
Psyc 2111, Jones 
Summary of Lab Week 13 

 
Nominal data 
Load the data in “lab13-1.txt” on the course website.  Display the data.  The 
data show observed frequencies for two variables, favorite winter sport and 
favorite type of movie.  I’ll call the variable f.obs for observed frequencies.  
Each entry of f.obs shows the number of people in the sample with a particular 
combination of preferences.  For example, 15 people like to ski and watch action 
movies. 
There are a couple of basic things we can do with the data.  First, to find the 
total number of people in the sample, we can sum the observed frequencies. 
> n = sum(f.obs) 

Second, we can calculate the marginal frequencies of each variable (marginal 
means ignoring the other variable).  To get the marginal frequencies of movie, 
sum each row.  To get the marginal frequencies of sport, sum each column. 
Here’s a quick trick to sum all the rows or columns simultaneously.  The 
apply() function takes a matrix and applies any function you want to every row 
or column.  The second entry tells apply() whether to use the rows (1) or the 
columns (2).  To apply sum() to every row of f.obs, enter 
> f.movie = apply(f.obs,1,sum) 

To apply sum() to every column of f.obs, enter 
> f.sport = apply(f.obs,2,sum) 

Display the marginal frequencies of both variables, and notice how they relate to 
the original data.  We call the original data the joint frequencies, because they 
depend on both variables jointly.  For example, the marginal frequency for skiing 
should come out to be 42, which is the total of the three entries in the ski 
column of the observed joint frequencies.  There are 15 people who prefer skiing 
and action movies, 12 people who prefer skiing and dramas, and 15 people who 
prefer skiing and comedies, so altogether there are 42 people who prefer skiing 
(regardless of their movie preference). 
 
Multinomial test 
Let’s use the marginal frequencies to test hypotheses about the distribution of 
each variable separately.   
For sport preferences, we might ask whether there are real differences in how 
popular the four sports are.  In the sample, snowboarding is the most popular 
and ice climbing the least, but does this pattern hold up in the population?  To 
answer this question, we consider the null hypothesis that says all four sports are 
equally popular in the population, and we test whether the sample data are 
consistent with this hypothesis. 
The first step in testing this hypothesis is to calculate the expected frequencies 
according to the null hypothesis.  In other words, we want to know the expected 
value of how many people in the sample should prefer each sport, if the null 
hypothesis were correct.  The answer is pretty easy—if all sports are equally 



popular, then one quarter of the population prefers each sport.  Therefore we 
should expect (on average) one quarter of the sample to prefer each sport.  
(Notice that the expected frequency is the same for all four sports, so we just 
need to calculate it once.) 
> f.exp.sport = n/4 

The next step is to calculate how much the observed frequencies deviate from 
the expected frequencies.  The observed frequencies are statistics we 
calculated from the data, and the expected frequencies are the expected values 
(i.e., means) of the sampling distributions of those statistics.  What this means is 
that if we replicated our study a large number of times, and kept track of the 
observed frequency of any sport in all of the samples, the average across all the 
samples should equal the expected frequency (38.5, in this case).  This should 
help you understand why the expected frequency isn’t always a whole number; 
it’s not a frequency that you necessarily expect to occur exactly in any one 
sample, but it’s the average of the frequencies from all samples (similar to how 
the average American family is said to have 2.3 children). 
Since the expected frequencies tell us what we should expect according to the 
null hypothesis, the deviation between the observed and expected frequencies 
tells us how well (or poorly) the null hypothesis can explain the data.  For 
example, the observed frequency for snowboarding looks pretty different from the 
expected frequency (see for yourself), but the question is whether this difference 
is greater than would be expected by chance.  To answer this question, we need 
a test statistic.  The test statistic for this test is c2 (chi-square).  As with all test 
statistics, c2 is useful because (1) it measures the deviation of the data from the 
null hypothesis, and (2) we know exactly what its distribution is according to 
chance. 

