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Regression 
Regression tells us how one variable or set of variables predicts another.  We 
call the variables that do the predicting the predictors, and we call the variable 
being predicted the outcome. 
Load the data in ‘lab10-1.txt’.  As always, start by getting a summary() of the 
data to see what the variables and their ranges are.  Our goal with this dataset 
will be to see how well high school GPA and AP scores can predict a student’s 
college GPA.  We do this using regression, specifically by regressing the 
outcome (college GPA) onto the three predictors.  This will give us the best 
regression coefficient for each predictor. 
Finding the best values of the regression coefficients mathematically involves 
some basic calculus and matrix algebra, but R has a built-in function that does 
this.  The function is the linear-model function, abbreviated lm().  The input to 
lm() uses a special format: we write the outcome, followed by a tilde (~), and 
then the predictors separated by + signs. 
> lm(d$collegeGPA ~ d$highschoolGPA + d$APcalc + d$APpsyc) 

The output of lm() gives the regression coefficients.  The first one is the 
intercept, which we call b0.  This is the predicted value of the outcome when the 
predictors are all zero.  The other regression coefficients each correspond to a 
predictor. 
The regression coefficient for each predictor can be interpreted similarly to a 
correlation.  If it is positive, then the predictor has a positive effect on the 
outcome.  If the regression coefficient is negative, the predictor has a negative 
effect on the outcome.  The size of the coefficient tells you the size of the effect.  
When it’s positive, the regression coefficient tells you how much the outcome is 
expected to increase for every unit increase in the predictor.  When it’s negative, 
it tells you how much the outcome is expected to decrease for every unit 
increase in the predictor. 
Once you have the regression coefficients, you can use them to make 
predictions about new subjects.  Create scores for high school GPA, AP calc, 
and AP psych for a hypothetical new student.  Use the summary of the data you 
got above to choose sensible values for all three predictors.  Now use these 
scores to predict the new person’s college GPA.  Your prediction comes from the 
regression equation, which multiplies each predictor by its regression coefficient 
(b) and then adds everything up including the intercept. 
> collegeGPA.hat = b0 + b_hsGPA*hsGPA + b_APcalc*APcalc + b_APpysc*APpsyc 

Now increase your new subject’s AP calc score by 1 and get a new prediction.  
Notice how the prediction increased by exactly the regression coefficient for AP 
calc.  That’s the best way to understand what the regression coefficient means.  
Do the same thing with the other two predictors to see how changing them 
changes the prediction. 



Reliability of regression coefficients 
From looking at the regression coefficients, it appears that both AP scores are 
good predictors of college GPA, but high school GPA is not, because its 
coefficient is close to zero.  Now we will do hypothesis testing to see whether our 
impressions based on the regression coefficients are correct.  That is, we want to 
know whether the positive effects of the AP scores are indeed reliable, meaning 
that we can reject the null hypothesis that the true population values of these 
regression coefficients are zero.  In the same way, we want to test whether the 
weak effect of high school GPA in our data is close enough to zero that it can be 
explained by chance, meaning that we would not reject the null hypothesis for 
this predictor. 
To do hypothesis testing with regression, we use the summary() function.  This 
is a very flexible function that gives different outputs for different kinds of inputs.  
If you input the results of a regression to summary(), it outputs a set of test 
statistics and p-values for all of the tests you might want to do with that 
regression. 
> regression = lm(d$collegeGPA ~ d$highschoolGPA + d$APcalc + d$APpsyc) 
> summary(regression) 

There’s a lot here, and we’ll go through most of it.  First, look at the output under 
Coefficients.  There’s one row for each regression coefficient, including the 
intercept.  The Estimate column shows the values of the regression coefficients 
estimated from the data.  There are the same values we saw already.  The 
remaining columns test the reliability of each regression coefficient.   
The Std. Error column gives the standard error of each coefficient.  This 
standard error works in the same way as other standard errors—it’s the standard 
deviation of the sampling distribution for the regression coefficient, and it tells you 
the typical difference between the true population value and the value estimated 
from the sample (if you drew hypothetical samples repeatedly).  If the estimated 
value of a regression coefficient is much larger (in absolute value) than its 
standard error, then it’s unlikely that the true value is zero.  This is because, if 
zero were the true value, then you probably wouldn’t have gotten a value as 
extreme as the one you actually got. 
The next column shows the value of the t statistic, which is equal to the 
regression coefficient divided by its standard error.  Try this out just to verify it—
divide one of the regression coefficients by its standard error and check that the 
result is the t value. 

