The deer in Chautauqua spend each morning in one of three groves, but there doesn't seem to be any pattern to where they'll be each day. When I take my dog out in the morning, he races into the trees, hoping to find deer. I wonder whether Rufus is guessing randomly which grove to run to, or whether he can smell or hear them from across the field. So, I write down whether he finds deer each day:

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10 Day 11 Day 12	Day 13 Day 14	
Yes	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	No

Use these data to do a binomial test of whether Rufus can smell the deer or is just guessing.

1. What parameter are we trying to make a conclusion about? (Write the meaning of the parameter, not its mathematical symbol.)
The probability he will find the deer on any given day
2. Write a sentence stating the null hypothesis at a conceptual level.

He is guessing; his probability of finding deer is $1 / 3$ every day.
3. Write the null hypothesis mathematically (i.e., as an equation).
$q=1 / 3$
4. Write a sentence stating the alternative hypothesis at a conceptual level.

He's not just guessing; his probability of finding deer each day is different from (or greater than) 1/3.
5. Write the alternative hypothesis mathematically.
$q>1 / 3$ or $q \neq 1 / 3$
6. What test statistic will you use to decide between the hypotheses?

Frequency of finding deer, $f($ Yes $)$
7. What is the value of this statistic for the sample I recorded?

9
Here's the distribution for the test statistic you should have written for Question 6, according to the null hypothesis. This is a binomial distribution based on $n=14$ and q equal to what you should have written above.

Frequency:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Probability:	.00	.02	.08	.16	.21	.21	.16	.09	.04	.01	.00	.00	.00	.00	.00

8. What is the critical value, assuming $\alpha=5 \%$?

Between 7 and 8
9. Which hypothesis do the data support?

Alternative hypothesis
10. Why?

He found deer more often than we would expect if the null hypothesis were true
11. Write a sentence summarizing your conclusion. This should be a sentence about Rufus, not about statistics.
Rufus can smell deer from across the field.