There are four steps to calculating c2.  These steps are the same for multinomial 
tests (i.e., tests of a single nominal variable, which is what we’re doing now) and 
for tests of independence between two nominal variables (which we’ll do next).  
First, calculate the difference between each observed frequency and its expected 
frequency. 
> diffs = f.sport – f.exp.sport 

Second, square these differences.  As usual, squaring removes negative values, 
and it also makes all of the math behind chi-square distributions work out nicely. 
> square.diffs = diffs^2 

Third, divide each squared deviation by the corresponding expected frequency.  
We do this because the expected frequency is not only the mean of the sampling 
distribution but it’s also the variance (this isn’t exactly true, because of 
degrees-of-freedom complications, but that’s the best way to think of it).  
Dividing by the variance gives us a squared z-score, i.e. a standardized score, 
which allows us to compare and combine all the deviations into a single 
measure.  For example, a deviation of 5 is much less likely when the expected 
frequency is 10 (fobs = 15) than when the expected frequency is 100 (fobs = 105), 
and dividing by fexp accounts for this. 
> z.square = square.diffs/f.exp.sport 

Finally, sum over all the levels of the observed variable (i.e., over all four sports), 



to get c2. 
> chi.square = sum(z.square) 

If it’s useful for you to see chi.square in a single command that combines all 
the above steps, to compare it to the mathematical formula from the lecture, here 
it is: 
> chi.square = sum((f.sport – f.exp.sport)^2/f.exp.sport) 

Now that we have our test statistic, we can use it to get a p-value.  Since larger 
values of c2 mean more deviation from the null hypothesis, we want to know the 
probability of a chi-square as large as or larger than the c2 we actually got from 
the data.  The degrees of freedom for the chi-square distribution are (as usual) 
determined by the number of squares we summed to get c2.  It looks like we 
added four squares (one for each sport), but only three of them are independent, 
because once you know the frequencies for three of the sports, you can figure 
out the frequency for the fourth (by subtracting from n).  So, we want to know 
the probability of a result greater than or equal to c2, according to a chi-square 
distribution with 3 degrees of freedom.  The pchisq() function finds this 
probability for us, in the same way the pf(), pt(), pnorm(), and pbinom() 
functions do for other types of distributions. 
> p = pchisq(chi.square,3,lower.tail=FALSE) 

Remember what the p-value tells you.  The p-value is not a measure of effect 
size.  It’s a probability.  It’s the probability that, if the null hypothesis were true, 
we would have gotten a result as extreme as we did.  In this case, it’s the 
probability that the observed frequencies would have deviated from the expected 
frequencies as much as they did.  The p-value for these data tells us that the 
probability is less than 5%, meaning that deviations as large as we observed 
would be fairly unlikely according to the null hypothesis.  Therefore, the null 
hypothesis does a poor job of explaining the data.  Since p < .05, we reject the 
null hypothesis and conclude there are real popularity differences among the 
sports. 
 
Multinomial test with other null hypotheses 
The null hypothesis we just tested was the simplest kind that’s used in 
multinomial tests; we just assumed that all outcomes were equally likely.  
However, sometimes there are other null hypotheses we might like to test.  For 
example, suppose we had box office records from the MPAA telling us that 40% 
of all moviegoers last year attended action movies, 25% attended dramas, and 
35% attended comedies.  We could ask whether our data are consistent with 
this breakdown. 
To answer this question, all we need are the expected frequencies.  After we 
have those, the remaining steps are the same as before.  To get the expected 
frequencies, we take the population proportions assumed by the null hypothesis 
and multiply them by n.  In this case, our null hypothesis assumes the 
population proportions are 40% for action, 25% for drama, and 35% for comedy.  
Therefore, we should expect about 40% of our sample to choose action movies, 
and so on. 
> population.probabilities = c(.4,.25,.35) 



> f.exp.movie = population.probabilities*n 

Now that you have the expected frequencies, calculate c2 just like before.  
Subtract the expected frequencies from the observed frequencies, square the 
differences, divide each square by the expected frequency for that level, and sum 
over all the levels (i.e., movie types).  The result is a measure of how much the 
data deviate from the predictions of the null hypothesis.  To see how likely this 
deviation would be just by chance, get the p-value.  Remember the degrees of 
freedom is one less than the number of levels of the observed variable (in this 
case, there are 3 movie types). 
 
Tests of independence 
The other thing we can do with nominal data is test whether the variables are 
related to each other.  That is, does knowing a person’s favorite winter sport tell 
us anything about his or her favorite movie type?  Look at the observed 
frequencies and try to answer this question intuitively.  For example, you should 
notice that the movie preferences among snowshoers and ice climbers look 
different.  The question is whether these differences could have happened by 
chance (due to the particular people we happened to sample), or whether they 
indicate something real about the population. 
As with the multinomial test, the first step is to work out the expected 
frequencies.  In this case, the expected frequencies are the number of people 
we should expect to have each combination of preferences, if the two variables 
were independent.  By independent, we mean that the percentages of people 
who like action movies vs. dramas vs. comedies are the same among skiers, 
snowboarders, snowshoers, and ice climbers.  (This turns out to be exactly the 
same as saying that the percentages of people who like the four sports are the 
same for all three movie preferences.)  This is the same notion of independence 
that came up in the context of correlation: knowing the value of one variable 
gives us no information about the other variable. 
To figure out what the percentages of movie preferences should be, we use the 
data themselves.  That is, we look at the percentage of people who chose each 
movie type, combining all four sports. 
> f.movie/n 