Notice that the t values for both AP scores are very large.  A t value this large 
will almost never happen by chance.  We can see this from the final column, 
which shows the p-value.  R gives you the two-tailed p-value, which is the 
probability of getting a result that is as large in absolute value as the result you 
got.  For the AP scores, the p-value is very small (e-16 stands for 10 to the 
power -16, i.e. 16 places after the decimal point).  This reflects the fact that both 
ts are very far out in the t distribution and are thus very unlikely.  Because p is 
so small in both cases, we reject the null hypotheses that the true regression 
coefficients are zero and conclude that the AP scores both reliably predict 



college GPA. 
For high school GPA, the estimated regression coefficient is actually smaller than 
its standard error.  This means that the estimate is consistent with what would be 
expected just by chance, i.e. if the true coefficient were zero.  This is reflected in 
the t value, which is small.  The small t leads to a large p-value, which indicates 
there was a high probability of getting a result like the one we got, just by chance.  
Therefore we retain the null hypothesis that high school GPA doesn’t give any 
information about college GPA, once we know the AP scores. 
Reliability of entire regression 
In addition to testing individual predictors, we can test whether the whole 
regression equation tells us anything meaningful about the outcome.  We know 
this is true because we already know that two of the three predictors explain 
something meaningful about the outcome, but let’s pretend we didn’t know this. 
The first step in evaluating the regression is to partition the variability in the 
sample outcome into variability that’s explained and variability that is not.  First, 
compute the total variability.  This is the sum of squares for the outcome, or the 
total squared deviations of all the college GPA scores from the mean college 
GPA. 
> deviations = d$collegeGPA – mean(d$collegeGPA) 
> squared.deviations = deviations^2 
> SS.collegeGPA = sum(squared.deviations) 

The next step is to find the residual variability, meaning the uncertainty in the 
outcome that’s left over after we use the regression equation to get our best 
predictions of the outcome.  To do this, you could use the regression equation to 
find the prediction for every subject, just like you did above for a single 
hypothetical new subject.  Then you would subtract each prediction from the 
corresponding true college GPA to find the residuals, meaning the prediction 
error for all subjects in your sample.  Fortunately, lm() computes the residuals 
automatically and saves them as part of the regression you created above. 
> summary(regression$residuals) 

There’s one residual for every subject, and it’s equal to Y − Ŷ , meaning the 
prediction error of the regression.  To find the total residual variability, square the 
residuals and add them up.  This computes SS

residual
= Y − Ŷ( )

2

∑ . 
> SS.residual = sum(regression$residuals^2) 

SS.residual is the amount of variability that the regression cannot explain.  
The amount that the regression can explain is the difference, or reduction, from 
SS.collegeGPA to SS.residual.  This reduction is the amount of uncertainty 
that went away when we changed from using the mean to predict the outcome 
for each subject (in SS.collegeGPA) to using Ŷ  (in SS.residual). 
> SS.regression = SS.collegeGPA – SS.residual 

The question now is whether SS.regression represents a large portion of 
SS.total.  If it does, then the regression is explaining a significant amount of 
the variability in the outcome.  To test this, we divide SS.regression by 



SS.total, to find the fraction of the variability that the regression explains.  This 
fraction is R-squared. 
> R2 = SS.regression/SS.collegeGPA 

Compare your result for R-squared to the result you got before from the summary 
of the regression, which is shown as “Multiple R-squared.”  The numbers 
should be the same, because summary() did exactly the same calculations you 
just did. 
R-squared is fairly large for these data—over 89% of the variability in the 
outcome is explained by the regression.  It’s very unlikely that so much variability 
could be explained just by chance, but let’s do the hypothesis test to be sure.  To 
do the hypothesis test, we convert SS.regression and SS.residual to mean 
squares, by dividing by their degrees of freedom.  The residual degrees of 
freedom is the number of subjects minus the number of regression coefficients 
(which is the number of predictors plus one for the intercept).  The degrees of 
freedom for the regression is the number of predictors (not including the 
intercept).  We use n for the number of subjects (which you can get from 
dim(d)) and m for the number of predictors (which is 3 in this case). 
> df.residual = n – (m+1) 
> MS.residual = SS.residual/df.residual 
> df.regression = m 
> MS.regression = SS.regression/df.regression 

According to the null hypothesis that the regression doesn’t explain anything 
meaningful, MS.regression should be about the same as the population 
variance of the outcome, s2.  We estimate s2 using MS.residual.  By 
comparing MS.regression to MS.residual, we can see whether 
MS.regression is larger than it would be by chance.  The ratio of 
MS.regression and MS.residual gives the F statistic, which is our test 
statistic for this hypothesis test. 
> F = MS.regression/MS.residual 

Verify that your result matches the F given by summary().  Notice that F is very 
large.  F statistics are always positive, but by chance they tend to be around 1.  
The probability of an F as large as 2760 is extremely small, as shown by the p-
value given by summary().   You can also get the critical value for F.  The qf() 
function works just like qt() and qnorm(), except that you have to tell it both 
degrees of freedom. 
> F.crit = qf(.05,df.regression,df.residual,lower.tail=FALSE) 

We always do a 1-tailed test with F statistics, because a particularly small value 
of F never means anything interesting.  So we test whether F is bigger than the 
critical value.  In this case, the critical value should be much less than the actual 
F from the data.  This means that we reject the null hypothesis and conclude that 
the regression is telling us something meaningful about the outcome.  In other 
words, knowing someone’s high school GPA and calculus and psychology AP 
scores gives you real information about what their college GPA is likely to be. 
  


