is the scaling factor that converts the units of e (t)
into units of log-odds. Table 1 summarizes the correspondences between the two
models. Under this translation, the mechanistic and Bayesian diffusion models
make identical predictions and differ only in theoretical interpretation.

7 Predictions
We now consider the diffusion model’s predictions for response probability and
RT. We do this for both the mechanistic and the Bayesian parameterizations
of the model (see Table 1). According to the operation of the model, on each
decision trial a diffusion process begins at the specified starting point and evolves
stochastically until it reaches one threshold or the other. The model’s response
is determined by which threshold is crossed first, and its RT by the time it
takes for that crossing to occur (plus perhaps some nondecision time). The
model’s prediction for the joint distribution of response and RT is determined by
aggregating across the ensemble of possible trajectories for the diffusion process,
as illustrated in Figure 4.

The model’s response probabilities, Pr [Rj |Hi] for i, j ∈ {1, 2}, have been
presented many times in the literature, but here we show that the Bayesian
formulation provides an intuitive method for deriving these quantities. The
key insight is that, because E (t) represents the true posterior log-odds at any
time t, the value of E at any time determines the objective probability that
either response will be correct. Thus, if the model selects response R1 because
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Figure 4: Illustration of the operation of the diffusion model. At the start
of each decision trial (indicated by the vertical line, with time flowing to the
right), a diffusion process begins at a value determined by the model’s starting
point parameter (horizontal tick). The process evolves stochastically until it
reaches one of the two thresholds (horizontal lines). Greyscale curves show
sample trajectories. The model’s response and response time (RT) on each
trial are determined by which threshold is crossed first and when the crossing
occurs. The predicted joint distribution of response and RT is represented by
the curves at top and bottom, which indicate the probability density of RT
for each response. The area subsumed by each curve represents the marginal
probability of that response.
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Table 1: Translation between mechanistic and Bayesian versions of the diffusion
model

Property Mechanistic Model Bayesian Model Translation
Diffusion process e (t) E (t) E (t) = 2µ

σ2

(
e (t)− a

2

)
Drift rate ±µ ±ξ ξ = 2µ2

σ2

Diffusion rate σ2 2ξ 2ξ = 4µ2

σ2

Starting point z E (0) E (0) = 2µ
σ2

(
z − a

2

)
Thresholds {0, a} ±α α = µa

σ2

Note: Models are restricted to assume homogeneous stimuli within each cat-
egory (no stimulus subtypes), to use symmetric drift rates (i.e., mechanistic
model assumes the observer has adjusted for the drift criterion), and symmetric
thresholds for the Bayesian model (i.e., response bias lies only in the starting
point). Translation column gives the unique translation from the mechanistic
parameterization to the Bayesian one. The reverse translation is unique only
up to multiplicative scaling of the mechanistic model’s parameters, because of
the scaling degeneracy in that model.

the process terminates at E = α, then the log-odds that this response is correct
equals α, and if the model selects R2 because the process terminates at E = −α,
then the log-odds that that response is correct equals α and the log-odds that
R1 would have been correct equals −α. Writing these dependencies in terms of
probabilities, we have

Pr [H1|R1] =
1

1 + e−α
(60a)

and

Pr [H1|R2] =
1

1 + eα
. (60b)

From the definition of E (0) as the prior log-odds, the marginal probabilities for
the two hypotheses are given by

Pr [H1] =
1

1 + e−E(0)
(61a)

and
Pr [H2] =

1

1 + eE(0)
. (61b)

Combining the above four relations enables us to derive the conditional proba-
bility for the response given each hypothesis. We use the following basic identity
for binary random variables, which can be derived from the definitions of joint
and conditional probability:

Pr [R1] =
Pr [H1]− Pr [H1|R2]

Pr [H1|R1]− Pr [H1|R2]
. (62)
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The conditional response probability under Category 1 can then be derived as

Pr [R1|H1] =
Pr [R1] Pr [H1|R1]

Pr [H1]

=
eα − e−E(0)

eα − e−α
, (63a)

and by analogous calculations, the response probability under Category 2 is

Pr [R1|H2] =
eE(0) − e−α

eα − e−α
. (63b)

Notice that these results do not depend on the drift or diffusion rate of the
Bayesian evidence process (ξ), which is a consequence of the 1:2 property of the
Bayesian model, and which contrasts with the results for the mechanistic model
given below. In the special case of a neutral prior (E (0) = 0, corresponding to
Pr [H1] = Pr [H2] =

1
2 ), the response probabilities reduce to

Pr [R1|H1] =
1

1 + e−α
(64a)

and
Pr [R1|H2] =

1

1 + eα
, (64b)

meaning that the log-odds of a correct response under either stimulus category
equal α.

