Lecture 11: t-test

Hypothesis Test for Population Mean
Goal: Infer μ from M
Null hypothesis: $\mu = \mu_0$
Usually 0
Sometimes another value, e.g. from larger population
Change scores
Memory improvement, weight loss, etc.
Sub-population within known, larger population
IQ of CU undergrads
Approach:
Determine likelihood function for M, using CLT
Compare actual sample mean to critical value

Likelihood Function for M
Probability distribution for M, according to H_0
Central Limit Theorem:
Mean equals population mean: $\mu_M = \mu_0$
Standard deviation: $\sigma_M = \frac{\sigma}{\sqrt{n}}$
Shape: Normal

Critical Value for M
Result that has 5% (a) chance of being exceeded, IF null hypothesis is true
Easier to find after standardizing $p(M)$
Convert distribution of sample means to z-scores: $z_M = \frac{M-\mu_M}{\sigma_M} = \frac{M-\mu_0}{\sigma/\sqrt{n}}$
Critical value for z_M always the same
Just use $\text{qnorm}(\alpha)$
Equals 1.64 for $\alpha = 5$

Example: IQ
Are CU undergrads smarter than population?
Sample size $n = 100$, sample mean $M = 103$
Likelihood function
If no difference, what are probabilities of sample means?
Null hypothesis: $\mu_0 = 100$
CLT:
$\mu_M = 100$
$\sigma_M = s/\sqrt{n} = 15/10 = 1.5$
z-score: $\frac{(103-100)}{1.5} = 2$
Problem: Unknown Variance

\[z_M = \frac{M - \mu_0}{\sigma / \sqrt{n}} \]

Test statistic depends on population parameter
 - Can only depend on data or values assumed by \(H_0 \)
Could include \(\sigma \) in null hypothesis
 - \(H_0: \mu = \mu_0 \) & \(\sigma = \sigma_0 \)
 - Usually no theoretical basis for choice of \(\sigma_0 \)
 - Cannot tell which assumption fails
Change test statistic
 - Replace population SD with sample SD
 - Depends only on data and \(\mu_0 \)
\[t = \frac{M - \mu_0}{s / \sqrt{n}} \]

\(t \) Statistic
 - Invented in 1908 by “Student” at Guinness brewery
\[t = \frac{M - \mu_0}{s / \sqrt{n}} \]
 - Deviation of sample mean divided by estimated standard error
 - Depends only on data and \(\mu_0 \)
 - Sampling distribution depends only on \(n \)

\(t \) Distribution
 - Sampling distribution of \(t \) statistic
 - Derived from ratio of Normal and (modified) \(\chi^2 \)
 - Depends only on sample size
 - Degrees of freedom: \(df = n - 1 \)
 - Invariant with respect to \(\mu, \sigma \)
 - Shaped like Normal, but with fatter tails
 - Reflects uncertainty in sample variance
 - Closer to Normal as \(n \) increases
 - Critical value decreases as \(n \) increases

\[\alpha = .05 \]

<table>
<thead>
<tr>
<th>df</th>
<th>(t_{crit})</th>
<th>df</th>
<th>(t_{crit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.31</td>
<td>5</td>
<td>2.02</td>
</tr>
<tr>
<td>2</td>
<td>2.92</td>
<td>10</td>
<td>1.81</td>
</tr>
<tr>
<td>3</td>
<td>2.35</td>
<td>30</td>
<td>1.70</td>
</tr>
<tr>
<td>4</td>
<td>2.13</td>
<td>(\infty)</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Steps of t-test
1. State clearly the two hypotheses
2. Determine null and alternative hypotheses
 \(H_0: \mu = \mu_0 \)
 \(H_1: \mu \neq \mu_0 \)
3. Compute the test statistic \(t \) from the data
 \[t = \frac{M - \mu_0}{\sqrt{s/n}} \]
4. Determine likelihood function for test statistic according to \(H_0 \)
 \(t \) distribution with \(n-1 \) degrees of freedom
5. Find critical value
 \(R: \text{qt}(\alpha, n-1, \text{lower.tail=FALSE}) \)
6. Compare actual result to critical value
 \(t < t_{crit} \): Retain null hypothesis, \(\mu = \mu_0 \)
 \(t > t_{crit} \): Reject null hypothesis, \(\mu \neq \mu_0 \)

Example: Rat Mazes
Measure maze time on and off drug
 Difference score: \(\text{Time}_{\text{drug}} - \text{Time}_{\text{no drug}} \)
 Data (seconds): 5, 6, -8, -3, 7, -1, 1, 2
 Sample mean: \(M = 1.0 \)
 Sample standard deviation: \(s = 5.06 \)
 Standard error: \(\text{SE} = s/\sqrt{n} = 5.06/2.83 = 1.79 \)
 \(t = (M - \mu_0)/\text{SE} = (1.0 - 0)/1.79 = .56 \)
 Critical value: \(\text{qnorm}(.05, 7, \text{lower.tail=FALSE}) = 1.89 \)
 \(t \) does not exceed critical value
 Cannot reject null hypothesis
 Assume no effect of drug