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Loops 

Sometimes we want to repeat essentially the same command several times.  We do this using 
what programmers call a loop.  R does loops with the for() command.  Try this: 

> for(i in 1:5) print(i) 

This command tells R to repeatedly execute print(i) (which simply displays the value of i), 
while i takes all the values in 1:5, one at a time. 

You can use any vector you want to define the values of i: 
> X = c(..., ..., ...) 
> for(i in X) print(i) 

Of course you can loop other commands besides print(). 
> for(i in 1:5) X[i] = i^2 + 5*i - 7 
> X 

Try a few variations on this. 

If you want to execute multiple commands each time, use braces. 
> for(i in 1:5) { 
> j = i^2 
> print(j) 
> } 
 
Binary variables 

A binary variable is a random variable that can take only two possible values.  Usually the two 
values are called 0 and 1, or sometimes TRUE and FALSE.  One easy way to generate binary 
random variables is to use Uniform random variables. 
> runif(1) < .5 

This command first samples a number from a Standard Uniform distribution.  If this number is 
less than .5 it outputs TRUE and otherwise it outputs FALSE.  Therefore the result is TRUE half the 
time and FALSE half the time. 

We can get a sample of many binary variables by starting with many Uniform variables. 
> X = (runif(n) < .5) 
> X 

We can also sample from binary distributions with other values of q (the probability of TRUE).  For 
example, the command 
> runif(1) < .7 
outputs TRUE 70% of the time, because 70% of the Standard Uniform distribution is below .7 
(recall that all numbers between 0 and 1 are equally likely in the Standard Uniform distribution.) 

Try creating samples from binary distributions with different values of q. 
> X = (runif(n) < q) 
 
Binomial distribution 

The most interesting statistic (really, the only statistic) we can compute from a binary sample is 
the frequency of TRUEs in the sample.  We can find this statistic by simply summing the sample, 
since sum() treats TRUE as 1 and FALSE as 0. 
> sum(X) 

The frequency or sum from a sample of binary variables is called a binomial random variable.  Its 
probability distribution is called a binomial distribution.  This distribution specifies the probability of 



getting any number of TRUEs out of a sample of size n.  For example, it tells you the probability of 
getting any number of heads from flipping a coin n times (if you use q=.5). 

Get a large number of samples, and compute the sum of each sample. 
> for(i in 1:10000) { 
> X = (runif(n) < q) 
> s[i] = sum(X) 
> } 
Notice that the above commands give an error.  R gets confused if you refer to components of a 
vector that doesn't exist yet.  So, first s needs to be created.  It doesn't matter what you define it 
to be.  After that, the loop above will work. 
> s = 37 

s is now a large collection of binomial variables, each one the frequency of TRUEs in a different 
binary sample.  Therefore the distribution of values in s approximates an exact binomial 
distribution.  Make histograms of binomial distributions for a few different choices of n and q.  
Notice how the distribution becomes more Normal as n gets larger.  This is basically because of 
the Central Limit Theorem, which we’ll work on next week. 
 
Binomial Test 

Imagine you have observed a set of n binary variables, S of which were TRUE.  Choose a number 
for n between 10 and 20, and choose a value for S that's less than n and greater than n/2. 
> n = _ 
> S = _ 
(Notice that I’m using capital S for our actual result, and below I continue to use lowercase s for 
the distribution of hypothetical results.  Whatever names you use, make sure to keep them 
separate.) 

Now imagine you want to use your sample result, S, to test whether the proportion of TRUEs in 
the population (q) is reliably greater than .5.  For this test, we define the null hypothesis as the 
hypothesis that q = .5 in the population, and the alternative hypothesis as the hypothesis that  
q > .5.  The test will decide between these two hypotheses by asking whether the data (i.e., the 
value of S) is consistent with what you’d expect according to the null hypothesis. 

First, let's estimate the probability distribution of s according to the null hypothesis.  Do this by 
simulating a large number of samples from an artificial population where the null hypothesis is 
correct (i.e., using q = .5).  Each simulated sample should have the same size (n) as the “real” 
sample you defined above.  Then get the frequency of TRUEs in each simulated sample, just like 
you did above. 