To derive the response probabilities for the mechanistic model, we substitute
the parameter translations in Table 1 into (63), yielding

Pr [R1|H1] =
1− e−

2µz

σ2

1− e−
2µa

σ2

(65a)

and

Pr [R1|H2] =
e

2µz

σ2 − 1

e
2µa

σ2 − 1
. (65b)

These expression match those found elsewhere in the literature for the mechanis-
tic diffusion model’s response probabilities. Importantly, although (61) assumes
E (0) corresponds to the true (objective) prior log-odds, changing the prior on
H has no effect on Pr [R|H]. Therefore (63), and hence (65), hold even if the
starting point does not correspond to the objective prior. This fact should be
obvious for the mechanistic model, because prior probabilities play no role in
that model. Most psychological applications of the diffusion model treat the
starting point as a free parameter, not determined by the Bayesian analysis
presented here.

In addition to response probability, the diffusion model predicts the joint
distribution of response and RT (denoted here by the random variable T ). These

26



predictions are derived in numerous sources, and we simply repeat them here,
first for the standard mechanistic parameterization:

Pr [R1, T ≤ t|H1] = Pr [R1|H1]−
πσ2

a2
e

µ(a−z)

σ2 × (66a)
∞∑
k=1

2ka2σ2

k2π2σ4 + a2µ2
sin

(
kπ (a− z)

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t,

Pr [R2, T ≤ t|H1] = Pr [R2|H1]−
πσ2

a2
e−

µz

σ2 × (66b)
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k=1

2ka2σ2

k2π2σ4 + a2µ2
sin

(
kπz

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t,

Pr [R1, T ≤ t|H2] = Pr [R1|H2]−
πσ2

a2
e−

µ(a−z)

σ2 × (66c)
∞∑
k=1
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k2π2σ4 + a2µ2
sin

(
kπ (a− z)

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t,

Pr [R2, T ≤ t|H2] = Pr [R2|H2]−
πσ2

a2
e
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σ2 × (66d)
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(
kπz

a

)
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k2π2σ4+a2µ2

2a2σ2 t.

Translating these equations into the parameters of the Bayesian model yields

Pr [R1, T ≤ t|H1] = Pr [R1|H1]−
πξ

2α2
e

α−E(0)
2 × (67a)

∞∑
k=1

4kα2

k2π2ξ + α2ξ
sin

(
kπ (α− E (0))

2α

)
e−

k2π2ξ+α2ξ

4α2 t,

Pr [R2, T ≤ t|H1] = Pr [R2|H1]−
πξ

2α2
e−
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2 × (67b)
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sin
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4α2 t,
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Pr [R2, T ≤ t|H2] = Pr [R2|H2]−
πξ

2α2
e

α+E(0)
2 × (67d)

∞∑
k=1

4kα2

k2π2ξ + α2ξ
sin

(
kπ (α+ E (0))

2α

)
e−

k2π2ξ+α2ξ

4α2 t.

For the remainder of this section we use the mechanistic parameterization,
and derive some further properties of the model’s predictions. Starting with
the (cumulative) distribution functions in (66), we can take the derivative with
respect to time to get the RT density functions,

pji (t) =
d

dt
Pr [Rj , T ≤ t|Hi] . (68)

These density functions are equal to

p11 (t) =
πσ2

a2
e

µ(a−z)

σ2
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k=1

k sin

(
kπ (a− z)

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t, (69a)

p21 (t) =
πσ2

a2
e−

µz

σ2
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k=1

k sin

(
kπz

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t, (69b)

p12 (t) =
πσ2

a2
e−

µ(a−z)

σ2
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k=1

k sin

(
kπ (a− z)

a

)
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2a2σ2 t, (69c)

p22 (t) =
πσ2

a2
e

µz

σ2
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k=1

k sin

(
kπz

a

)
e−

k2π2σ4+a2µ2

2a2σ2 t. (69d)

The integral of each density function equals the corresponding total response
probability: ∫ ∞

0

pji (t) dt = Pr [Rj |Hi] . (70)

Dividing by the response probability gives the conditional RT distribution for
each response under each category,

qji (t) =
d

dt
Pr [T ≤ t|Hi, Rj ] .

