Comparing Several Groups
Do the group means differ?

Naive approach
Independent-samples t-tests of all pairs
Each test doesn't use all data → Less power
10 total tests → Greater chance of Type I error

Analysis of Variance (ANOVA)
Single test for any group differences
Null hypothesis: All means are equal
Works using variance of the sample means
Also based on separating explained and unexplained variance

Variance of Sample Means
Say we have \(k \) groups of \(n \) subjects each
Want to test whether \(\mu_i \) are all equal for \(i = 1, \ldots, k \)
Even if all population means are equal, sample means will vary

Central limit theorem tells how much: \(\sigma^2_M = \frac{\sigma^2}{n} \)

Compare actual variance of sample means to amount expected by chance

\[
\frac{\text{var}(M)}{\sigma^2/n} \quad \text{or} \quad \frac{n \cdot \text{var}(M)}{\sigma^2}
\]

Estimate \(\sigma^2 \) using \(\text{MS}_{\text{residual}} \)

Test statistic: \(F = \frac{n \cdot \text{var}(M)}{\text{MS}_{\text{residual}}} \)

If \(F \) is large enough
Sample means vary more than expected by chance
Reject null hypothesis

Residual Mean Square
Best estimate of population variance, \(\sigma^2 \)
Based on remaining variability after removing group differences
Extends MS for independent-samples t-test

For \(2 \) groups:
\[
\text{MS}_{\text{residual}} = \frac{\sum_{\text{group } 1} (X_1 - M_1)^2 + \sum_{\text{group } 2} (X_2 - M_2)^2}{n_1 + n_2 - 2}
\]

For \(k \) groups:
\[
\text{MS}_{\text{residual}} = \frac{\sum_{\text{group } 1} (X_1 - M_1)^2 + \ldots + \sum_{\text{group } k} (X_k - M_k)^2}{n_1 + \ldots + n_k - k}
\]
Example: Lab Sections

Group means: \(M = [76.6 \ 82.5 \ 83.7 \ 79.5 \ 82.9] \)

Variance of group means:

\[
\text{mean}(M) = \frac{\sum_i M_i}{5} = 81.0
\]

\[
\text{var}(M) = \frac{\sum_i (M_i - 81.0)^2}{5 - 1} = 8.69
\]

\[\text{var}(M) \text{ expected by chance: } \frac{22}{22}\]

\[\text{var}(M) \text{ vs. } \frac{22}{22}\]

Instead: \(22 \cdot \text{var}(M) \text{ vs. } \frac{22}{22}\)

191.1 vs. \(\frac{22}{22}\)

Estimate of \(\sigma^2\):

\[
\text{MS} = \frac{\sum \left(X - M_1 \right)^2 + \sum \left(X - M_2 \right)^2 + \sum \left(X - M_3 \right)^2 + \sum \left(X - M_4 \right)^2 + \sum \left(X - M_5 \right)^2}{110 - 5} = 199.1
\]

Ratio of between-group variance to amount expected by chance: \(F_{4,105} = \frac{191.1}{199.1} = .96\)

\(F_{\text{crit}} = 2.46\)

\(p = .44\)

Partitioning Sum of Squares

General approach to ANOVA uses sums of squares

Works with unequal sample sizes and other complications

Breaks total variability into explained and unexplained parts

\(SS_{\text{total}}\)

Sum of squares for all data, treated as a single sample

Based on differences from grand mean, \(\overline{M} \)

\[
SS_{\text{total}} = \sum_{\text{all groups}} \left(X - \overline{M} \right)^2
\]

\(SS_{\text{residual}} \) (\(SS_{\text{within}} \))

Variability within groups, just like with independent-samples t-test

Not explainable by group differences

\[
SS_{\text{residual}} = \sum_{i=1 \text{ to } k} \left(\sum_{\text{group } i} \left(X_i - M_i \right)^2 \right) = \sum_{\text{group } 1} \left(X_1 - M_1 \right)^2 + \ldots + \sum_{\text{group } k} \left(X_k - M_k \right)^2
\]

