
Psyc 2111, Jones 
Summary of Lab Week 7 

 
t-test 
First, we'll walk through the steps of a single-sample t-test.  Make up a sample 
with 5-10 data. 
> X = c(_,_,…) 

Look at your sample and come up with a reasonable number for the population 
mean under the null hypothesis (i.e., pick a value somewhere within the range of 
the sample).  Imagine you want to test whether this sample could reasonably 
have come from a population with that mean. 
To perform this hypothesis test, we’ll go through the steps we learned in lecture: 
1. State the null and alternative hypotheses 
2. Compute the test statistic, t, from the data 
3. Determine the likelihood function  
4. Find the critical value, with your chosen alpha level 
5. Compare the actual result to the critical value 
Step 1 is straightforward.  The null hypothesis is the same for all single-sample 
t-tests: µ = µ0.  The alternative hypothesis can be µ > µ0 or µ < µ0 if we have a 
reason to predict the direction (one-tailed test), or µ ≠ µ0 if we don’t (two-tailed 
test).  Since these are made-up data that you don’t have any real theory for, you 
should do a two-tailed test, meaning the alternative hypothesis is µ ≠ µ0. 
Step 2 requires that you first compute the sample mean and sample standard 
deviation.  You can use mean() and sd() for this.  Next, insert everything into 
the formula for t: 
> t = (M-mu.0)/(s/sqrt(n)) 

t tells how far the sample mean is from the hypothesized population mean, 
M-mu.0, relative to how far would be expected by chance, s/sqrt(n). 

Step 3 is straightforward again.  The likelihood function, or the sampling 
distribution under the null hypothesis, for a t statistic is always a t distribution.  
All you need to know is which t distribution.  There’s a different t distribution for 
every possible number of degrees of freedom.  For a single-sample t-test, the 
degrees of freedom is always one less than the sample size (because that’s how 
many squares went into computing s).  Use length() to find your sample size 
and subtract 1.  That’s your degrees of freedom, and that tells you which t 
distribution to use. 
In Step 4, you decide how extreme t needs to be to reject the null hypothesis.  
Extreme values of t indicate larger differences between M and µ0, relative to the 
difference that would be expected by chance.  We want a critical value that will 
give us a probability a of making a Type I error.  Choose a value of a; it could be 
5%, or it could be higher or lower (depending on how risky you’re feeling).   
Your Type I error rate is going to be the probability, according to the null 
hypothesis, of getting a value of t more extreme than the critical value.  Since 



we’re doing a two tailed test, this can happen by getting t > tcrit or t < -tcrit.  
Whatever value of tcrit you choose, these two probabilities will be equal, so you 
want to make each one equal a/2 so that the total probability of a Type I error is 
a/2 + a/2 = a. 
To compute tcrit, use the qt() function.  This function gives you a value of tcrit 
that has a specified probability of being exceeded.  The first input is what you 
want that probability to be, that is p(t > tcrit).  The second input is your degrees of 
freedom (which tells R which t distribution you want to use).  Finally, give 
lower.tail = FALSE as the third input to indicate that you’re specifying the 
probability above tcrit, not the probability below (i.e., the upper tail and not the 
lower tail). 
You can also use qt() to find the lower critical value, -tcrit.  Just input 
lower.tail = TRUE to indicate that you want to specify the probability in the 
lower tail.  This should give the negative of the result you got above. 
Step 5 tells you which hypothesis the data support.  Compare your t to the 
critical values.  Which hypothesis do you go with? 
Try computing t again, using the same sample but a different null hypothesis 
about mu.  If your first test was significant (i.e., you rejected the null hypothesis), 
use a new value of mu.0 that’s closer to M.  If your first test was non-significant 
(i.e., you retained the null), use a new value of mu.0 that’s further from M. 

Now that you’ve done the t-test “by hand,” compare your result to R’s built-in 
t-test function.  For a one-sample t-test, the input to the t.test() function is 
the sample (X), and the hypothesized population mean (mu.0). 
> t.test(X,mu=mu.0) 

Notice the output of this function gives you the sample mean, t, and the degrees 
of freedom.  These should agree with what you found yourself.  The output 
doesn’t give you the critical value for t, but instead it gives you two other ways of 
deciding between hypotheses.  The first is the p-value, which measures how 
consistent t is with the null hypothesis.  If the p-value is less than a, you reject 
the null hypothesis.  The second is the confidence interval, which we’ll learn 
about in lecture this week.  The confidence interval is the range of all possible 
choices of µ0 that would lead to retaining the null hypothesis (if you chose a = 
5%).  If your choice of µ0 is outside the confidence interval, then you should 
have rejected the null hypothesis (if you used a = 5%). 
 
t distribution 
Now we’ll look at the sampling distribution for a t statistic, using the procedure of 
generating a large number of different samples and computing t for each 
sample. 
Pick a sample size between 3 and 5.  Generate a single sample from a 
Standard Normal population, and find its mean. 
> X = rnorm(n) 



> M = mean(X) 

The standard error of M equals sigma/sqrt(n).  Since our population is 
Standard, sigma equals 1, so the standard error is just 1/sqrt(n).  This 
means that if we drew a large number of samples, the distribution of sample 
means would be Normal(0,1/sqrt(n)).  So we can turn M into a z-score by 
dividing by the standard error. 
> z = M/(1/sqrt(n)) 

However, if this were a real experiment, we wouldn’t know sigma, and we’d have 
to estimate it using the sample variance. 
> s = sqrt(var(X)) 

Then we’d use s/sqrt(n) as an estimate of the standard error, and use that 
estimate to compute t. 
> t = M/(s/sqrt(n)) 

We just computed t in exactly the same way as in the first part of this lab.  In 
this case, we used mu.0 = 0, which is why the numerator for t is just M. 

The point of all this is to compare z and t.  z will have a Standard Normal 
sampling distribution, but we can’t compute it in practice because it assumes we 
know sigma.  t differs from z in that it uses the sample standard deviation, s, in 
place of sigma.  s will be different from one sample to the next, meaning there 
will be extra variability in t that’s not present in z.  How does this affect the 
distribution of t versus z? 

To compare the sampling distributions of z and t, we’ll generate a large number 
of samples, and compute z and t from each sample.  In order to get the 
sampling distributions for the null hypothesis, we need to make the null 
hypothesis be true.  In other words, because the true mean of the population 
you’re sampling from is 0, use 0 for µ0. 
We do this using a loop like before, with {} braces to indicate there are multiple 
commands for each step of the loop. 
> for(i in 1:10000) { 
> X = rnorm(n)  #generate a sample 
> M = mean(X)  #compute its mean 
> z[i] = (M-0)/(1/sqrt(n))  #z-score for M, knowing sigma = 1 
> s = sd(X)  #get the sample standard deviation 
> t[i] = (M-0)/(s/sqrt(n))  #t, using s as an estimate of sigma 
> }  #this tells R the loop is done 

Now we have a large set of zs and ts for the same samples.  Compare their 
distributions.  First, use the following command to tell R to draw two graphs side 
by side.  Then, make histograms of z and t.  
> par(mfrow=c(1,2)) 

Notice how the t distribution is a bit wider than the z (Standard Normal) 
distribution, and the tails are especially thicker.  This is because of the variability 
in the sample standard deviation, which affects t but not z. 