These conditional RT distributions are equal to

q11 (t) =
πσ2

a2
· e
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σ2 − e−
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e
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q12 (t) =
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k sin

(
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e−
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Thus we see that qj1 (t) = qj2 (t), meaning the distribution of RTs for response
j is the same regardless of whether that response is correct (Category i = j)
or incorrect (Category i 6= j). All that differs between categories is the overall
probability of that response. Moreover, if z = a/2 (i.e., no response bias, or
equal priors for the two categories in the Bayesian model), then q1i (t) = q2i (t).
That is, for either stimulus category, the RTs for responses R1 and R2 have
the same distribution (again, all that differs is the overall probability of the
two responses). If the starting point is not midway between the thresholds, the
model can predict faster RTs for one response than for the other. However, the
direction of the effect will be the same for both categories: If RTs are faster for
R1 than for R2 following Category 1 stimuli, they will also be faster for R1 than
R2 following Category 2 stimuli.

8 Intertrial Variability and Unfalsifiability
What the diffusion model as presented thus far cannot predict (under either
the mechanistic or Bayesian formulation) is a difference between conditional RT
distributions for the two responses that depends on which response is correct.
That is, it cannot predict a pattern wherein correct RTs are faster than error
RTs (i.e., response R1 faster than R2 under Category 1, and vice versa under
Category 2), and likewise it cannot predict a pattern of error RTs being faster
than correct RTs. As it turns out, numerous experiments show these patterns,
presenting an empirical challenge to the model.

One solution to this challenge, which has been widely adopted in the litera-
ture, is to extend the plain diffusion model as presented thus far by introducing
intertrial variability in the model parameters. For example, one could assume
that µ is a random variable, taking on different values on different trials of the
same stimulus category. When µ is larger, the evidence rates for the two cate-
gories are better separated, and consequently the model responds more quickly
and more accurately (for a fixed value of the threshold). Indeed, it is readily
seen from (63) that increasing µ increases the probabilities of correct responses,
Pr [R1|H1] and Pr [R2|H2], and calculations using (71) show that RTs become
shorter as well. Likewise, decreasing µ increases the probabilities of error re-
sponses and produces longer RTs. When different values of µ are mixed across
trials, the result is a variant of Simpson’s paradox: Even though errors and
correct responses have the same RT distribution for any given value of µ, errors
are more likely on trials when µ is smaller, which is also when RT tends to be
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longer, and therefore errors are overall slower than correct responses once µ is
integrated out.

Intertrial variability in the starting point can also break the symmetry be-
tween correct and error RT distributions, but in the opposite direction. Greater
values of E (0) or z produce faster RTs for R1, as can be calculated from (71a)
and (71c), and they increase the probability of that response under either cate-
gory, as can be seen from (63). However, the increase in response probability is
greater under Category 2 (i.e., when R1 is an error). That is, R1 is more likely
with starting points that lead to a short RT for that response, and this effect
is more pronounced when the response is incorrect. The same conclusion holds
for R2. Therefore intertrial variability in the starting point produces error RT
distributions that are faster than correct RT distributions.

Combining intertrial variability in the drift rate and starting point produces
a more complex pattern. When the thresholds are relatively large, the impact
of starting-point variability is reduced, and the drift-rate variability dominates
to produce a pattern of slow errors. When the thresholds are relatively small,
starting-point variability dominates to produce a pattern of fast errors. Exper-
imental manipulations that are assumed to influence subjects’ speed-accuracy
tradeoff, and that are modeled by changes in threshold (i.e., smaller thresholds
under conditions encouraging speed, larger threshods under conditions encour-
aging accuracy), have been found to yield this pattern. For example, when
an instructional manipulation is used, errors tend to be faster than correct re-
sponses when subjects are told to emphasize speed over accuracy, and when
subjects are told to emphasize accuracy this relationship tends to reverse.