Make a frequency table of your hypothetical sums 
> f = summary(factor(s)) 
> f 

(Notice that the concept of frequency is being used at two distinct levels here.  First, you found 
the frequency of TRUE in each hypothetical sample.  Now you’re looking at how many samples 
had each possible frequency, i.e. a “frequency of frequencies”.  This two-layer reasoning is 
common in inferential statistics: First we define a statistic as a function of all the observations in a 
single sample, and then we talk about the distribution of the statistic itself across lots of different 
samples.) 

Convert the frequencies to proportions by dividing by the number of samples you took.  Then 
make a plot of the distribution. 
> p = f/length(s) 
> p 
> barplot(p) 

This distribution is an estimate of the probability distribution of the sum of TRUEs according to the 



null hypothesis.  This is called the null hypothesis' likelihood function. 

Notice that values of s near n/2 have high probability according to the null hypothesis, but larger 
values of s are less likely.  Therefore, if S is big enough, we can conclude the null hypothesis is a 
poor explanation for the data, and we can reject it.  All we need to do is decide how large S can 
be before we reject the null hypothesis.  This cutoff is called the critical value for S.  We define the 
critical value so that IF the null hypothesis were true, S would have a 5% chance of being above 
the critical value.  That is, we have a 5% chance of making an error, called a Type I error 
(rejecting the null hypothesis when it’s actually true). 

First, find the appropriate critical value by trial and error.  Make a guess for what it might be, and 
calculate the fraction of entries in s that are greater than your guess.  Make adjustments until you 
find the smallest critical value that gives a Type I error rate less than or equal to 5%.  (Notice you 
can't achieve exactly 5% error, because your choice of cutoffs is discrete.  You want to choose 
the option that gives slightly less than 5%, rather than slightly more, because the general strategy 
is to strictly limit the rate of Type I errors.) 

Now that you’ve found the critical value, compare your actual result, S, to the critical value.  Do 
you reject the null hypothesis, and conclude the rate of TRUEs in the population is greater than 
50%, or do you stick with the null hypothesis?  (If S is exactly equal to the critical value, you retain 
the null hypothesis.  That’s because you just defined the critical value based on the fraction of 
results that are strictly greater than it.) 

Notice that, now that you have the critical value, you can easily redo your hypothesis test for any 
other possible value of S.  Imagine you got a different result, and decide what conclusion that 
result would lead to. 
 
Exact Binomial Test 

Instead of estimating the likelihood function by simulating lots of samples, we can compute it 
directly, using the pbinom() function.  This function is a lot like pnorm() -- it gives the 
probability that the sum of TRUEs from a binary sample will be greater than whatever value you 
input. 

pbinom() needs 3 inputs: the critical value (crit), the sample size (n), and the success 
probability (q).  The fourth input tells pbinom() that we want the probability of a score >crit 
(i.e., the probability in the upper tail of the binomial distribution), rather than the probability ≤crit 
(i.e., the lower tail). 
> pbinom(crit,n,.5,lower.tail=FALSE) 

If you found the right critical value above, you should get an answer slightly less than 5%, and if 
you replace crit with crit-1, you’ll get an answer slightly above 5% (because crit-1 is not a 
stringent enough criterion).  Notice that the probabilities you get from pbinom() are slightly 
different than what you got above using s, because pbinom() uses the exact math of the 
binomial distribution, whereas above you were just using simulations to approximate the 
distribution. 

Finally, you can use the qbinom() function to directly find the critical value. qbinom() is the 
opposite of pbinom().  pbinom() gives the probability above any critical value, and qbinom() 
gives the critical value for any probability.  (It’s called qbinom() because it basically is 
computing quantiles.  You should be able to understand why the critical value is the 95th 
percentile in the binomial distribution, since 1 – 5% = 95%.)   

If you want the value of the binomial variable that has a probability of 5% of being exceeded, you 
can do this: 
> qbinom(5%,n,.5,lower.tail=FALSE) 

This should give the same answer for the critical value as you found above. 