It’s important to realize at this point how the test of independence differs from the 
multinomial test of each variable.  The multinomial test tests hypotheses about 
the (marginal) distribution of the variable, and the null hypothesis makes a 
specific assumption about that distribution (e.g., all levels are equally likely).  
The test of independence makes no such assumptions.  Instead, it uses the 
marginal frequencies exactly as they appear in the data.  Therefore, the two 
tests address totally unrelated questions, and neither depends on the other. 
You should see from the marginal frequencies that about 38% of people chose 
action movies, 29% chose dramas, and 34% chose comedies.  The null 
hypothesis, that movie preference is independent of sport preference, predicts 
that these should be the percentages within each sport.  For example, 38% of all 
skiers (and 38% of all snowboarders, etc.) should prefer action movies.  Now 
you should be able to see how we calculate the expected frequencies.  To get 



the expected number of people who like skiing and action movies, we take the 
total number of skiers (from f.sport) and multiply it by 38%, i.e. by the overall 
percentage of action fans. 
Try calculating the expected frequencies for a few different movie-sport 
combinations.  Notice what you’re doing in each case: You’re multiplying a 
component of f.sport by f.movie/n.  This is the same as 
(f.sport*f.movie)/n, which is the formula from the lecture.  (This formula 
should also help you understand why it doesn’t matter which way we look at the 
data, i.e. as percentages of movie preferences within each sport or percentages 
of sport preferences within each movie type.)  To calculate the expected 
frequencies, (f.sport*f.movie)/n, for all movie-sport combinations at once, 
we can use matrix algebra.  Here’s the command: 
> f.exp = f.movie %*% t(f.sport) /n 

(The %*% symbol means matrix multiplication.  The t() function means matrix 
transpose, which turns the column vector f.sport into a row vector.  The 
whole command multiplies f.movie as a column vector by f.sport as a row 
vector, to get a movie-by-sport matrix, and then divides by n.) 

Check the expected frequencies you calculated by hand against the 
corresponding entries of f.exp.  The numbers should be the same.  To 
summarize, each entry of f.exp equals f.movie*f.sport/n for some 
movie-sport combination.  The result is the expected number of people with that 
combination of preferences, according to the null hypothesis that the variables 
are independent.  By expected value, we mean the mean of the sampling 
distribution, or the average observed frequency if we replicated the sample a 
large number of times, assuming the null hypothesis is true.  Because they’re 
averages, the expected frequencies usually aren’t whole numbers (remember the 
example of 2.3 children). 
Now that you have the expected frequencies, compare them to the observed 
frequencies (by having R display both matrices).  Notice the places where they 
differ.  To test whether the deviations between the observed and expected 
frequencies represent a real relationship between sport and movie preferences, 
we can compute a chi-square statistic.  This is done in the same way as in the 
multinomial test.  First, calculate the differences between all observed and 
expected frequencies. 
> diffs = f.obs – f.exp 

Second, square the differences. 
> square.diffs = diffs^2 

Third, divide each squared deviation by its expected frequency. 
> z.square = square.diffs/f.exp 

Fourth, add everything up. 
> chi.square = sum(z.square) 

The degrees of freedom for the test of independence are the product of the 
degrees of freedom for the multinomial tests of the two variables.  In other 
words, the degrees of freedom are the number of movie types minus one, times 
the number of sports minus one.  This should make some sense because the 



number of squared deviations we added up was the number of movie types times 
the number of sports (i.e., the number of movie-sport combinations).  The 
minus-ones come from the usual algebraic magic.  In this case, we lose degrees 
of freedom because the expected frequencies are based on the actual marginal 
frequencies in the data, and if we rewrote the formula for c2 in terms of only the 
raw data, some of the squares would disappear from the sum. 
Use chi.square and the degrees of freedom to compute a p-value.  The 
p-value is the probability of getting deviations between f.obs and f.exp as 
large as the deviations we actually got, if the two variables were independent.  In 
this case, the probability is small, meaning if the variables were independent 
there would have been only about a 2.3% chance of getting data that deviated 
from independence as much as our data did.  Using the conventional alpha level 
of 5%, we reject the null hypothesis and conclude that the variables are not 
independent.  In other words, people with different winter sport preferences tend 
to have different tastes in movies. 