The proposal of intertrial variability thus appears to be empirically success-
ful, and to have resolved what is otherwise an important predictive failure of
the diffusion model. However, this proposal suffers two problems. First, it is
theoretically unmotivated. The general idea that sensory input is variable has
a long history in psychophysics, but the diffusion model already incorporates
this idea as within-trial variability. The proposal of two separate timescales
of variability (within trials and between trials) seems to have been introduced
solely to fit the data. The second problem, which is somewhat a consequence
of the first, is that without some theory to constrain the form of the intertrial
distributions, the model becomes excessively flexible. In fact, if the drift-rate
distribution is entirely free, then the model becomes fully unfalsifiable. That
is, for any joint distribution over the response and RT, there exist drift-rate
distributions under which the model exactly reproduces that joint distribution.

To state this unfalsifiability result more formally: Let Gj
i (t) for i, j ∈ {1, 2}

be any set of nondecreasing right-continuous functions with Gj
i (t) = 0 and

limt→∞ G1
i (t) + G2

i (t) ≤ 1. (Allowing for inequality in the latter constraint
allows a nonzero probability that no response is given.) Let a be any value for
the upper threshold (with the lower threshold equal to 0), and let z be any
value for the starting point (fixed across trials), with 0 < z < a. Then there
exist a value of σ and intertrial drift-rate distributions under the two categories
such that the diffusion model exactly predicts Pr [Rj , T ≤ t|Hi] = Gj

i (t) for all
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t ∈ R+ and i, j ∈ {1, 2}.
To prove this statement, let σ = 0 and define the drift-rate distribution

under each category by

Pr [µ ≤ x|Hi] =


G2

i

(
− z

x

)
x < 0

limt→∞ G2
i (t) x = 0

1− supt< a−z
x

G1
i (t) x > 0.

(72)

Under the special case of no diffusion (σ = 0), the response is always R1 if µ > 0
and R2 if µ < 0, and the RT is given by

T =


− z

µ µ < 0

∞ µ = 0
a−z
µ µ > 0.

(73)

Therefore for any t > 0 we have

Pr [R2, T ≤ t|Hi] = Pr
[
µ ≤ −z

t

∣∣∣Hi

]
= G2

i (t) . (74a)

Likewise,

Pr [R1, T ≤ t|Hi] = Pr

[
µ ≥ a− z

t

∣∣∣∣Hi

]
= 1− sup

m< a−z
t

(
1− sup

τ< a−z
m
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i (τ)

)

= inf
a−z
m >t

(
sup

τ< a−z
m

G1
i (τ)

)
= G1

i (t) (74b)

with the last equality due to right-continuity of G1
i .

Although this proof relies on allowing diffusion to be absent from the model,
one can also choose σ > 0 and obtain a model with predictions arbitrarily close
to a given Gj

i . That is, for any ε < 0, there exist a diffusion rate and drift-rate
distributions such that the model’s predictions satisfy∣∣∣Pr [Rj , T ≤ t|Hi]−Gj

i (t)
∣∣∣ < ε (75)

for all t > 0 and i, j ∈ {1, 2}. This follows from the fact that (66) is contin-
uous with respect to σ at σ = 0 and that probability functions are monotonic
with compact range (thus ensuring uniform convergence in (75)). Because the
model’s predictions are invariant under any transformation of its parameters
(z, µ, σ, a) → (γz, γµ, γσ, γa) for γ > 0, one can then pick a transformation that
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results in any desired value of σ. In other words, if the diffusion rate is fixed
in advance, one can still obtain a model with predictions arbitrarily close to a
given Gj

i by appropriate choice of the drift-rate distributions, starting point,
and thresholds.

In practical applications of the diffusion model, the intertrial distributions
of drift rate and starting point are not fully unconstrained as they are in the
proof just given. Instead, drift rate is typically assumed to vary according to
a Gaussian distribution, and starting point according to a uniform one. This
more restricted model is not unfalsifiable, and indeed it makes constrained pre-
dictions that have been well-supported empirically. However, the choices of
Gaussian and uniform distributions are made purely for mathematical conve-
nience; they are considered implementation assumptions rather than theoretical
commitments. Therefore we are left in an unusual situation, where a formal
model makes constrained and successful predictions, but the theory this model
is meant to embody (diffusion process, time-invariant boundaries, and intertrial
variability in starting point and drift rate) is unfalsifiable. Clearly the model is
capturing regularities in human decision-making behavior, in a way that gives
it remarkable predictive power, but at present the reasons for this empirical
success are poorly understood.

