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Random numbers 

R has built-in functions that will generate random numbers.  You can think of these numbers as 
samples from a mathematically ideal population.  For example, the rnorm() function samples 
from a perfect Standard Normal distribution.  (The Standard Normal is the Normal distribution that 
has mu = 0 and sigma = 1.  It’s what you get if you take any other Normal distribution and 
standardize it, i.e. convert to z-scores.) 

Try sampling a single Normal random number.  Do this several times and notice how the answer 
is always different. 
> rnorm(1) 

The input to rnorm() tells it how many random numbers to generate.  If you want more random 
numbers at once, change the input value.  Let's get a big vector of random numbers to play with: 
> normvec = rnorm(100000) 

Compute the mean and standard deviation of your sample.  They should be very close to 0 and 1 
(respectively), because those are the parameters of the population.  Your statistics won't exactly 
match the true values of the parameters, because of sampling error. 

Draw a histogram of the data with a lot of bins, e.g. 
> hist(normvec, breaks = 200) 

Notice how closely the sample matches the population (Normal) distribution.  This is because the 
sample size (n) is so large. 

Since the Standard Normal is the distribution of z-scores for any other Normal distribution, we can 
sample from other Normal distributions by convert backwards from Z to X.  For example, IQ has a 
mean of 100 and a standard deviation of 15, meaning Z = (X-100)/15, so X = 100 + Z*15. 
> IQZ = rnorm(_) 
> IQ = 100 + IQZ*15 

Make a histogram of your IQ sample to make sure it came out right.  Then generate numbers 
from other Normal distributions, by using other values of mu and sigma. 
 
Uniform distribution 

Another common type of population distribution is called a uniform distribution.  In a uniform 
distribution, all values are equally likely within a given range.  The Standard Uniform distribution 
uses a range of 0 to 1.  (The term Standard is a bit misleading here, because the mean and 
standard deviation are not 0 and 1; in fact you should be able to guess that the mean is 1/2.) 

We can sample random numbers from the Standard Uniform using the runif() function. 
> unifvec = runif(100000) 
> hist(unifvec,breaks = 200) 

Notice how the scores are all between 0 and 1, and the distribution is totally flat. 

What are the minimum, maximum, median, and quartiles of the Standard Uniform distribution?  
You should be able to figure these out, before getting estimates from your sample. 
> summary(unifvec) 

(Note on scientific notation: Sometimes R gives you numbers like 5.0127e-01.  Technically, this 
means 5.0127 * 10^(-1), which is the same as 5.0127 * .1, or .50127.  In practice, the 
number after the e tells you how many places to shift the decimal point.  A negative number 
means shift left.  A positive number means shift right; e.g. 5.0127e+02 = 501.27.) 

You can sample from other uniform distributions using linear transformations just like with the 
Normal. 



> otherUnif = runif(_)*_ + _ 
> hist(otherUnif, breaks = _) 
 
Cumulative distributions and probability 

What's the probability that a score from a Standard Uniform distribution will be less than .27?  
You should be able to figure this out just by thinking about it.  You can estimate this property of 
the population by looking at your sample, and finding what proportion of numbers in the sample 
are less than .27. 
> mean(unifvec<.27) 

This command illustrates how you can use mean() to compute probabilities.  When a logical 
(TRUE/FALSE) vector is input to mean(), mean() returns the fraction of entries that are TRUE.  
This is an important use of the mean() function that is different from how we've used it before.  
(The connection between the two uses is that TRUE is treated as 1 and FALSE as 0; thus the 
mean is the fraction of 1s, or TRUEs.) 

It should be obvious by now that the cumulative distribution for the Standard Uniform is a very 
simple function: F(x) = x.  Plot the cumulative distribution of the sample to verify this. 
> P = ecdf(unifvec) 
> plot(P) 
(Notice that the cumulative distributions we’re getting here are cumulative probabilities, not 
cumulative frequencies.  That is, P(x) is the fraction of scores less than or equal to x, not just the 
count of scores less than or equal to x.) 

Now that we're warmed up on the Uniform, let's work through the cumulative distribution of the 
Normal.  Start by plotting the cumulative distribution function of your Normal sample, like you just 
did for the uniform sample. 

Unlike with the Uniform, the cumulative distribution for the Normal never quite reaches 0 (for 
negative scores) or 1 (for positive scores).  That's because under the Normal distribution, there's 
a non-zero probability of observing an arbitrarily extreme score in either direction.  Technically, 
we say that the Normal is unbounded.  However, you can also see that extreme scores are very 
unlikely, because P gets very close to 0 and 1 once z gets past +/-3 or so. 

Use the Normal sample to estimate the probability of a Normal z-score beyond various values.  
Try +/-2, 3, 4, etc. 
> mean(normvec<_) 
> mean(normvec>_) 

Recall that pnorm() gives the exact cumulative Normal distribution, and that 1-pnorm() gives 
the complementary probability (i.e., of being above a certain value).  Use this function to compare 
to the answers you got above from the sample. 
 
Probabilities of scores within a range 

What is the probability of a z-score between 1 and 2?  It may be easier to think about this using 
the sample.  If we start by counting all the scores less than 2, and then remove all the scores less 
than 1, we’re left with scores between 1 and 2. 
> sum(normvec<2) – sum(normvec<1) 

That’s counting, but the same thing works with proportions.  You can find the proportion of scores 
between 1 and 2 by finding the proportion that are less than 2 and removing (subtracting) the 
proportion that are less than 1. 
> mean(normvec<2) – mean(normvec<1) 

What we just did with proportions in the sample also works with probabilities in the population.  
The probability of a score between 1 and 2 equal the probability of a score less than 2 minus the 
probability of a score less than 1. 
> pnorm(2) – pnorm(1) 



The proportion you got from the sample should be very close (but not equal) to the probability you 
got from the population.  Try a few more ranges, in each case comparing sample proportion to 
population probability. 
 
Rounding 

The round() function does just what you think it does.  If you give it a single input, it rounds it to 
the nearest integer.  Try a few inputs, like 1.1, 1.6, and also negative numbers. 
> round(_) 

If the input is a vector, all the entries get rounded. 
> X = c(_,_,_,_) 
> round(X) 

If round() is given a second input, that input determines how many digits to round to.  Inputting 
1 rounds to the nearest tenth (.1), inputting 2 rounds to the nearest hundredth (.01), and inputting 
a negative number like -1 rounds to the nearest ten (10). 
> round(_, _) 

Notice that round(x,0) is the same as round(x). 
 