\(SS_{\text{treatment}} \) (\(SS_{\text{between}} \))

Variability explainable by difference among groups

Treat each datum as its group mean and take difference from grand mean

\[
SS_{\text{treatment}} = \sum_{i=1 \text{ to } k} \left(n_i \cdot \left(M_i - \overline{M} \right)^2 \right)
\]
Magic of Squares

\[SS_{\text{total}} = SS_{\text{treatment}} + SS_{\text{residual}} \]

\[SS_{\text{total}} = \sum (X - \bar{M})^2 \]

\[SS_{\text{residual}} = \sum (\sum (X_i - M_i))^2 \]

\[SS_{\text{treatment}} = \sum (n_i (M_i - \bar{M})^2) \]

Test Statistic for ANOVA

Goal: Determine whether group differences account for more variability than expected by chance

Same approach as with regression

Calculate Mean Square: \[MS_{\text{treatment}} = \frac{SS_{\text{treatment}}}{df_{\text{treatment}}} \]

\[H_0: MS_{\text{treatment}} \approx \sigma^2 \]

Estimate \(\sigma^2 \) using \[MS_{\text{residual}} = \frac{SS_{\text{residual}}}{df_{\text{residual}}} \]

Test statistic: \[F = \frac{MS_{\text{treatment}}}{MS_{\text{residual}}} \]

Lab Sections Revisited

Two approaches

Variance of section means
Mean Square for treatment (lab section)

Variance of group means

\[\text{Var}(76.6, 82.5, 83.7, 79.5, 82.9) = 8.69 \]

Expected by chance: \(\sigma^2 / 22 \)

\[\text{Var}(M) \text{ vs. } \sigma^2 / 22, \text{ or } 22 \cdot \text{var}(M) \text{ vs. } \sigma^2 \]

Mean Square for treatment

\[MS_{\text{treatment}} = \frac{\sum_i n_i (M_i - \bar{M})^2}{5 - 1} \]

\[= \frac{22 \cdot (76.6 - 81.0)^2 + 22 \cdot (82.5 - 81.0)^2 + 22 \cdot (83.7 - 81.0)^2 + 22 \cdot (79.5 - 81.0)^2 + 22 \cdot (82.9 - 81.0)^2}{4} \]

\[= 191.1 \]

Because equal group sizes:

\[n_i = 22 \]

\[\bar{M} = \text{mean}(M) \]

\[MS_{\text{treatment}} = 22 \cdot \text{var}(M) \]

\[F = \frac{191.1}{MS_{\text{residual}}} = \frac{191.1}{199.1} = .96 \]
Two Views of ANOVA

Simple: Equal sample sizes
\[F = \frac{\text{var}(M)}{\frac{\sigma^2}{n}} = \frac{n \cdot \text{var}(M)}{\sigma^2} = \frac{n \cdot \text{var}(M)}{\text{MS}_{\text{residual}}} \]

General: Using sums of squares
\[F = \frac{\text{MS}_{\text{treatment}}}{\text{MS}_{\text{residual}}} \]
\[\text{MS}_{\text{treatment}} = \frac{SS_{\text{treatment}}}{df_{\text{treatment}}} = \frac{\sum_i n_i (M_i - \bar{M})^2}{k-1} \]

If sample sizes equal: \[\text{MS}_{\text{treatment}} = \frac{n \cdot \sum_i (M_i - \bar{M})^2}{k-1} = n \cdot \text{var}(M) \]

Degrees of Freedom
\[SS_{\text{total}} = \sum (X - \bar{M})^2 \]
\[df_{\text{total}} = \sum n_i - 1 \]
\[SS_{\text{treatment}} = SS(M) \]
\[df_{\text{treatment}} = k - 1 \]
\[SS_{\text{residual}} = \sum_i SS(X_i) \]
\[df_{\text{residual}} = \sum (n_i - 1) = \sum n_i - k \]