9 Further Reading
For readers not familiar with Bayesian models of cognition, Griffiths, Kemp,
and Tenenbaum (2009) provide a tutorial introduction.

The signal detection model was originated by Tanner and Swets (1954)
and Green and Swets (1966), with important later elaborations by Ashby and
Townsend (1986).

Reviews of evidence sampling models of speeded choice, including the ran-
dom walk and diffusion models, can be found in Ratcliff and Smith (2004), Luce
(1986), Townsend and Ashby (1983), and Vickers (1979).

The original formulation of the random walk model and its grounding in the
SPRT are due to Stone (1960). Later developments can be found in Laming
(1968), Link (1975), and Link and Heath (1975).

The Wiener diffusion model was originated by Ratcliff (1978). The Ornstein-
Uhlenbeck (OU) model, which is closely related to the Wiener diffusion model
but includes a decay component in the dynamics of the evidence process, was
developed by Busemeyer and Townsend (1993).

Bogacz et al. (2006) present an optimality analysis of several evidence-
accumulation models, including the diffusion and OU models, that is comple-
mentary to the Bayesian derivation presented here.

Response and RT predictions for the diffusion model can be found in Ratcliff
(1978), with elaboration in Smith (2000). Predictions for the random walk
model and relationships to the diffusion model’s predictions can be found in
Smith (1990).

Intertrial variability was first introduced by Laming (1968), who assumed a
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variable starting point for the random walk model. Ratcliff (1978) introduced a
variable drift rate for the diffusion model. Ratcliff and Rouder (1998) assumed
variability in both starting point and drift rate in the diffusion model and showed
that these assumptions together can predict a crossover pattern of fast errors
under speed instructions and slow errors under accuracy instructions. Data
showing this crossover pattern can be found, for example, in Ratcliff, Van Zandt,
and McKoon (1999) and Wagenmakers, Ratcliff, Goméz, and McKoon (2008).

The unfalsifiability property of the diffusion model with unconstrained drift-
rate distribution was proven by Jones and Dzhafarov (2014a). Further discussion
of this theorem appears in Heathcote, Wagenmakers, and Brown (2014), Smith,
Ratcliff, and McKoon (2014), and Jones and Dzhafarov (2014b).

10 Conclusions
We have shown here that the diffusion model that has been influential in psy-
chological studies of speeded decision-making has a normative basis in Bayesian
inference from a continuous evidence stream. The version of the model that
results from this rational analysis is formally equivalent to the standard, mech-
anistic diffusion model and offers new insights on psychological interpretations
of its parameters.

A general challenge to Bayesian models of cognition is that exact Bayesian
inference becomes intractable as the task environment becomes more complex.
For example, the rational analysis presented here does not cover cases where
there are different stimulus subtypes within each category, or where the true
drift rates of the input process (µi) are unknown, or where there are sequential
dependencies across trials. Although extensions of the present model to these
cases are possible, it seems that the brain must eventually give up exact Bayesian
inference in favor of approximate methods. Therefore, as a cognitive theory,
Bayesian optimality is better viewed as a guiding principle that is likely to be
more accurate in simpler situations. In light of these considerations, we suggest
the value of an analysis like the one presented here is that it offers a link between
mechanistic and rational levels of explanation. Understanding the normative
underpinnings of a mechanistic model, such as the diffusion model, may provide
guidance in extending it to cover more complex tasks or phenomena.

One example of how a normative grounding might inform extensions of the
diffusion model concerns the relationships between RT distributions for cor-
rect and error responses. We have reviewed here how the plain diffusion model
makes strong predictions about these relationships that do not hold up empir-
ically. The model can be extended to enable violations of these predictions by
incorporating random intertrial variability in its drift rate and starting point,
but this extension is atheoretical and comes at the cost of making the under-
lying theory unfalsifiable. In order to obtain a model that makes a genuine
explanatory contribution—that is, that makes theoretically driven, constrained
predictions that match the data—it seems that what is needed is a theory of
intertrial variability itself, one that implies constraints on the forms that vari-
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ability can take. Because the Bayesian treatment presented here offers a rational
interpretation of the starting point and drift rate, it may suggest a principled
theory of how and why they vary. In particular, one hope is that such a the-
ory could emerge from trial-by-trial learning of the task parameters (the prior
probabilities of the categories, the drift criterion, and the signal-to-noise ratio)
that the observer must know in order to carry out optimal inference.
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